EVOLUTION STRATEGY FOR COLLABORATIVE BEAMFORMING IN WIRELESS SENSOR NETWORKS

WONG CHEN HOW

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2013

UNIVERSITI MALAYSIA SABAH

BORANG	PENGESAHAN TESIS
JUDUL :	
ША Z АН :	
SAYA:	SESI PENGAJIAN :
(HURUF BESAR)	
Mengaku membenarkan tesis *(LPSM/Sarjana/Dokt Sabah dengan syarat-syarat kegunaan seperti beriku	tor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia ıt:-
 Perpustakaan dibenarkan membuat salinan tinggi. Sila tandakan (/) SULIT (Mengandungi makl seperti yang termak 	enarkan membuat salinan untuk tujuan pengajian sahaja. I tesis ini sebagai bahan pertukaran antara institusi pengajian lumat yang berdarjah keselamatan atau kepentingan Malaysia ktub di AKTA RAHSIA RASMI 1972) lumat TERHAD yang telah ditentukan oleh organisasi/badan di
TIDAK TERHAD	Disahkan oleh:
(TANDATANGAN PENULIS) Alamat Tetap:	(TANDATANGAN PUSTAKAWAN)
	(NAMA PENYELIA) TARIKH:
menyatakan sekali sebab dan tempoh tesis ini pe	urat daripada pihak berkuasa/organisasi berkenaan dengan Irlu dikelaskan sebagai SULIT dan TERHAD. tor Falsafah dan Sarjana Secara Penyelidikan atau disertai

bagi pengajian secara kerja kursus dan Laporan Projek Sarjana Muda (LPSM).

DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. $\ \ \, \bigcap$

1 April 2013

Wong Chen How PK2010-8032

CERTIFICATION

NAME : WONG CHEN HOW

MATRIC NO. : **PK2010-8032**

TITLE : EVOLUTION STRATEGY FOR COLLABORATIVE

BEAMFORMING IN WIRELESS SENSOR NETWORKS

DEGREE : MASTER OF ENGINEERING

(ELECTRICAL AND ELECTRONIC ENGINEERING)

VIVA DATE : 12 AUGUST 2013

1. SUPERVISOR
Mr. Kenneth Teo Tze Kin
Signature
UNIVERSITI MALAYSIA SABAH

2. CO-SUPERVISOR

Dr. Renee Chin Ka Yin

Signature

ACKNOWLEDGEMENT

Foremost, I would like to express my sincere gratitude and appreciation to my supervisor, Mr. Kenneth Teo Tze Kin, for his continuous support during my master study and research, for his patience, motivation, and valuable suggestions. His guidance helped me in all the time of research and writing of this thesis.

I would also like to thanks my co-supervisor Dr. Renee Chin Ka Yin for the inspiring discussions on my work. I benefited a lot from your thoughtful suggestions and your comments on this thesis.

Furthermore, I wish to extend my sincere thanks to my friends and colleagues in Modelling, Simulation and Computing Laboratory (mscLab) that offered their hand, exchanged idea and thoughts. Thanks for their willingness in spending time to have the wonderful discussion of my work.

Last but not the least, I would like to thank my family for their unconditional love, support and encouragement. Without you, I would not be the person I am today.

ABSTRACT

EVOLUTION STRATEGY FOR COLLABORATIVE BEAMFORMING IN WIRELESS SENSOR NETWORKS

The aim of this research is to improve the efficiency of the phase synchronisation algorithm in order to achieve collaborative beamforming (CB) in wireless sensor networks (WSNs). Generally, CB uses a group of distributed wireless sensor nodes, which collectively transmit a common message with different proper weights to an intended location. This group of distributed wireless sensor nodes intrinsically act as a set of virtual antenna array and inherit the natural highly directional transmission properties from conventional antenna array. However, distinct of conventional antenna array, each sensor node in CB has an independent local oscillator. It becomes a vital problem to achieve CB as the distributed sensor nodes are unaware of their phase relationship. An iterative algorithm using evolution strategy (ES) is proposed to achieve phase alignment at the intended location in static channels, which require one-bit feedback from the receiver destination. By implementing ES in phase synchronisation, each sensor node independently adjusts its phase perturbation size accordingly to speed up the phase synchronisation. Evaluations have been carried out through simulation and result show that the performance using ES is improved by 18.7 % convergence speed as compared to the conventional one-bit feedback (C1BF) approach. In addition, inverse phase perturbation is introduced for the improved ES (IES) which further improved the convergence speed by 31.6 % over the C1BF approach. Adaptive-IES is proposed for time-varying channels and the results show that the Adaptive-IES has the ability to detect channel changes. Therefore, it can be concluded that the proposed algorithm is robust in practical implementation.

ABSTRAK

Maklamat kajian ini adalah untuk meningkatkan kecekapan algoritma penyegerakan fasa pembawa dalam usaha untuk mencapai kerjasama "beamforming" (CB) dalam rangkaian sensor tanpa wayar (WSNs). Secara umumnya, CB menggunakan sekumpulan nod sensor tanpa wayar yang teragih dan menghantar mesej yang sama dengan berat fasa yang sesuai secara kolektif ke lokasi yang dikehendaki. Kumpulan nod sensor tanpa wayar yang teragih tersebut secara intrinsik bertindak sebagai satu set tatasusunan antena maya dan mempunyai sifat-sifat transmisi semulajadi dari tatasusunan antena konvensional iaitu perambatan transmisi yang amat berarah. Walau bagaimanapun, berbeza daripada tatasusunan antena konvensional, setiap nod sensor dalam CB mempunyai pengayun tempatan tersendiri. Ia merupakan satu masalah untuk mencapai kerjasama "beamforming" bagi nod sensor yang teragih apabila nod sensor tersebut tidak menyedari hubungan fasa antara nod sensor yang lain. Lelaran algoritma menggunakan evolusi strategi (ES) dicadangkan untuk mencapai fasa pembawa yang selaras di lokasi yang dicadangkan dalam keadaan saluran yang statik dengan hanya menggunakan maklum balas satu bit dari destinasi penerima. Dengan pembenaman ES dalam algoritma pembawa penyegerakan fasa pembawa, setiap nod sensor bertindak secara berasingan untuk menyesuaikan saiz pengusi fasa sendiri dengan sewajarnya. Simulasi ES telah menunjukkan peningkatan 18.7 % kelajuan penumpuan berbanding dengan penyelesaian konvensional. Tambahan itu, peningkatan sebanyak 31.6 % kelajuan penumpuan telah ditunjukkan melalui pengenalan pengusikan fasa songsang dalam algoritma peningkat ES (IES). Adaptive-IES dicadangkan untuk mengesan pengubahan saluran masa and keputusan menunjukkan pengukuhan algoritma Adaptive-IES kepada pengubahan saluran masa. Kesimpulannya, algoritma yang dicadangkan adalah lebih teguh dalam perlaksanaan praktikal.

LINIVERSITI MAI AYSIA SABAH

TABLE OF CONTENTS

		Page
TITLE		i
DECLARATION		ii
CERTIFICATION		iii
ACKNOWLEDGEMENT		iv
ABSTRACT		٧
ABSTRAK		vi
TABLE OF CONTENTS		vii
LIST OF TABLES		X
LIST OF FIGURES		хi
LIST OF ABBREVIATIONS		xiv
LIST OF SYMBOLS		xvi
1.2 Collaborative Beamfold1.3 Scope of Work1.4 Research Objectives1.4.1 To Model a	Vireless Sensor Networks orming in Wireless Sensor Networks and Simulate Collaborative Beamfoming in	1 1 2 4 5 5
	nd Compute an Evolution Strategy in Phase	6
Synchronisati 1.4.3 To Extend ar Synchronisati	nd Enhance the Evolution Strategy in Phase	6
1.5 Thesis Outline	on Algorithm	6
	F COLLABORATIVE BEAMFORMING IN SENSOR NETWORKS	8
	laborative Beamforming in Wireless Sensor	8
2.2 Wireless Sensor Netv 2.2.1 Wireless Sensor		9 9 12
2.3 An Overview on Phase 2.3.1 Open Loop M 2.3.2 Time-Slotted	ethod	17 17 19

	2.3.4	Node-Selection Met Blind Method					20 21
2.4	Overvi	Closed Loop Methodew of Enhance		Loop	Feedback	Phase	21 24
2.5	•	onisation er Summary					27
СНАР	TFR 3:	COMPUTATIONAL	TI	NTELLI	GENCE	IN	28
CIIAI	ILK 5.	COLLABORATIVE			GLITCL	4.14	20
3.1	Introd	uction					28
3.2	Beamf	orming Formation					30
	3.2.1	One-Dimensional A	ray				30
		Random Array					33
3.3		Box Optimisation Pro					35
3.4		Anatomy of Evolution	Strategy				37
		Initialisation					39
		Selection Operator					39
		Mutation Operator					40
		Termination					42
3.5	Chapte	er Summary					42
CHAP	TER 4:	MODELLING	AND		ILATION	OF	43
//	3	COLLABORATIVE	BEAMFOR	MING			40
4.1	Introd						43
4.2		ing of Collaborative	3eamror m in	g			43
121		Geometrical Model Channel Model					43 45
101		Phase Offset Model					47
		Received Signal Str	enath Mode				47
4.3		Synchronisation Algo			LAYSIA	SABAH	48
4.4		tion of Phase Synchi				W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	55
		Simulation of Conve		•	dhack Algoi	rithm	55
		Performance Eval					58
		Algorithm			,		
4.5	Chapte	er Summary					61
СНАР	TER 5:	IMPLEMENTATIO	N OF EVO	LUTIO	N STRATEG	Y FOR	63
		PHASE SYNCHRO				_	
5.1	Introd	uction					63
5.2	Analys	is of Phase Perturbat	ion Step Siz	ze			64
	5.2.1	Effect of Large Phas	se Perturbat	ion Ste	o Size		64
	5.2.2	Effect of Small Phas	se Perturbat	ion Step	Size		66
	5.2.3	Effect of Increase P	erturbation	Step Siz	ze		68
		Effect of Decrease					70
5.3		pment of Evolution S	Strategy for	Phase S	Synchronisa	tion	72
	5.3.1	5,					73
	5.3.2					_	77
5.4	Evalua Algorit	tion and Assessme hm	nt of Deve	eloped	Evolution S	Strategy	80

	5.4.2	Initial P	hase Pertu			obability Se e Selection	lection	81 83
5.5	Chapte	er Summa	ary					84
СНАР	TER 6:		ICEMENT SYNCHR	_		ON STRA	TEGY FOR	86
6.1 6.2				ved E	Evolution	Strategy	for Phase	86 87
6.3		Impleme		Improv	ved Evolu	ition Strate	gy gorithm with	87 88 91
6.4	Static (Adaptiv	Channels ve Impro	5	ion Str			nchronisation	95
	6.4.1 6.4.2 6.4.3	Time-Va Adaptive Implem	arying Char e Improved entation of	nnels I Evolu Adapti	ve Impro	ved Evoluti	on Strategy	96 96 98
6.5	Time-V	arying C	Channels	ent of	the Dev	reloped Alg	orithm with	103
6.6	Chapte	er Summa	ary					106
CHAP 7.1 7.2 7.3	Summa	ery ements	USIONS				15	108 108 109 110
REFE	RENCES				/			111
APPE	NDIX A	. AS	MATLAB S	OURC	E CODE	FOR C1BF	SIA SABAH	118
APPE	NDIX B	:	MATLAB S	OURC	E CODE	FOR ES		121
APPE	NDIX C	:	MATLAB S	OURC	E CODE	FOR IES		124
APPE	NDIX D) :	MATLAB S	OURC	E CODE	FOR ADAI	PTIVE-IES	127
APPE	NDIX E	:	PUBLICAT	IONS				131

LIST OF TABLES

		Page
Table 2.1	Literature comparison of various closed loop methods	26
Table 3.1	Pseudo code for selection operator in evolution strategy	40
Table 4.1	Pseudo code for conventional one-bit feedback algorithm	54
Table 4.2	Parameter settings for collaborative beamforming	55
Table 4.3	Comparison of convergence speed with different numbers of sensor nodes	61
Table 5.1	Pseudo code for evolution strategy algorithm	79
Table 5.2	Pseudo code for the exploration and exploitation mechanism of evolution strategy algorithm	80
Table 5.3	Average time slots required to achieve 90 % RSS for different success rule probability and trail number	82
Table 6.1	Pseudo code for improved evolution strategy	90
Table 6.2	Pseudo code for inverse phase perturbation mechanism of evolution strategy algorithm	91
Table 6.3	Convergence speed improvement for phase synchronisation algorithm at various RSS level	95
Table 6.4	Pseudo code for adaptive improved evolution strategy	100
Table 6.5	Pseudo code for the second stage of adaptive improved evolution strategy	102
Table 6.6	Parameter settings for adaptive improved evolution strategy	104

LIST OF FIGURES

		Page
Figure 2.1	Overview of sensor node structure	10
Figure 2.2	Block diagram of Mica architecture	12
Figure 2.3	Direct transmission in wireless sensor networks	13
Figure 2.4	Multi-hop transmission in wireless sensor networks	14
Figure 2.5	Beamforming transmission in wireless sensor networks	15
Figure 2.6	Master-slave scheme open loop carrier synchronisation method	18
Figure 2.7	Time-slotted round-trip method	19
Figure 2.8	Nodes selection method	20
Figure 2.9	Phase synchronisation using receiver feedback	22
Figure 3.1	Research methodology flow chart	29
Figure 3.2	Delay-and-sum beamformer with uniform linear array	30
Figure 3.3	Signal received in Uniform Linear Array	31
Figure 3.4	Spherical coordinate system ITI MALAYSIA SABAH	33
Figure 3.5	Signal received in random array	34
Figure 3.6	Black-box optimisation scheme	35
Figure 3.7	Framework of evolution strategy	38
Figure 3.8	Effect of standard deviation $\boldsymbol{\sigma}$ of the mutation operator in the search-space	41
Figure 4.1	Cluster of sensor nodes and base station	44
Figure 4.2	Channel between sensor node and base station	46
Figure 4.3	System model for phase synchronisation	49
Figure 4.4	Simulation of an instance network topology	56

Figure 4.5	Convergence of conventional one-bit feedback algorithm	5/
Figure 4.6	Performance of conventional one-bit feedback algorithm in term of received signal strength versus time slots	59
Figure 4.7	Convergence performance of conventional one-bit feedback algorithm on the various number of sensor nodes	60
Figure 5.1	An instance performance of conventional one-bit feedback algorithm with large phase perturbation step size	65
Figure 5.2	Average performance of conventional one-bit feedback algorithm with large phase perturbation step size	66
Figure 5.3	An instance performance of conventional one-bit feedback algorithm with small phase perturbation step size	67
Figure 5.4	Average performance of conventional one-bit feedback algorithm with small phase perturbation step size	68
Figure 5.5	An instance conventional one-bit feedback algorithm with increase phase perturbation step size and fix phase perturbation step size	69
Figure 5.6	Average performance of conventional one-bit feedback algorithm with increase phase perturbation step size and fix phase perturbation step size	70
Figure 5.7	An instance conventional one-bit feedback algorithm with decrease phase perturbation step size and fix phase perturbation step size	71
Figure 5.8	Average performance of conventional one-bit feedback algorithm with decrease phase perturbation step size and fix phase perturbation step size	72
Figure 5.9	A black-box problem for evolution strategy in phase synchronisation system	73
Figure 5.10	Random phase perturbation with fix step size of conventional one-bit feedback algorithm	75
Figure 5.11	Exploration mechanism on the phase perturbation step size	75
Figure 5.12	Exploitation mechanism on the phase perturbation step size	76
Figure 5.13	Performance of evolution strategy in term of received signal strength versus time slots.	83

Figure 5.14	Evolution strategy under different initial phase perturbation step size	84
Figure 6.1	Inverse phase perturbation mechanism	88
Figure 6.2	Different algorithms under different initial phase perturbation step size	92
Figure 6.3	Average convergence performance for different algorithms	93
Figure 6.4	The minimum number of time slots required at different RSS	94
Figure 6.5	Optimum initial phase perturbation step size that achieves different RSS percentages with minimum time slots	94
Figure 6.6	Illustration of previous record of received signal strength	98
Figure 6.7	The impact of time-varying channel for different algorithms	103
Figure 6.8	Adaptive improved evolution strategy with time-varying channel conditions	105
Figure 6.9	Adaptive improved evolution strategy under different time- varying channel conditions	106

LIST OF ABBREVIATIONS

ADC Analog-to-Digital

AOA Angle of Arrival

AP Access Point

BER Bit Error Rate

BS Base Station

C1BF Conventional One-Bit Feedback

CB Collaborative Beamforming

CC Cooperative Communication

COTS Common Off-The-Shelf

CPU Central Processing Unit

CSI Channel State Information

DARPADefence Advanced Research Project Agency

DSN Distributed Sensor Network

EA Evolutionary Algorithm

ES Evolution Strategy

GSM Global System for Mobile Communication

I/O Input and Output

IC Integrated Circuit

LO Local Oscillator

LOS Line-of-sight

MIMO Multiple Input Multiple Output

ODE Ordinary Differential Equation

PLLs Phase-Locked Loops

PPM Parts per Million

RF Radio Frequency

RSS Received Signal Strength

SNR Signal Noise Ratio

TPC Transmission Power Control

ULA Uniform Linear Array

WSNs Wireless Sensor Networks

LIST OF SYMBOLS

а	Signal Amplitude
AF	Array Factor
β	Phase Drift Speed
С	Speed of Light
С	Mutation Factor
C_{se}	Small Exploration Factor
C_{le}	Large Exploration Factor
d	Distance between Sensor Node
d_F	Fix Distance
δ	Random Phase Perturbation Step Size
δ_0	Initial Random Phase Perturbation Step Size
$\delta_i[n]$	Random Phase Perturbation Step Size for i_{th} Sensor Node in Time Slot n
$\Delta \varphi$	Phase Difference of the Electromagnetic Waves Signal
$\Delta arphi_i[n]$	Phase Difference of the Electromagnetic Waves Signal From i_{th} Sensor Node in Time Slot n
\emptyset_i	Carrier Phase for Beamforming at i_{th} Sensor Node
E_c	Estimation between Current and Maximum Received Signal Strength
E_p	Estimation between History and Maximum Received Signal Strength.
f_c	Carrier Frequency
G	Beamforming Gain
γ_i	Phase Offset For i_{th} Sensor Node
h_i	Channel Coefficient from i_{th} Sensor Node
H(f)	Channel Model

i	Sensor Node Number
λ	Wavelength
m	Number Iteration for Successful Probability
m(t)	Message Signal
μ	Mean
n	Time Slot
n(t)	Additive White Gaussian Noise
nRSS[n]	Normalised Received Signal Strength in Time Slot n
N	Number of Collaborative Sensor Node
~N	Gaussian Distribution Function
θ	Elevation Angle
θ_a	Angle of Arrival
(θ_0,ϕ_0)	Direction of Signal Source toward Base Station
(θ_a, ϕ_a)	Direction of Signal Source
$\Phi_{\mathbf{i}}$	Total Phase Component from i_{th} Sensor Node at Base Station
$\Phi_{\mathbf{i}}[n]$	Total Phase Component from i_{th} Sensor Node at Base Station in Time Slot n
ω_c	Carrier Frequency in Radian
ϕ	Azimuth Angle
$\psi_i[n]$	Channel Phase response of i_{th} Sensor Node in Time Slot n
P_{offset}	Total Phase Offset
P_r	Success Rule Probability
P_{S}	Successful Probability
ψ_i	Channel Phase Response i_{th} Sensor Node
r(t)	Received Signal

R	Disk Radius
$R_{i,0}$	Euclidean Distance between i_{th} Sensor Node and Base Station
RSS	Received Signal Strength
RSS[n]	Received Signal Strength in Time Slot n
RSS_{accept}	Acceptable Received Signal Strength Threshold for Collaborative Beamforming
$RSS_{best}[n]$	Best Received Signal Strength in Time Slot n
$RSS_{history}[n]$	Received Signal Strength in History Stored at Time Slot \boldsymbol{n}
\Re	Real Part Operator
s(t)	Source Signal
σ	Standard Deviation
Δτ	Relative Time Delay
t s	Time
φ	Initial Weighting Phase
φ_i	Adaptive Phase Component of i_{th} Sensor Node
$\phi_i[n]$	Adaptive Phase Component of i_{th} Sensor Node in Time Slot n
w	Weighting Function
(x_i, y_i, z_i)	Position of i_{th} Sensor Node in Cartesian Coordinate
X	Parent Solution
X_0	Initial Solution
$ ilde{X}_g$	Offspring Solution

CHAPTER 1

INTRODUCTION

1.1 Early Wireless and Wireless Sensor Networks

Wireless information transmitting systems existed long ago even before the advent of the Industrial Revolution (Seymour and Shaheen, 2011). These systems transmitted signals in line-of-sight (LOS) distances and using non-electric methods such as smoke signal, semaphore flags, and flashing mirrors. However, these communication systems were replaced by the invention of telegraph network, which uses electrical circuits. Later, it was replaced by the inventions of the telephone, followed by radio transmission.

Distinct from these early wireless communication inventions, ALOHANET was developed at the University of Hawaii, which is the first packet based network that soon becomes the well-known global Internet (Sarkar *et al.*, 2006). The success of ALOHANET is a very important encouragement to the US government agency or Defence Advanced Research Project Agency (DARPA). By using the same principle, DARPA carried out a series of research for tactical communications network in the battlefield called Distributed Sensor Network (DSN). However, development of a small and powerful sensor node is a very challenging task during that time due to technology limitations.

Recent advances in sensing, wireless digital communication, integrated circuit (IC) and microelectronics technology have permitted the development of lightweight, relatively inexpensive, low power and multifunctional miniature sensor nodes (Akyildiz *et al.*, 2002a, 2002b). These sensor nodes are capable of collecting information about the physical environment, coordinate with each other, and communicate wirelessly by forming a network. Each sensor node is equipped with a processing unit, a sensing unit, a communication unit, and a power unit. This advance technology led to the birth of the Wireless Sensor Networks (WSNs).

WSNs has been announced as one of the ten emerging technologies that will change the world (Technology Review, 2003). It is believed to change the way human live and interact with the physical world (Zheng and Jamalipour, 2009). It has attracted much research attention and has proven as a key research topic in recent years (Chong and Kumar, 2003; Yick *et al.*, 2008; and Lotf *et al.*, 2011). The number of potential applications in WSNs is growing rapidly due to the wide range and flexibility of WSNs (Culler *et al.*, 2004 and Zhao and Guibas, 2004).

Typically, sensor nodes are deployed in the sensing area for continuous data collecting and environment monitoring. In some of the WSNs applications, the sensing data must be transmitted to the base station (BS) in order to allow the end-user data access. For some cases, the distance between BS and the sensing area might be too far. Traditional transmission techniques such as direct transmission and multi-hop transmission, which are used for the network communication, have limited communication ranges and are inapplicable due to limited power supply and the effect of path loss in wireless transmission. Moreover, among the sensor node functions, long distance transmission is major energy consumer. Therefore, proper design of signal processing and networking operations are essential for prolonging the operation lifetime of the sensor node.

1.2 Collaborative Beamforming in Wireless Sensor Network

Beamforming is a signal processing technique generally used in antenna array to control the directional of the signal transmission. Beamforming technique combining transmitted signals from the antenna array to created constructive interferences at the intended direction. As a result, the signal strength is significantly increased. Beamforming can be used to boost the communication range by providing a higher signal to noise ratio (SNR) and received signal strength (RSS).

HNIVERSITI MALAYSIA SABAH

Collaborative beamforming (CB), also referred as distributed beamforming, is the idea that beamforming concept is used to establish the communication link in WSNs. In CB, a group of sensor nodes intrinsically act as a set of a virtual antenna array. CB considers isotopic antenna of the sensor nodes as elements of an

antenna array. All sensor nodes shared the same common message. Each of the sensor nodes employs a proper phase and the messages are synchronously transmitted towards the intended direction.

Due to high SNR and RSS of beamforming, CB can transmit signal over long communication distance (Uher *et al.*, 2011). Compared with direct transmission using single sensor node or multi-hop transmissions, CB distributes the energy consumption over multiple sensor nodes (Betz *et al.*, 2007). Therefore, individual sensor node uses less energy for transmission. CB balances the energy consumption throughout the network, Hence, prolonging the network lifetime.

Although CB has such unique benefits on WSNs, the implementation of CB is not straight forward. The principle challenge of realizing CB in practice is to synchronise the signal phase of individual sensor nodes in such a way that the signal combine coherently at the intended destination (Mudumbai *et al.*, 2009). Distinct from centralised beamforming, each sensor node has an independent local oscillator (LO) that is used to generate the carrier signal. The signals produced from different LO are catastrophic for CB since the phase of the signals may not be synchronised and may even result in destructive combing at the intended destination.

The knowledge of channel state information (CSI) is the factor that decides the performance of the CB. Perfect CSI is needed to obtain phase setting for each sensor node and achieve phase synchronisation at the desired destination. However, this knowledge is generally not available at sensor node. Obtaining perfect CSI at the sensor node side may be too expensive to acquire (Lin *et al.*, 2010). Therefore, phase synchronisation method without CSI is recommended.

A low-rate feedback link from the receiver can be used to make partial CSI available to the sensor node. Mudumbai *et al.* (2006) proposed a simple phase synchronisation algorithm that requires only one-bit feedback from the receiver. The authors proposed adjusting phase setting iteratively at the sensor nodes. Phase synchronisation at the receiver can be achieved after a large iteration. In this

algorithm, all sensor nodes has an added a random perturbation on its phase offset in each iteration. Positive feedback is broadcasted to sensor nodes, if perturbation results in bigger RSS at the receiver, and the phase setting will be adopted. Otherwise, the added phase perturbation will be discarded.

There are two key advantages of this algorithm. Firstly, the algorithm does not require CSI and only rely on one-bit feedback. Secondly, it is simple in implementation and is scalability to a large number of sensor nodes. The shortcoming of the algorithm is that the algorithm takes a large number of iterations to achieve convergence. Energy-efficiency is a major concern in WSNs and radio transmission is one of the most energy consuming operation (Podpora *et al.*, 2008). Therefore, it is desirable to improve the convergence speed of the algorithm without sacrificing much on its key advantages.

In summary, the challenge ahead is to discover a new phase synchronisation algorithm that can improve the convergence speed of the phase synchronisation. In this work, evolution strategy (ES) is selected to improve the phase synchronisation performance. Compared to other evolutionary algorithms, the main advantage of ES is the use of strategy parameters, which can represent a preferred direction and step size for a further search. With this ability, it can be implemented on the sensor nodes to adjust the step size of phase perturbation in iteration. ES can search through large phase setting solution space for the maximum RSS.

1.3 Scope of Work

The primarily concern of this research is on the implementation of ES for phase synchronisation in order to achieve CB in WSNs. ES will be used as the phase synchronisation algorithm. The CB is modelled using geometrical model, channel model, phase offset model and RSS. CB model emulates the signal transmission of CB between sensor nodes and receiver. The model of CB is then used as the system model for phase synchronisation. Several prior conditions and assumptions of CB must be described. The sensor nodes are assumed randomly deployed in an area with four metres of distributed radius. The sensor nodes are assumed static in

the network. All sensor nodes are equipped with an isotropic antenna, and CSI is unavailable. Sensor nodes are assumed locked with same carrier frequency. Therefore, the frequency drift is considered negligible. The carrier frequency used for the signal transmission is of 2.4GHz with unity signal amplitude. Sensor nodes are assumed sharing a common time reference and message. Phase synchronisation algorithm is simulated using the system model for phase synchronisation. ES is selected to improve the convergence speed of phase synchronisation. ES is designed to control the phase perturbation step size for sensor nodes by balance between exploration and exploitation to achieve fast convergence phase synchronisation.

1.4 Research Objectives

The aim of this research is to design a phase synchronisation algorithm which can improve the performance of phase synchronisation in order to perform CB. Effective phase synchronisation can be achieved through proper phase setting among sensor nodes. Phase synchronisation algorithm is implemented into the system model for phase synchronisation. ES is implementing in phase synchronisation for better control of the phase perturbation step size. Hence, ES provides better trade-off in problem space exploration and exploitation. The implementation of ES in phase synchronisation is tested in various simulations to investigate the behaviour and characteristic on phase convergence capability. The research objective can be achieved through the following objectives:

1.4.1 To Model and Simulate Collaborative Beamforming in Wireless Sensor Networks

The CB model is modelled by including geometrical model, channel model, phase offset model and RSS. These models can link more closely to the environment of CB in WSNs. The model is constructed and written in MATLAB m-file coding. Conventional phase synchronisation algorithm is simulated under the developed model. The development model and the algorithm is used as s benchmark for the performance analysis in the thesis.