STATUS OF SEA TURTLE RESOURCES AND CORAL REEFS OF MALIANGIN ISLAND SANCTUARY, KUDAT, SABAH, MALAYSIA

BORNEO MARINE RESEARCH INSTITUTE UNIVERSITI MALAYSIA SABAH 2010

STATUS OF SEA TURTLE RESOURCES AND CORAL REEFS OF MALIANGIN ISLAND SANCTUARY, KUDAT, SABAH, MALAYSIA

CLEMENT LIEW KET HIN

BORNEO MARINE RESEARCH INSTITUTE UNIVERSITI MALAYSIA SABAH 2010

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS @

JUDUL:	
IJAZAH:	
SAYA(HURUF BE	SESI PENGAJIAN:
mengaku membenarkan tesis Perpustakaan Universiti Mala berikut:-	s (LPSM / Sarjana / Doktor Falsafah) ini disimpan di aysia Sabah dengan syarat-syarat kegunaan seperti
 Tesis adalah hakmilik U Perpustakaan Universi tujuan pengajian saha Perpustakaan dibena pertukaran antara inst Sila tandakan (/) 	Universiti Malaysia Sabah. ti Malaysia Sabah dibenarkan membuat salinan untuk ja. rkan membuat salinan tesis ini sebagai bahan itutsi pengajian tinggi.
SULIT TERHAD	(Mengandungi maklumat yang berdarjah keselamatan atau Kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TIDAK TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi / badan di mana penyelidikan dijalankan)
	Disahkan oleh,
(TANDATANGAN PENULIS	S) (TANDATANGAN PUSTAKAWAN)
Tarikh:	Nama Penyelia Tarikh:
Catatan:- *Potong yang tidak be **Jika tesis ini SULI berkuasa/organisasi b tesis ini perlu dikelaska @Tesis dimaksudkan secara penyelidikan at Projek Sarjana Muda (I	rkenaan. IT atau TERHAD, sila lampirkan surat daripada pihak erkenaan dengan menyatakan sekali sebab dan tempoh an sebagai SULIT dan TERHAD. sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana au disertai bagi pengajian secara kerja kursus dan Laporan LPSM).

DECLARATION

I hereby declare that the material in this thesis is my own except for the quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

1 May 2010

Clement Liew Ket Hin PO20078368

CERTIFICATION

- NAME : CLEMENT LIEW KET HIN
- MATRIC NO. : **PO20078368**
- TITLE : STATUS OF SEA TURTLE RESOURCES AND CORAL REEFS OF MALIANGIN ISLAND SANCTUARY, KUDAT, SABAH, MALAYSIA
- DEGREE : MASTER OF SCIENCE
- VIVA DATE : 9 DECEMBER 2009

DECLARED BY

1. SUPERVISORS

Signature

ACKNOWLEDGEMENTS

I am extremely grateful and would like to thank my father Mr. Anthony Liew Chee Ken, mother Ms. Lim Moi Tshin, brother Mr. Benjamin Liew Ket Vun, aunt Ms. Fanny Liew Chee Lin and especially to Ms. Wong Hui Ling for all their continuous encouragement, advice, guidance, patience and financial support. Moral support from Mr. Wayne W. Hsu, Ms. Voon Yan Yi, Ms. Chen Sue Yee, Mr. Tan Chit Dah, Ms. Wong Hui Thau, Ms. Wong Hui Yen, Mr. Wong Tshun Nyen, Mr. Chung Vi Vi, Mr. Kok Yee Kian and Ms. Jessie Beliku are also gratefully acknowledged. These are the people who never gave up on me and understand thoroughly what I have been through throughout the whole duration of my study period.

My deepest gratitude and appreciation also goes to Mr. Wong Nyuk Min and Ms. Tan Shih En for providing transportation, help and hospitality while I was in Kudat town preparing for field work and after returning from field work.

I sincerely thank my outstanding supervisor Dr. Pushpalatha M. Palaniappan and my co-supervisor Ms. Zarinah Waheed from Borneo Marine Research Institute (BMRI-UMS) for guiding me in every way they could. I humbly acknowledge and appreciate all their contributions, teachings, advice, help in providing references and reviews of my work. I am especially indebted for their sacrifice of precious personal time to help review my work.

Scientific consultations regarding my studies from Dr. Ejria Saleh (from BMRI-UMS), Dr. Andy Russel Mojiol (from the School of International Tropical Forestry-UMS) and Mr. Fazrullah Rizally Abdul Razak (from Sabah Parks) are also appreciated. Their expert advices made sure that my work was standardized.

Special thanks are directed to Mr. Encik Weliyadi bin Anwar, Mr. M. Royrafik Hashim, Mr. Mourice P. Rowan, Mr. Mohd Asri Mohd Suari and Mr. Harun Mohd. Sharif for showing me how to generate a standardized map of MIS and for providing the essential chemical solutions and equipments for my laboratory analysis and field surveys.

I would also like to thank Dr. Annadel Cabanban (WWF-Malaysia's Sulu-Sulawesi Marine Ecoregion (SSME) Programme Manager) for providing the partial scholarship grant number MY02470R-RES-FOUN-5363 for this study. I sincerely thank Ms. Robecca Jumin and Ms. Lee Yoke Lee, representing WWF-Kudat Banggi Priority Conservation Area, for providing the boat and indispensable diving equipments, Mr. Damsek Hassan as the "boatman" and for providing the accommodation at Karakit, Banggi Islands and Mr. Mohd Asri bin Barail as my field and diving assistant. Their crucial contribution and local knowledge were essential to the success of every field excursion.

Without the generous help from all of the above, this study would not have been accomplished. This thesis was supported by WWF-Malaysia, Conservation International Sulu Sulawesi Seascape Programme and Walton Foundation.

Clement Liew Ket Hin 1 May 2010

ABSTRACT

STATUS OF SEA TURTLE RESOURCES AND CORAL REEFS OF MALIANGIN ISLAND SANCTUARY, KUDAT, SABAH, MALAYSIA

Maliangin Island Sactuary (MIS), Kudat, Sabah was chosen as a model site for the future management of the Proposed Tun Mustapha Park. Research was conducted to collect baseline data on beach characteristics where green (*Chelonia mydas*) and hawksbill (Eretmochelys imbricata) sea turtles nest sporadically. Potential food resources for the sea turtles and the status of coral reefs at Maliangin Island Sanctuary were also assessed. The nesting beaches were divided into "frequent nesting" and "seldom nesting" stations where beach profile, ambient parameters, grain sizes of the beach and turtle egg chambers were determined. Three indicator fish families and bottom substrate coverage were used to assess the status of coral reefs. Results showed that beach profile, sand grain size and environmental conditions did not influence the selection of sea turtle nesting sites. Seagrass (main diet of greens) coverage and density of sponges (main diet of hawksbills) were calculated. The study area may not have high potential as feeding grounds for the turtles due to the lack of actual cropping sightings during underwater surveys. There were six seagrass species present but coverage was low (7%) whereas only 4 of the 25 genera of sponges had bite marks. Average values of live coral cover (46.8%), morphological diversity index (2.5), mortality index (0.13), condition index (0.37), development index (0.32) and succession index (-0.62) showed that the reefs of MIS were categorised as good condition and good development but with very poor succession. The 49 species of damselfishes (Pomacentridae), 8 species of butterflyfishes (Chaetodontidae) and 11 species of groupers (Serranidae) indicate that the hard corals in the study area were complex, healthy (live corals > dead corals) and that the reefs are rugose, respectively. Maliangin Island Sanctuary is rich with marine resources and with proper management, it can be utilised in multiple ways (livelihood of locals, ecotourism and aquaculture).

ABSTRAK

Santuari Pulau Maliangin, Kudat, Sabah telah dipilih sebagai tapak contoh untuk pengurusan Taman Cadangan Taman Tun Mustapha. Kajian telah dijalankan untuk mendapatkan data asas ciri-ciri pantai peneluran di mana pendaratan penvu hijau (Chelonia mydas) dan penyu sisik (Eretmochelys imbricata) adalah agak kurang. Sumber makanan potensi untuk penyu-penyu dan status terumbu karang di Santuari Pulau Maliangin juga telah ditaksirkan. Pantai peneluran telah dibahagikan kepada stesen-stesen "kerap bertelur" dan "jarang bertelur" di mana profil pantai, parameter sekeliling, saiz butiran pasir pantai dan pasir lubang sarang penyu telah ditentukan. Tiga famili ikan penunjuk dan liputan substrat dasar telah digunakan untuk menaksir status terumbu karang. Keputusan menunjukkan bahawa profil pantai, saiz butiran pasir dan keadaan sekeliling tidak mempengaruhi pemilihan kawasan bertelur penyu. Liputan rumput laut (diet utama penyu hijau) dan kepadatan span (diet utama penyu sisik) telah dihitungkan. Kawasan kajian mungkin tidak mempunyai potensi yang tinggi sebagai kawasan pemakanan untuk penyu-penyu disebabkan oleh ketiadaan penyu meragut diperhatikan ketika aktiviti penyelaman dijalankan. Terdapatnya enam spesies rumput laut tetapi liputan adalah rendah (7%) manakala hanya 4 daripada 25 genera span mempunyai tanda gigitan. Nilai purata liputan karang hidup (46.8%), kepelbagaian morfologi terumbu karang (2.5), indeks kematian (0.13), indeks keadaan (0.37), indeks pertumbuhan (0.32) dan indeks sesaran (-0.62) menunjukkan bahawa terumbu karang di Santuari Pulau Maliangin adalah dikategorikan sebagai berkeadaan baik, pertumbuhan baik tetapi dengan sesaran yang tidak baik. Sebanyak 49 spesies ikan bombin (Pomacentridae), 8 spesies ikan bagang (Chaetodontidae) dan 11 spesies ikan kerapu (Serranidae) menunjukkan bahawa terumbu karang di kawasan kajian adalah kompleks, sihat (karang hidup > karang mati) dan kedut, masing-masing. Santuari Pulau Maliangin adalah kaya dengan sumber laut dan dengan pengurusan yang sewajarnya, ia boleh digunakan dengan pelbagai cara (mata pencarian tempatan, perlancongan dan akuakultur).

TABLE OF CONTENTS

Page

TITL	E		i
DECI	ARATION		ii
CER	IFICATION		iii
ACKI	OWLEDGEM	ENTS	iv
ABS	RACT		v
ABS	FRAK		vi
LIST	OF CONTENT	rs	vii
LIST	OF TABLES		x
LIST	OF FIGURES		xii
LIST	OF PLATES		xvii
LIST	OF EQUATIO	INS	xviii
LIST	OF ABBREVI	ATIONS	xix
LIST	OF APPENDI	CES UNIVERSITI MALAVSIA SARAH	xxi
СНА	TFR 1. INTR		
1.1	Introduction		1
1.2	Status of Sea	a Turtles	3
	1.2.1 Nest	ting Beaches	4
	1.2.2 Fora	aging Grounds	5
1.3	Status of Co	ral Reefs	6
1.4	Significance	of Study	8
1.5	Objectives of	f Study	9
CHA	PTER 2: LITE	RATURE REVIEW	
2.1	Sea Turtles		10
	2.1.1 Gree	en Turtles (<i>Chelonia mydas</i>)	11
	2.1.2 Haw	iksbill Turtles (<i>Eretmochelys imbricata</i>)	15
	2.1.3 Nest	ting Beach Assessments	17
	2.1.4 Nest	ting Beach Characteristics	19
	2.1.5 Egg	Chamber Sand Characteristics	25
	2.1.6 The	Roles of Green and Hawksbill Turtles	29
	2.1./ Diet	Selection	33
	2.1.8 Ihre	eats and Human Interactions	34

Threats and Human Interactions 2.1.8

2.2	Coral F	Reef Ecosystem	39
	2.2.1	Coral Reef Status in Sabah	41
	2.2.2	Fish as Reef Indicators	44
		a. Damselfish (Pomacentridae)	45
		b. Butterflyfish (Chaetodontidae)	47
		c. Grouper (Serranidae)	48
	2.2.3	Natural and Anthropogenic Threats to Coral Reefs	51
	2.2.4	Conserving the Reef	54
СНА	PTER 3:	METHODOLOGY	

3.1	Study A	rea		57
3.2	Samplir	ng Me	ethods	58
	3.2.1	Hab	itat Surveys for Sea Turtles	59
		a.	Nesting Habitat Survey	59
			i. Beach Profiling	60
			 Statistical Analysis for Beach Profile 	62
			ii. Beach Grain Size Analysis	62
			Dry Sieving	62
			 Statistical Parameters for Grain Size Analysis 	63
			Statistical Analysis for Beach Grain Size Analysis	64
			iii. Littoral Environment Observation (LEO)	65
	AT.	-	Statistical Analysis for LEO	65
1	ASS-		iv. Turtle Egg Chamber Grain Size Analysis	66
	7		 Statistical Analysis for Turtle Egg Chamber 	66
- 19			Grain Size Analysis	
		b.	Foraging Habitat Survey	66
G			i. Transect and Quadrat Method for Seagrass Coverage	67
			Statistical Analysis for Seagrass Coverage	69
	No.		ii. Linear Transects (LT) for Density of Sponges	70
	× A B	Pro 1	 Statistical Analysis for Linear Transects 	71
	3.2.2	Cora	al Reef Communities	71
		a.	Line Intercept Transect (LIT)	71
			i. Major Benthic life-form	72
			ii. r-K-S Ternary Diagram	73
			iii. Statistical Analysis for LIT	75
		b.	Underwater Visual Census (UVC) for Reef Fish Indicators	75
			i. Statistical Analysis for Reef Fish Indicators	76
СНА		RECI	II TS	
4.1	Prelimir	harv 9	Survey – Interview	77

4.1	Preliminary Survey – Interview	77
4.2	Nesting Habitat Survey	80
	4.2.1 Beach Profiling	80
	4.2.2 Beach Grain Size Analysis	90
	4.2.3 Littoral Environment Observation (LEO)	100
	4.2.4 Turtle Egg Chamber Grain Size Analysis	100
4.3	Foraging Habitat Survey	107
	4.3.1 Transect and Quadrat for Seagrass Coverage	107
	4.3.2 Linear Transects (LTs) for Density of Sponges	114
4.4	Coral Reef Communities	118

	4.4.1 4 4 2	Line Intercept Transect (LIT) Underwater Visual Census (UVC) for Reef Fish Indicators	118 127
			127
	PTER 5:	DISCUSSION	100
5.1	Prelimi	nary Survey – Interview	135
5.2	INESTING	J Habitat Survey Drafile of Cap Turtle Nesting Basch at MIC	13/
	5.2.1	Profile of Sea Turtle Nesting Beach at MIS	140
	5.2.2	Sand Characteristics of Sea Turtle Nesting Beach at MIS	140
	5.2.3 E 2 4	AMDIENT Characteristics of MIS Turtle Eag Chamber Crain Size Analysis	142
E 2	5.2.4 Foragi	A Habitat Sunvoy	1/16
5.5	5 3 1	Potential Feeding Grounds of Green Turtles at Maliangin	146
	5.5.1	Island Sanctuary (MIS)	140
	532	Potential Feeding Grounds of Hawkshill Turtles at MIS	148
5.4	Coral F	Reef Communities	151
511	5.4.1	Status of Coral Reefs at MIS	151
	5.4.2	The LCC, Condition, Development and Succession of MIS	154
	-	Reefs	-
	5.4.3	Morphological Classification of Coral Reef at MIS	157
	5.4.4	Determining the Status of Coral Reef Using Reef Fish	160
		Indicators	
	art	a. Damselfish (Pomacentridae) – Live Coral Cover (LCC)	160
	1994	b. Butterflyfish (Chaetodontidae) – %r (ruderals)	162
	× -	c. Grouper (Serranidae) – %K (competitors)	164
. A			
CHAI	PTER 6:	CONCLUSION AND SUGGESTIONS	
6.1	Conclu	sion	169
	6.1.1	Sea Turtles of Maliangin Island Sanctuary (MIS)	169
		a. Nesting Beach Characteristics	169
	~21	D. Potential Food Resources for Sea Turties at Mailangin	1/1
	617	Island Sanctuary (MIS) Coral Roofs of Maliangin Island Sanctuary (MIS)	171
	0.1.2	Cordi Reels of Malidigili Island Sanctuary (MIS)	1/1
		a. Status of Coldi Reels b. Abundance and Diversity of Reef Fish Indicators	172
6.2	Sugge	stions	174
0.2	6 2 1	Research Study Improvements	174
	6.2.2	Notes for Future Park Management	174
	0.2.2		±, 1
REFE		5	177
APPE	INDICES	5	199

LIST OF TABLES

		Page
Table 2.1	Average live and dead coral coverage (in percentage) at selected sites in Sabah.	42
Table 3.1	Classes of dominance used to record cover.	69
Table 3.2	Semi-qualitative scale for the assessment index in three corresponding forms, percentage, ratio and scale form.	73
Table 4.1	General description of all "frequent nesting" and "seldom nesting" beach profile stations at MIS.	86
Table 4.2	LEO data recorded across all 14 stations surveyed.	89
Table 4.3	Statistical parameters for beach grain size analysis.	99
Table 4.4	The minimum, maximum and mean values of six parameters measured from Littoral Environment Observation (LEO).	100
Table 4.5	Statistical parameters for turtle egg chamber grain size analysis.	105
Table 4.6	Mean percentage of seagrass coverage data. The alphabets: A, B and C represents the replicate transects conducted for seagrass stations (SG).	112
Table 4.7	Mean dominant seagrass species coverage at all seagrass stations. The alphabets: A, B and C represents the replicate transects conducted for seagrass stations (SG).	113
Table 4.8	Abundance and distribution of all sponges across all LT transects. Numbers represent the total quantity of sponges whereas the numbers in parenthesis represent the quantity of sponges with bite marks.	115
Table 4.9	Densities of both edible and total sponges across all LT transects. The numbers in the table indicates the densities of sponges in unit $x10^{-3}$ m ⁻² . Numbers represent the total density of sponges whereas the numbers in parenthesis represent the density of sponges with bite marks.	116
Table 4.10	Mean percentage cover of major benthic life-forms at all nine stations.	120
Table 4.11	Condition index (CI), development index (DI) and succession index (SI) at all nine stations.	122

- Table 4.12Percentages of ruderals (r), competitor (K), stress tolerators123(S) and conservation class number for all nine stations.
- Table 4.13 Morphological diversity index (mH'), mortality index (MI) and 124 percentage live coral cover (LCC), at all nine stations.
- Table 4.14 Mean values of morphological diversity index, mortality index 125 and percentage live coral cover according to conservation class scores (mean \pm s.d.).
- Table 4.15List of all identified reef fish indicators and their locations131found.

LIST OF FIGURES

Figure 2.1	Relationships between physical characteristics of Ascension beaches and nesting density. Some beaches have more than one of the characteristics and thus are included in more than one category. Brackets indicate standard deviation.	24
Figure 2.2	Relationships between combinations of beach characteristics and nesting density at Ascension Island. Each bar represents one beach.	24
Figure 2.3	Relationship between sorting coefficients and mean particle diameters (mm) at each of the 65 beaches examined around the world. Biogenic beaches are indicated by closed circles and volcanic or pyrogenic beaches by open stars.	26
Figure 2.4	Relationships between the mean emergence success of clutches at 15 Ascension beaches and the sorting coefficients and mean particle diameters (mm) of the sands at those beaches.	27
Figure 3.1	Maliangin Kecil (left) and Maliangin Besar (right) Islands.	58
Figure 3.2	Summary diagram of methodology.	59
Figure 3.3	Station numbers for beach profile (BP) and turtle nesting (TN) stations. Solid stars (★) represent the "frequent nesting" stations while circles (O) represent the "seldom nesting" stations for sea turtles.	61
Figure 3.4	Station numbers for seagrass (SG) stations. Solid stars (\star) represent stations that were studied. "Site A" represented in circle (O) was not studied because there were no seagrass in the area during the study period.	68
Figure 3.5	Schematic representation of sampling method for seagrass survey.	68
Figure 3.6	Station numbers for Line Intercept Transect (LIT) and Linear Transect (LT) stations. Solid stars (\star) represent the location of stations.	70
Figure 3.7	Idealised r-K-S ternary diagram for coral reef conservation classes.	74

Figure 4.1	Map of Maliangin Island Sanctuary showing the topographical distribution of landmark and marine ecosystems.	79
Figure 4.2	The distribution of sea turtle nests across all stations. Grey and white bars in the graph represent the nests for green turtles and hawksbill turtles, respectively.	80
Figure 4.3	Combination of all nine turtle nesting beach profiles in Maliangin Besar Island.	81
Figure 4.4	Combination of all five turtle nesting beach profiles in Maliangin Kecil Island.	82
Figure 4.5	Combination of all seven "frequent nesting" beach profiles in Maliangin Island Sanctuary (MIS).	83
Figure 4.6	Combination of all seven "seldom nesting" beach profiles in Maliangin Island Sanctuary (MIS).	84
Figure 4.7	Height of turtle nesting beach platforms across all stations. White and grey bars in the graph represent the "frequent nesting" and "seldom nesting" stations, respectively.	85
Figure 4.8	Foreshore slope degree across all, "frequent nesting" and "seldom nesting" stations surveyed. Bars indicate the value of standard deviation (s.d.).	88
Figure 4.9	Beach sand grain size distribution graphs at station BP 1 ("seldom nesting" station).	90
Figure 4.10	Beach sand grain size distribution graphs at station BP 2 ("frequent nesting" station).	91
Figure 4.11	Beach sand grain size distribution graphs at station BP 3 ("seldom nesting" station).	91
Figure 4.12	Beach sand grain size distribution graphs at station BP 4 ("seldom nesting" station).	92
Figure 4.13	Beach sand grain size distribution graphs at station BP 5 ("frequent nesting" station).	92
Figure 4.14	Beach sand grain size distribution graphs at station BP 6 ("seldom nesting" station).	93
Figure 4.15	Beach sand grain size distribution graphs at station BP 7 ("seldom nesting" station).	93

Figure 4.16	Beach sand grain size distribution graphs at station BP 8 ("seldom nesting" station).	94
Figure 4.17	Beach sand grain size distribution graphs at station BP 9 ("seldom nesting" station).	94
Figure 4.18	Beach sand grain size distribution graphs at station BP 10 ("frequent nesting" station).	95
Figure 4.19	Beach sand grain size distribution graphs at station BP 11 ("frequent nesting" station).	95
Figure 4.20	Beach sand grain size distribution graphs at station BP 12 ("frequent nesting" station).	96
Figure 4.21	Beach sand grain size distribution graphs at station BP 13 ("frequent nesting" station).	96
Figure 4.22	Beach sand grain size distribution graphs at station BP 14 ("frequent nesting" station).	97
Figure 4.23	Grain size distribution graphs for green turtles at "frequent nesting" stations.	101
Figure 4.24	Grain size distribution graphs for green turtles at "seldom nesting" stations.	102
Figure 4.25	Grain size distribution graphs for hawksbill turtles at "frequent nesting" stations.	103
Figure 4.26	Grain size distribution graphs for hawksbill turtles at "seldom nesting" stations.	104
Figure 4.27	Seagrass coverage for <i>Halodule pinifolia</i> (HP), <i>Halophila ovalis</i> (HO), <i>Halophila minor</i> (HM), <i>Cymodocea serrulata</i> (CS), <i>Cymodocea rotundata</i> (CR) and <i>Thalassia hemprichii</i> (TH) across transect length at SG 1A.	108
Figure 4.28	Seagrass coverage for <i>Halodule pinifolia</i> (HP), <i>Halophila ovalis</i> (HO), <i>Halophila minor</i> (HM), <i>Cymodocea serrulata</i> (CS), <i>Cymodocea rotundata</i> (CR) and <i>Thalassia hemprichii</i> (TH) across transect length at SG 1B.	109
Figure 4.29	Seagrass coverage for <i>Halodule pinifolia</i> (HP), <i>Halophila ovalis</i> (HO), <i>Halophila minor</i> (HM), <i>Cymodocea serrulata</i> (CS), <i>Cymodocea rotundata</i> (CR) and <i>Thalassia hemprichii</i> (TH) across transect length at SG 2A.	109

Figure 4.30	Seagrass coverage for <i>Halodule pinifolia</i> (HP), <i>Halophila ovalis</i> (HO), <i>Halophila minor</i> (HM), <i>Cymodocea serrulata</i> (CS), <i>Cymodocea rotundata</i> (CR) and <i>Thalassia hemprichii</i> (TH) across transect length at SG 2B.	110
Figure 4.31	Seagrass coverage for <i>Halodule pinifolia</i> (HP), <i>Halophila ovalis</i> (HO), <i>Halophila minor</i> (HM), <i>Cymodocea serrulata</i> (CS), <i>Cymodocea rotundata</i> (CR) and <i>Thalassia hemprichii</i> (TH) across transect length at SG 3A.	110
Figure 4.32	Seagrass coverage for <i>Halodule pinifolia</i> (HP), <i>Halophila ovalis</i> (HO), <i>Halophila minor</i> (HM), <i>Cymodocea serrulata</i> (CS), <i>Cymodocea rotundata</i> (CR) and <i>Thalassia hemprichii</i> (TH) across transect length at SG 3B.	111
Figure 4.33	Seagrass coverage for <i>Halodule pinifolia</i> (HP), <i>Halophila ovalis</i> (HO), <i>Halophila minor</i> (HM), <i>Cymodocea serrulata</i> (CS), <i>Cymodocea rotundata</i> (CR) and <i>Thalassia hemprichii</i> (TH) across transect length at SG 3C.	111
Figure 4.34	Seagrass coverage for <i>Halodule pinifolia</i> (HP), <i>Halophila ovalis</i> (HO), <i>Halophila minor</i> (HM), <i>Cymodocea serrulata</i> (CS), <i>Cymodocea rotundata</i> (CR) and <i>Thalassia hemprichii</i> (TH) across transect length at SG 4A.	112
Figure 4.35	Mean percentage cover of all life-form categories at all nine stations.	118
Figure 4.36	Mean percentage cover for the six major benthic life-forms: hard corals (HC), dead corals (DC), soft corals (SC), abiotic substance (AB), algae (AL) and other fauna (OT) at all nine stations in MIS.	119
Figure 4.37	The mean condition index (CI), development index (DI) and succession index (SI) at all nine stations.	121
Figure 4.38	r-K-S ternary diagram for all nine stations.	123
Figure 4.39	Mean morphological diversity index (mH') and mortality index (MI).	124
Figure 4.40	Status of coral reefs at all stations in MIS. Solid stars indicate the location of stations.	126
Figure 4.41	Mean abundance of damselfishes, butterflyfishes and groupers at all nine stations. Bars indicate the value of standard deviation (s.d.).	127

Figure 4.42	Mean distribution for fish diversity index of damselfish, butterflyfish and grouper at all nine stations.	128
Figure 4.43	Abundance of damselfish and %LCC at all nine stations. Bars indicate the value of standard deviation (s.d.).	129
Figure 4.44	Abundance of butterflyfishes and %r at all nine stations. Bars indicate the value of standard deviation (s.d.).	130
Figure 4.45	Abundance of groupers and %K across stations. Bars indicate the value of standard deviation (s.d.).	130

LIST OF PLATES

Page

- Plate 4.1Seagrass Species found in Maliangin Island Sanctuary (MIS).107Thalassia hemprichii (TH), Halodule pinifolia (HP), Halophila
minor (HM), Halophila ovalis (HO), Cymodocea serrulata (CS)
and Cymodocea rotundata (CR).107
- Plate 4.2 A typical example of sponge *Callyspongia* sp. without bite 114 mark (left) and with bite marks (right).
- Plate 4.3 Bitten sponge genera found in Maliangin Island Sanctuary 117 (MIS). *Amphimedon, Callyspongia, Haliclona* and *Leuconia*.

LIST OF EQUATIONS

Equation 3.1	Foreshore sloping degree	61
Equation 3.2	Platform height	61
Equation 3.3	Φ (phi) value	63
Equation 3.4	Median ($M_{d\Phi}$)	63
Equation 3.5	Mean (M_{Φ})	63
Equation 3.6	Standard deviation (σ_{Φ})	64
Equation 3.7	Skewness (a_{Φ})	64
Equation 3.8	Kurtosis (β_{Φ})	64
Equation 3.9	Longshore current speed	65
Equation 3.10	Seagrass coverage (C)	69
Equation 3.11	Sponge density	71
Equation 3.12	Percentage covers of life-form categories	72
Equation 3.13	Percentage live coral cover (LCC)	72
Equation 3.14	Condition index (CI)	72
Equation 3.15	Development index (DI)	73
Equation 3.16	Succession index (SI)	73
Equation 3.17	Morphological diversity indices (mH')	74
Equation 3.18	Coral mortality index (MI)	75

LIST OF ABBREVIATIONS

- AIMS Australian Institute of Marine Science
- ASEAN Association of Southeast Asian Nations
- **BEAC** Banggi Environmental Awareness Centre
- **BMRI** Borneo Marine Research Institute
- **CC** Conservation class
- **CCL** Curved carapace length
- **CI** Condition index
- CITES Convention on International Trade in Endangered Species of Wild Fauna and Flora
- df Degree of freedom
- DI Development index
- ENSO El Niño-Southern Oscillation
- **FWS** Fish and Wildlife Service
- HWL High Water Level
- ISRS International Society for Reef Studies ALAYSIA SABAH
- **IUCN** International Union for Conservation of Nature
- LEO Littoral Environment Observation
- LIT Line Intercept Transect
- LT Linear Transect
- LWL Low Water level
- mH' Morphological diversity index
- MI Mortality index
- MIS Maliangin Island Sanctuary
- MPAs Marine Protected Areas

- MWL Mid Water Level
- **NMFS** National Marine Fisheries Service
- PCA Priority Conservation Area
- **r-K-S** Ruderals- competitors stress-tolerators
- **SCL** Average straight carapace length
- SEA Southeast Asia
- **SI** Succession index
- **TIP** Turtle Islands Park of Sabah
- **TMP** Tun Mustapha Park
- UVC Underwater Visual Census

LIST OF APPENDICES

		Page
Appendix 1	Interview Questionnaire Forms	199
Appendix 2	Beach Profile Datasheet	201
Appendix 3	Stations, Coordinates and Locations for Beach Profiling Stations	202
Appendix 4	Grain Size Classification Table	203
Appendix 5	Verbal Description of Statistical Parameters: Sorting, Skewness and Kurtosis	204
Appendix 6	Littoral Environment Observation (LEO) Datasheet	205
Appendix 7	Stations, Coordinates and Locations for Seagrass Field Work at MIS	206
Appendix 8	Stations, Coordinates and Locations for Line Intercept Transect (LIT) Underwater Surveys at MIS	207
Appendix 9	Life-form category codes of all benthic substrates	208
Appendix 10	Mann-Whitney U test result for nesting platform analysis	209
Appendix 11	Mann-Whitney U test results for Littoral Environment Observation (LEO) between "frequent nesting" and "seldom nesting" stations	210
Appendix 12	One-way ANOVA test results for median, mean, standard deviation, skewness and Kruskal-Wallis test results for transformed kurtosis across all stations	211
Appendix 13	Mann-Whitney U test results for the comparison of turtle egg chamber grain size statistical parameters between "frequent nesting" and "seldom nesting" stations of green and hawksbill turtles at MIS	221
Appendix 14	Mann-Whitney U test results for the comparison of turtle egg chamber grain size statistical parameters between "frequent nesting" and "seldom nesting" stations of green and hawksbill turtles at MIS	222
Appendix 15	Kruskal-Wallis test results of both density of edible sponges and density of total sponges (in unit $x10^{-3}$ m ⁻²) among all LT stations surveyed	223

- Appendix 16 Kruskal-Wallis test results of both density of edible sponges 224 and density of total sponges (in unit x10⁻³ m⁻²) among all LT stations surveyed
- Appendix 17 One-way ANOVA test results of mH', MI and LCC across CC 225 scores
- Appendix 18 Pearson correlation coefficients test results of LCC with 226 abundance of fish indicators, LCC with diversity of fish indicators, mH' with abundance of fish indicators and mH' with diversity of fish indicators across all nine stations
- Appendix 19 Pearson correlation coefficients test results of fish indicators 230 (damselfish, butterflyfish and grouper) abundance and fish indicators diversity with coral morphologies across all nine stations

