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ABSTRACT 
 

PARTICLE SWARM OPTIMIZATION IN MULTI-USER ORTHOGONAL 
FREQUENCY-DIVISION MULTIPLEXING SYSTEMS 

 
Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier modulation 
technique of transferring an information bit stream on several sub-carrier 
frequencies. OFDM is used in many communication systems which exhibit high 
spectral efficiency and robustness against multipath fading channels. However, 
scheduling and resource allocation in multiuser OFDM system is complicated due to 
the different possibilities faced by the sub-channel assignments, furthermore the 
requirements for each user is not homogeneous. Therefore, it is challenging to 
strategically allocate radio resources and maximize system performance in a 
multiuser environment. Through modelling of the multiuser OFDM communication 
system, investigation in simulations shows that adaptive modulation in OFDM uses 
Channel State Information (CSI) to optimize the sub-carrier modulation scheme. 
While maintaining a target Bit Error Rate (BER), adaptive modulation optimizes the 
selection of modulation scheme and transmit power for each sub-carrier so that 
spectral efficiency is maximized. In this research, the overall system performance 
improvement is achieved by allocating the best user-to-sub-carrier combinations. 
To minimize the power consumption, Particle Swarm Optimization (PSO) is utilized 
to find the exact or near optimal resource allocation for the users. PSO is efficient 
in handling big solution space akin to resource allocation problems with different 
permutations mentioned. As a part of enhancing the performance of PSO, 
investigation of the control parameters effect on multi-user OFDM resource 
allocation is presented, resulting in particle reselection and dynamic inertia 
approach which shows 8 % of improvement over the standard PSO algorithm. 
Results also prove that the combination of both enhancements helped the 
algorithm to perform significantly better compared to a single enhancement. 
Furthermore, the introduction of PSO showed 70-75 % of power saving advantage 
over suboptimal resource allocation techniques. 
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ABSTRAK 
 
“Orthogonal Frequency-Divison Multplexing” (OFDM) merupakan teknik transmisi 
data yang menggunakan beberapa isyarat subpembawa secara selari dalam 
pemodulasiannya. Kebanyakan sistem komunikasi yang bercekapan tinggi dalam 
penggunaan jalurlebar dan teguh terhadap kesan negatif saluran “multipath fading” 
mengaplikasikan kaedah OFDM. Walaubagaimanapun, pengurusan sumber 
komunikasi OFDM adalah rumit disebabkan proses peruntukkan subpembawa untuk 
setiap pengguna tidak seragam. Oleh kerana itu, isu pemaksimuman kapasiti 
saluran tanpa wayar di samping memperuntukkan sumber secara strategik adalah 
amat mencabar. Dalam penyiasatan simulasi melalui permodelan sistem komunikasi 
OFDM yang berdasarkan pelbagai pengguna, kaedah “Adaptive Modulation” 
menunjukkan keperluan “Channel State Information” (CSI) untuk mengoptimumkan 
kadar data di samping mengekalkan Bit Error Rate (BER) yang memuaskan. Dalam 
saluran “multipath” yang bersifat frekuensi terpilih, kombinasi peruntukkan kepada 
pengguna yang terbaik dapat memanfaatkan sistem komunikasi. Dalam 
penyelidikan ini, peningkatan prestasi sistem dicapai melalui peruntukan sumber 
subpembawa yang terbaik. Selain itu, dalam peningkatkan prestasi kuasa sistem 
komunikasi, “Particle Swarm Optimization” (PSO) digunakan untuk mencari 
penyelesaian yang paling optimum untuk pelbagai pengguna. Ini adalah kerana 
PSO mempunyai kecekapan dalam pengendalian ruang penyelesaian yang besar 
bersamaan dengan kes situasi peruntukkan sumber yang mempunyai pelbagai 
kombinasi. Dalam usaha meningkatkan prestasi PSO, penyiasatan kesan-kesan 
parameter kawalan PSO terhadap sistem komunikasi OFDM oleh pelbagai pengguna 
dibentangkan. Hasil kerja menunjukkan bahawa kaedah pilihan semula zarah dan 
inersia dinamik merekodkan sebanyak 8% peningkatan prestasi terhadap 
penjimatan kuasa transmisi berbanding dengan  algoritma asas PSO. Keputusan 
juga menunjukkan bahawa combinasi kedua-dua kaedah membantu algoritma 
bertambah baik berbanding dengan satu jenis peningkatan. Tambahan pula, 
pengenalan PSO menunjukkan peningkatan 70-75% penjimatan kuasa transmisi 
berbanding teknik-teknik peruntukan sumber suboptimum.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background and Motivation  

Over the last few decades, wireless communication systems have evolved 

substantially in the information age. The trends signify an escalating demand for 

wireless services over a wide population. The drive for wireless broadband markets 

in populous countries is the lack of fixed-line infrastructure. In Malaysia year 2011, 

mobile broadband is the most used access technology at 60.4% followed by 

Asymmetric Digital Subscriber Line (ADSL) 44.3% and Worldwide Interoperability 

for Microwave Access (WiMAX) 11.2% (MCMC, 2011). The rise of service providers 

in Asia-pacific bidding for long term evolution (LTE) and WiMAX spectrum is due to 

the boost in mobile broadband market and proliferation of smart phones and 

wireless devices. In 2004, at the time of his publication, Prasad (2004) foresee that 

in the near future applications that require 1Gbps will come out soon, although at 

that time it seems ‘academic’ to develop a system of much higher than reasonable. 

At present, third generation partnership programme 3GPP showcases technology 

components like 1Gbps data rates, higher cell throughput and lower cost per bit in 

LTE-Advanced technology (Mogensen, 2009). Nippon Telegraph and Telephone 

Coporation (NTT, 2007) had a trial run which reportedly achieved up to an 

impressive 5Gbps. In time, the rapid development will shrink the world in a global 

information multimedia communication village (GIMCV) by 2020 (Prasad, 2004). 

 

 Orthogonal frequency-division multiplexing (OFDM) is a multi-carrier 

modulation technique, recognized as the most promising modulation techniques for 

standard of fourth generation mobile communications. The general idea of 

multi-carrier transmission is a high rate single data stream transmitted over several 

low rate sub-carriers. The advantages of OFDM are robustness against frequency-

selective fading and high spectral efficiency. A single carrier transmission might 

entirely fail because a part of it is distorted, compared to a multi-carrier system, 

only one or few sub-carriers will be affected. The concept of parallel transmission 
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and frequency-division multiplexing (FDM) was researched upon in the mid-1960s 

(Chang, 1966; Salzberg, 1967; Chang and Gibby, 1968). A patent was also filed in 

1966 and issued in January 1970 (Chang, 1970) 

 

 Wireless communications are constrained to operate within a limited 

frequency range or bandwidth. More bandwidth means more information can be 

transmitted. The International Telecommunication Union (ITU) controls the 

frequency spectrum through licensing processes. Given the need for future 

applications to use more data-centric services compared to the conventional voice-

only, resulting in extra precious and congested spectrum. Growing subscriber 

numbers expect to access information at the tip of their fingers anywhere, anytime. 

It is predicted that the telecommunications market must provide increased data 

rates and wider coverage to accommodate. Thus, efficient management and usage 

of the scarce radio resources, e.g. spectrum, power and time are of great 

importance. 

 

1.2 Management of Radio Resources 

The management of limited resources such as spectrum and transmit power is 

imperative as many connected users must maintain their quality of service (QoS) 

over the time-varying channel which affects the communications link. Therefore, it 

is intuitive to use dynamic resource allocation approaches to manage valuable 

frequency spectrum strategically and conserve transmit power (Lee et al., 2000). 

The multi-user OFDM resource allocation problem is characterised as a multi-

objective and full of different dynamics. 

 

OFDM provides a good interface for implementing multiple access, thus, 

researchers found out a way to allocate users using frequency-division multiple 

access (FDMA) and time-division multiple access (TDMA). The earlier multi-user 

wireless systems which utilize OFDM physical layer are IEEE 802.11a/g and IEEE 

802.16. However, the static resource allocation of FDMA and TDMA does not exploit 

multi-user diversity. Multi-user diversity can be observed by the exploitation of the 

time-varying characteristics of each user (Tse, 2001). This paves way to multi-user 

OFDM or orthogonal frequency-division multiplexing (OFDMA), which allows 
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multiple users to transmit simultaneously on the different sub-carriers. The 

probability of all users experiencing severe fading on a particular sub-carrier is low. 

For this reason, strategic allocation of sub-carriers can ensure the users have 

transmission links which are advantageous to them. 

 

Radio resource management (RRM) is the field of systems engineering 

which practice the optimization of limited resources usage in wireless network 

(Koivo and Elmusrati, 2009). The performance of a wireless system depends on 

various parameters, including bandwidth, power, time and etc. The impact of these 

resources often spans across the network layers where the allocation must be 

satisfactory to both user and service provider. Typically, several resources must be 

traded off against each other. Therefore, consideration of acceptable constraints 

must be made before optimizing an aspect of performance. Finally, the analysis and 

simulations to study the impact will be translated into the implementation of the 

resource allocation scheme in the wireless network. 

 

The problem of allocating time slots, sub-carriers, rates and power in an 

OFDMA system has been an active area of research. Power control in wireless links 

is complex because the transmit power level affects: the quality of the signal, the 

range of transmission and the magnitude of interference creates for other users 

(Kawadia and Kumar, 2005). Energy constrained networks usually focus on overall 

power consumption of a transceiver for a target QoS level. The motivations for this 

approach are usually: to extend the battery life, to minimize the electromagnetic 

radiation in populated areas, to reduce the cost in infrastructure-based networks, 

and to reduce the interference. 

 

In multi-user OFDM downlink, the users experience the wireless channel 

differently from each other. To provide downlink data at a required rate and QoS, 

the base station must be able to overcome the degrading effects of the channel by 

adapting the transmit power. It requires less power to transmit in sub-carriers with 

favourable channel gain compared to the ones with poor channel gain. If the base 

station can allocate the sub-carriers according to which sub-carriers each user is 

experiencing best, then the transmit power can be optimized. In OFDM each sub-


