DESIGN AND ANALYSIS OF SOLAR ENERGY FOR RURAL ELECTRIFICATION IN ECO-TOURISM DESTINATION OF LIOGU KU SILOU-SILOU, EPLISSI, SABAH

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2023

DESIGN AND ANALYSIS OF SOLAR ENERGY FOR RURAL ELECTRIFICATION IN ECO-TOURISM DESTINATION OF LIOGU KU SILOU-SILOU, EPLISSI, SABAH

MARYON ELIZA MATIUS

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2023

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

- JUDUL : REKABENTUK DAN ANALISIS TENAGA SOLAR UNTUK ELEKTRIFIKASI KAWASAN LUAR BANDAR DI DESTINASI EKO-PELANCONGAN LIOGU KU SILOU SILOU, EPLISSI, SABAH
- IJAZAH : SARJANA KEJURUTERAAN

BIDANG : KEJURUTERAAN MEKANIKAL

Saya **MARYON ELIZA MATIUS**, sesi **2019-2023**, mengaku membenarkan tesis Sarjana ini disimpan di perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan Oleh,

MARYON ELIZA MATIUS MK1921047T

(Tandatangan Pustakawan)

Tarikh: 25 Februari 2023

(Dr. Wan Khairul Muzammil bin Abdul Rahim) Penyelia Utama

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excepts, equations, summaries, and references, which have been duly acknowledged.

20 October 2022

Maryon Eliza Matius MK1921047T

CERTIFICATION

NAME : MARYON ELIZA MAILUS	NAME	:	MARYON ELIZA MATIUS
----------------------------	------	---	---------------------

MATRIC NO. : **MK1921047T**

TITLE : DESIGN AND ANALYSIS OF SOLAR ENERGY FOR RURAL ELECTRIFICATION IN ECO-TOURISM DESTINATION OF LIOGU KU SILOU-SILOU, EPLISSI, SABAH

- DEGREE : MASTER OF ENGINEERING
- FIELD OF STUDY : MECHANICAL ENGINEERING
- DATE OF VIVA : **20 OCTOBER 2022**

1. MAIN SUPERVISOR

Dr. Wan Khairul Muzammil bin Abdul Rahim

2. CO-SUPERVISOR

Ir. Dr. Mohd. Azlan bin Ismail

ACKNOWLEDGEMENT

First and foremost, I would like to express my gratitude and appreciation to my supervisors, Dr Wan Khairul Muzammil bin Abdul Rahim and Ir Dr Mohd. Azlan bin Ismail for their continuous support, guidance, patience, and motivational advice while completing this thesis. Dr Wan has consistently pushed me over my comfort zone and has shown me the meaning of 'learning' to a great extent. Whereas Dr Azlan demonstrated that multitasking is not simple, it is nevertheless possible.

I want to extend my gratefulness to Sabah's state government for sponsoring my study through *Biasiswa Kerajaan Negeri Sabah* (BKNS). Besides, I would like to acknowledge Universiti Malaysia Sabah for the research grant allocated (SDK0121-2019) to fund the solar photovoltaic project. These financial aids mean so much to me.

The most profound thanks and appreciations are to my family, especially both of my parents, for the financial help and the endless moral support I receive during the completion of this thesis and my ups and down throughout the years. For my siblings, Ben, Nyna, Ijan, and Ewa, thank you for keeping me close to your heart and always wishing me success. Indubitably, I would do the same for you. Next, a special thanks to my other half, VTKS, for his compassion, understanding, and undivided attention. I believe his daily good morning speech has always contributed to my perseverance.

Finally, I would like to give immeasurable thanks to all my friends who helped and supported me throughout this project. Your support has given me significant advantages and motivated me as I work towards completing this thesis. Only God could repay all your generosity. So once again, thank you so much for everything.

Maryon Eliza Matius 20 October 2022

ABSTRACT

In search of a clean energy resource for a better environment and a 100% electrification rate, Malaysia has set a target to achieve 31% renewable energy contribution by 2025. However, in rural areas of Malaysia, especially Sabah and Sarawak, more than 50% of the population is below the poverty line as of 2017. To overcome these problems, this research intends to help in promoting renewable energy technology as a sustainable electricity generation mechanism, especially in rural areas where the national grid is not cost-effective due to challenging terrain in certain regions. The Eco-Tourism Destination of Liogu Ku Silou-Silou (EPLISSI), Kota Belud, Sabah, has been selected as the study site. This study aims to develop a smallscale off-grid solar PV system, analyze its performance, and find the most optimized design through simulation studies. Meanwhile, the method used to achieve the aims of this research includes the preliminary assessment, design development through the review of the past studies as well as computation and components' selection, components' fabrication and testing, and installation of the system and measuring devices. As for the simulation studies, the ESCoBox tool, Global Solar Atlas version 2.3 (GSA 2.3), and HOMER software were used. The ESCoBox and GSA 2.3 softwares were used in the preliminary study (i.e., before the photovoltaic (PV) system installation) to generate the load profiles, and to select the approximate size of the PV panel system, respectively. While the HOMER software optimises the system (post PV system installation) on the existing system. As a result, it is found that the EPLISSI's condition based on solar radiation and location are suitable for solar PV system installation. Before system installation, the GSA 2.3 web tool suggested that an energy output of 8.72 kWh/day can be generated from a 2.5 kWp solar PV system. This system can at least satisfy the ESCoBox's result of daily total average energy demand by EPLISSI of 4.6 kWh/day. As for the actual installation, the installed solar power capacity was 2.48 kWp (i.e., eight 310 W solar panels were used), together with 12 lead-acid batteries (i.e., 12 V, 100 Ah battery capacity). A 12-month worth of fieldwork data consisting of actual load demand, solar radiation, and wind speed were collected and used as inputs for the HOMER software. It was found that the existing installed system (i.e., termed as the first condition in the HOMER data analysis stage) in EPLISSI was not optimally designed, as a 14.3% capacity shortage exists. This PV system configuration also has a higher net present cost (NPC) and cost of electricity (COE) under the 15% maximum annual capacity shortage (MACS) limit. Using the actual electrical load demand and the on-site solar radiation data, the HOMER software suggested that an optimized system (second condition with 15% MACS) should consist of 5 kWp solar PV with 8 lead-acid batteries. This optimized system would be better in terms of the NPC (from RM 95836.15 to RM 91791.88, hence a reduction of 5.30%) and capacity shortage (from 14.3% to 13.5%, thus a reduction of 0.80%) compared to the existing system (first condition) in EPLISSI. Lastly, there exist 40% difference between the recommended PV capacity GSA 2.3, 2.5 kWp and HOMER, 1.5 kWp (in case of C2-SB). Smaller PV capacity is optimal for C2-SB system due to the incorporation of diesel generator (DG). This also result in lower NPC (from RM 95836.15 to RM 73918.00, hence a reduction of 22.87%) of the system.

ABSTRAK

REKABENTUK DAN ANALISIS TENAGA SOLAR UNTUK ELEKTRIKASI LUAR BANDAR DI DESTINASI EKO-PELANCONGAN LIOGU KU SILOU-SILOU, EPLISSI, SABAH

Malaysia telah menetapkan sasaran untuk mencapai 31% sumbangan sumber daripada jenis tenaga boleh diperbaharui menjelang 2025 untuk mencari sumber tenaga bersih bagi menjana elektrik. Namun, di Sabah dan Sarawak, lebih daripada 50% daripada penduduk berada di bawah paras kemiskinan setakat 2017. Bagi mengatasi masalah tersebut, penyelidikan ini berhasrat untuk membantu dalam mempromosikan teknologi tenaga boleh diperbaharui. Destinasi Eko-Pelancongan Liogu Ku Silou-Silou (EPLISSI), Kota Belud, Sabah telah dipilih sebagai tapak kajian. Manakala, objektif kajian ini adalah untuk membangunkan sistem solar fotovoltaik (PV) tanpa grid yang berskala kecil, menganalisis prestasinya serta mencari reka bentuk yang paling optimum melalui kajian simulasi. Sementara itu, kaedah yang digunakan untuk mencapai matlamat penyelidikan ini termasuk kejian penilaian awal, pembangunan reka bentuk melalui kajian literatur serta pengiraan dan pemilihan komponen, fabrikasi dan pengujian komponen, dan pemasangan sistem dan alat pengukur. Bagi kajian simulasi pula, ia dibantu oleh perisian ESCoBox, Global Solar Atlas versi 2.3 (GSA 2.3), dan HOMER. Kedua-dua perisian ESCoBox dan GSA 2.3 telah digunakan dalam kajian penilaian awal (sebelum pemasangan sistem solar PV) untuk membantu dalam penjanaan profil beban dan untuk memilih saiz saiz sistem panel PV. Manakala perisian HOMER digunakan untuk melakukan pengoptimuman sistem (pasca pemasangan sistem solar PV) pada sistem sedia ada. Hasilnya, didapati bahawa keadaan EPLISSI berdasarkan penilaian sinaran matahari dan lokasi adalah sesuai untuk pemasangan sistem solar PV. Hasil daripada perisian GSA 2.3, sistem solar PV berkapasiti 2.5 kWp boleh menjana sehingga 8.72 kWj/hari. Kapasiti sistem ini dapat memenuhi jumlah purata permintaan tenaga harian sebanyak EPLISSI sebanyak 4.6 kWi/hari. Saiz panel solar sebenar yang direka dan dipasang ialah 2.48 kWp (lapan panel solar berkapasiti 310 W digunakan) bersama 12 bateri asid plumbum (12 V, 100 Ah). Memandangkan data kerja lapangan selama 12 bulan yang telah dikumpul kemudiannya digunakan sebagai input untuk perisian HOMER, ia didapati bahawa sistem pemasangan sedia ada (keadaan pertama) di EPLISSI tidak direka bentuk secara optimum kerana terdapat kekurangan kapasiti sebanyak 14.3%. Konfigurasi sistem PV ini juga mempunyai kos semasa bersih (NPC) dan kos elektrik (COE) yang lebih tinggi di bawah 15% had kekurangan kapasiti tahunan maksimum (MACS). Dengan menggunakan beban elektrik sebenar dan data sinaran suria di tapak pemasangan, perisian HOMER mencadangkan bahawa sistem optimum (keadaan kedua dengan 15% MACS) terdiri daripada PV solar 5 kWp dengan 8 bateri asid plumbum. Sistem yang dioptimumkan ini adalah lebih baik dari segi NPC (dari RM 95836.15 kepada RM 91791.88, iaitu pengurangan sebanyak 5.30%) dan kekurangan kapasiti (daripada 14.3% kepada 13.5%, juga pengurangan sebanyak 0.80%). Akhir sekali, terdapat perbezaan 40% antara kapasiti PV yang disyorkan oleh GSA 2.3, 2.5 kWp dan HOMER, 1.5 kWp (dalam kes C2-SB). Kapasiti PV optimum yang lebih kecil terhasil bagi sistem C2-SB kerana penggabungan penjana diesel (DG). Ini juga menyebabkan NPC yang lebih rendah (daripada RM 95836.15 kepada RM 73918.00, oleh itu pengurangan sebanyak 22.87%).

LIST OF CONTENTS

	Fay
TITLE DECLARATION CERTIFICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK LIST OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF FIGURES LIST OF SYMBOLS LIST OF ABBREVIATIONS LIST OF APPENDICES	i iii iv vi vii xii xviii xxii xxiii
CHAPTER 1: INTRODUCTION	1
 1.1 Introduction 1.2 Problem Statement 1.3 Research Gap 1.4 Objectives 1.5 Research Scopes and Limitations 1.6 Research Flowchart 1.7 Knowledge Contributions and The Student's Role 1.8 List of Publications 1.9 Thesis Outline 1.10 Chapter Summary 	1 4 7 8 9 11 13 13 13
CHAPTER 2: LITERATURE REVIEW	15
 2.1 Introduction 2.2 Rural Electrification 2.2.1 Global Perspective of Rural Electrification 2.2.2 Rural Electrification in Sabah, Malaysia 2.3 Renewable Energy 2.3.1 Standalone (Off-Grid) Solar Photovoltaic System 	15 15 16 20 22 24
 2.3.2 Grid-Connected Solar Photovoltaic System 2.3.3 Hybrid Solar Photovoltaic System 2.3.4 Comparison of Solar Photovoltaic system 2.4 Main Components of Standalone Solar Photovoltaic System 2.4.1 Solar Panel 2.4.2 Solar Charge Controller 2.4.3 Inverter 2.4.4 Hybrid Inverter Charger 	26 27 29 30 30 32 34 36
 2.4.5 Solar Battery 2.5 The Factors Considered in Selecting the Solar PV Components 2.5.1 Solar Panel 2.5.2 Battery 	38 41 41 42

2.5.3 Solar Charge Controller	44
2.5.4 Inverter	45
2.5.5 Wire or Cable	45
2.5.6 Circuit Breaker	46
2.6 Series and Parallel Connection	4/
2.6.1 Series Connection	4/
2.6.2 Parallel Connection	48
2.6.3 Combination of Series and Parallel Connection	49 50
2.7 Soldr Parler's Support Structure	52
2.7.1 The Aligie and Oteniaduli 2.8 Software to Assist in Solar Energy Performance Analysis	55
2.8 1 FSCoBox	59
2.8.2 Online PV Simulator: Global Solar Atlas Version 2.3	60
2.8.3 Hybrid Optimization of Multiple Energy Resources	62
2.9 Chapter Summary	64
	65
	05
3.1 Introduction	65
3.2 Methodology Flowchart	65
2.2.1 Site Observation	67 60
3.3.2 Informants Interview	60
3.3.3 Energy Survey	70
3.3.4 FSCoBox Software	70
3.3.5 Global Solar Atlas Version 2.3 (GSA 2.3)	72
3.4 Design of The Off-Grid Solar Photovoltaic System	72
3.4.1 The Wiring or Connection of The Solar Panel or SP	74
3.4.2 Balance of System or BOS	92
3.4.3 Fabrication and Preparation of Components	103
3.4.4 Testing Phase UNIVERSITEMALATSIA SADA	108
3.5 Installation of The Off-Grid Solar Photovoltaic System at EPLISSI	110
3.6 HOMER Optimization and Sensitivity Test Method	114
3.6.1 Data Collection and Processing	116
3.6.2 System Configuration	121
3.6.3 Description of Components	124
3.6.4 Assessment Criteria for Optimisation	12/
2.7 Chapter Summany	120
5.7 Chapter Summary	121
CHAPTER 4: RESULT AND DISCUSSIONS	132
4.1 Introduction	132
4.2 Preliminary Assessment	132
4.2.1 EPLISSI's Surrounding Area	133
4.2.2 Energy Survey and Assessment of Historical Conditions	134
4.2.3 EPLISSI's Load Profile	136
4.2.4 Global Solar Atlas 2.3 Report on Solar PV potential	137
4.3 The Result of The Optimal Tilt Angle and Orientation Study	139
4.3.1 Collector Positioned at Variation of Tilt Angle with Fixed	140
Orientation of Facing Due South	

	4.3.2	Collector Positioned at Optimum Tilt Angle with Variation of Orientation	142
	4.3.3	Collector Positioned at Fixed Tilt Angle and Variation of Orientation	144
	4.3.4	Photovoltaic Power Output	147
4.4	The D	eployed Off-Grid Photovoltaic System at EPLISSI	151
4.5	The Fi	eldwork Data	154
	4.5.1	Solar Radiation: Fieldwork, GSA 2.3, and HOMER Data	155
	4.5.2	Fieldwork Data: The Off-Grid Solar PV System Output	156
4.6	HOME	R Optimization and Sensitivity Test Result	157
	4.6.1	Optimised System Configuration for the Existing System	158
	4.6.2	Optimised System Configuration for the Hypothetical	163
		Configuration	
	4.6.3	Simulation of C3 With Different Wind-Speed Resources	176
	4.6.4	Sensitivity Analysis	179
4.7	Chapte	er Summary	184
	•	,	
СН/	APTER	5: CONCLUSION AND RECOMMENDATIONS	186
CH / 5.1	APTER Overvi	5: CONCLUSION AND RECOMMENDATIONS	186 186
CH/ 5.1 5.2	APTER Overvi Future	5: CONCLUSION AND RECOMMENDATIONS ew Works Recommendations	186 186 188
CH/ 5.1 5.2	APTER Overvi Future	5: CONCLUSION AND RECOMMENDATIONS ew Works Recommendations	186 186 188
CH/ 5.1 5.2 REF	APTER Overvi Future	5: CONCLUSION AND RECOMMENDATIONS ew Works Recommendations	186 186 188 190
CH/ 5.1 5.2 REF	APTER Overvi Future EREN PENDI	5: CONCLUSION AND RECOMMENDATIONS ew Works Recommendations	186 186 188 190 214
CH/ 5.1 5.2 REF	APTER Overvi Future	5: CONCLUSION AND RECOMMENDATIONS ew Works Recommendations	186 186 188 190 214
CH/ 5.1 5.2 REF	APTER Overvi Future	5: CONCLUSION AND RECOMMENDATIONS ew Works Recommendations	186 186 188 190 214
CH/ 5.1 5.2 REF	APTER Overvi Future	5: CONCLUSION AND RECOMMENDATIONS ew Works Recommendations	186 186 188 190 214
CH/ 5.1 5.2 REF	APTER Overvi Future	5: CONCLUSION AND RECOMMENDATIONS ew Works Recommendations	186 186 188 190 214
CH/ 5.1 5.2 REF	APTER Overvi Future	5: CONCLUSION AND RECOMMENDATIONS ew Works Recommendations	186 186 188 190 214
CH/ 5.1 5.2 REF	APTER Overvi Future	5: CONCLUSION AND RECOMMENDATIONS Works Recommendations CESCURATION OF THE OWNERS OF THE OWNER OWNER OF THE OWNER OF THE OWNER OWNER OF THE OWNER OF THE OWNER OWNER OF THE OWNER	186 186 188 190 214

LIST OF TABLES

			Page
Table 2.1	:	The Comparison of Electricity Generation Resources in Rural Areas	16
Table 2.2	:	Percentage of the Population Without Access to Electricity	18
Table 2.3	:	The Differences Between the Off-Grid and Grid-Connected Solar PV System	29
Table 2.4	:	The Different Types of Solar Cells and Their Generation Categories	31
Table 2.5	:	Previous Research Regarding the Optimum Tilt Angle in Malaysia	57
Table 2.6	:	Renewable Energy System Study by Utilising Homer Software	62
Table 3.1	:	Type of Devices, Their Wattage and Quantity	69
Table 3.2	:	Occupancy Rate, OR for August, September, And October 2019	71
Table 3.3	•	Apparent Solar Irradiation, <i>A</i> , Atmospheric Extinction Coefficient, <i>B</i> , and Ratio of Diffuse Radiation on a Horizontal Surface to Direct Normal Irradiation, <i>C</i> in the Northern Hemisphere (Hagen, 2015)	80
Table 3.4	0	Typical Foreground Reflectivity, ρ Values	87
Table 3.5		Month's Data	88
Table 3.6	B	The Number of Batteries Under the System Voltage, The Minimum Battery Capacity (Ah), The Quantity of Batteries in Series and Parallel	95
Table 3.7	:	The Recommended Wire and Circuit Breaker of Model UP5000-M8342	101
Table 3.8	:	Brief Description of Existing EPLISSI's Solar PV System	114
Table 3.9	:	The Indicator for The Month Where May 2021 is Denoted as The First Month of Data Taken	117
Table 3.10	:	Power Generation System Configurations	121
Table 3.11	:	Summary Of the Cost of The Components and Their Lifetimes	126
Table 3.12	:	Technical Characteristics of The Converter	126
Table 3.13	:	Battery's Parameters	129
Table 3.14	:	Diesel Price Variable	130
Table 4.1	:	Total Average Daily Energy Used	136
Table 4.2	:	EPLISSI's Solar Data	137
Table 4.3	:	Various Configurations Used in Each Section	139
Table 4.4	:	Monthly Variation Tilt Angle ($\alpha_2 = 0^{\circ}$)	140

Table 4.5	:	Insolation, H (kWh/m ² /day), with Respect to The Tilt Angle	141
Table 4.6	:	Monthly Optimum Tilt Angle, Bopt	143
Table 4.7	:	The Optimum Tilt Angle, <i>B</i> _{opt} , Corresponding to Its Respective Method Oriented Facing Due South	147
Table 4.8	:	Simulation Result of The Existing Solar PV System (First Condition) in EPLISSI (i.e., The Actual System Capacity)	159
Table 4.9	:	The Optimisation Results of The Existing Solar PV System in EPLISSI Under the Second Condition And 0% MACS (HOMER Optimizer [™])	160
Table 4.10	:	Optimisation Result of The Current System (Homer Optimizer [™]) Under Varying Macs Conditions	162
Table 4.11	:	HOMER Simulation Results for All Configurations	163
Table 4.12	:	Total Pollutants Emission of Carbon Monoxide, Unburned Hydrocarbons, Particulate Matter, Sulfur Dioxide, And Nitrogen Oxides of All Configurations	166
Table 4.13	:	Carbon Tax Penalty Equivalent to The Total Fuel Consumed of All Configurations	167
Table 4.14	÷	The Energy Production Results; Summaries for All Configurations	168
Table 4.15	÷	HOMER Simulation Results of C3-SA With an Added WT Component	175
Table 4.16	ò	Simulation results of C3 under Scenario A and Scenario using different wind speed resources	177
Table 4.17	÷	Simulation results by the type of battery	181

LIST OF FIGURES

			Page
Figure 1.1	:	Varieties of Renewable Energy Technology	2
Figure 1.2	:	Common Type of Solar PV Lighting Found in Rural Areas	5
Figure 1.3	:	Flowchart of the Study	9
Figure 2.1	:	A House in Rural Sabah Without Electricity Access	19
Figure 2.2	:	The Location of the 391 Un-Electrified Villages, 46 Of	22
-		Which Are Classified as Abandoned, As Well As an	
		Additional 355 Villages (Based on SESB Data) That May	
F igure 2.2		Be Un-Electrified	25
Figure 2.3	:	Schematic Diagram of (a) A Simple DC PV System to	25
		Power A water Pump with No Energy Storage And (D) A	
		Conditioners And Both DC And AC Loads	
Figure 2.4		Schematic Diagram of Grid-Connected Solar	27
rigule 2.4	•	Photovoltaic System	27
Figure 2.5		Schematic Diagram of Hybrid Solar Photovoltaic System	28
Figure 2.6	-	The Meaning Behind the Term Photovoltaic (PV) Cell,	30
		Module, Panel, And Array	
Figure 2.7		EPEVER Brand of Solar Charge Controller: (a) MPPT	34
21		(Maximum Power Point Tracking); (b) PWM (Pulse Width	
1919		Modulation)	
Figure 2.8		The DC And AC Symbol Mostly Found in Electrical	35
	6.0	Schematics UNIVERSITI MALATSIA SADAR	26
Figure 2.9	:	Type of Inverter's AC Output Wave	36
Figure 2.10	:	Hybrid Inverter Charger Multitask	37
Figure 2.11	:	Off-Grid Inverter Comparison Chart	38
Figure 2.12	:	Lithium-Ion Battery: (a) Parts of A Lithium-Ion Battery;	39
		(b) Charging A Lithium-Ion Battery, And (c) Discharging	
Figure 2 12		A LITHUM-ION BALLERY	41
Figure 2.13	:	Lond Arid and Lithium Iron Decembers Patterior' State of	41
Figure 2.14	•	Charge (SOC)	44
Figure 2.15	:	Solar Panels in Series of Same Characteristics	47
Figure 2.16	:	Solar Panels in Series of Different Voltages	48
Figure 2.17	:	Solar Panels in Series of Different Currents	48
Figure 2.18	:	Solar Panels in Parallel of Same Characteristics	49
Figure 2.19	:	Solar Panels in Parallel with Different Voltages and	49
-		Currents	
Figure 2.20	:	Solar Panels in Series and Parallel Connection	50

Figure 2.21	:	Series-Parallel Connection of Solar Panels of Different Wattages	50
Figure 2.22	:	12 Volt Battery Wiring Configurations	51
Figure 2.23	:	24 Volt Battery Wiring Configurations	51
Figure 2.24	:	48 Volt Battery Wiring Configurations	52
Figure 2.25	:	Roof Mounted Solar Panels	52
Figure 2.26	:	Ground Mounted Solar Panels	53
Figure 2.27	:	Classification of diffuse solar radiation	54
Figure 2.28	:	The Global Solar Atlas Version 2.3 (GSA 2.3) Online PV	61
5		Simulator	
Figure 3.1	:	The Flowchart of The Methodology	66
Figure 3.2	:	Summary Of the Preliminary Study	68
Figure 3.3	:	(a) Reviewing The Logbooks, and (b) Discussion	70
<u>J</u>		Between the UMS Researchers and EPLISSI's Staff.	
Fiaure 3.4	:	Setting Up the Load Profile Requirements for August	72
- gai e e i		2019	
Figure 3.5	:	The Elements of The Design Phase of a Standalone (or	73
5		Off-Grid) Solar PV System	
Figure 3.6		The Electrical Characteristic of The Hanwha Ocells	74
AGL.		Q.Peak Duo-G7 Solar Panel Brand of Power Class 310-	
		Watt, 315-Watt, And 320-Watt	
Figure 3.7	٩.	Solar Panels Connection; 2-Parallel And 4-Series	76
Figure 3.8	:	Process Workflow of Obtaining the Solar PV Module's	79
EL A		Optimum Tilt Angle and Orientation	
Figure 3.9	4	Solar Declination Angle Illustration	82
Figure 3.10	B IA	Solar Azimuth, Zenith Angle, And Solar Altitude	83
Figure 3.11		Solar And Collector Angles	84
Figure 3.12	:	Components Of Solar Irradiance: Direct, Diffuse, And	85
-		Reflected Radiation	
Figure 3.13	:	The Mechanical Specification of The Hanwha Qcells	90
		Q.Peak Duo-G7 Solar Panel Brand	
Figure 3.14	:	The Solar Panel Support Design: (a) Isometric View with	91
		the attachment of three solar panels for visualisation; (b)	
		Front View; (c) Top View; And (d) Side View. All	
		Dimension in Mm	
Figure 3.15	:	Characteristic Of the Bluesun FCD12-100 Battery	94
Figure 3.16	:	The Cycle Life Vs. Depth of Discharge of The Bluesun	94
_		FCD12-100 Battery	
Figure 3.17	:	Batteries Connection; 3-Parallel And 4-Series	96
Figure 3.18	:	FCD12-100 Battery Dimension Data	96
Figure 3.19	:	The Placement of the Battery Rack Near the Cafe: (a)	97
-		View from Inside of The Cafe; And (b) View from Outside	
		of The Cafe	

Figure 3.20	:	The Design of The Battery Rack	97
Figure 3.21	:	The Designations of Models	99
Figure 3.22	:	Epever Upower Series of UP5000-M8342 Hybrid Inverter	99
		Charger: (a) Right View; and (b) Left View	
Figure 3.23	:	The Schematic Diagram for Connections of Upower	100
		Series of Hybrid Inverter Charger	
Figure 3.24	:	Eco-Worthy Brand: (a) 4-String Combiner Box; (b) 4-	102
		10A Circuit Breakers; And (c) Device Description	
Figure 3.25	:	(a) Extension PV Cable With MC4-type Connectors; (b)	102
		Plug and Play MC4-type Connector; And (c) Extra Male	
		and Female MC4-type Connector	
Figure 3.26	:	DC Breaker 120-500V And 40-125A	103
Figure 3.27	:	Some of the Purchased Items: (a) Solar Panels; (b) Wire	104
		Cable and Solar Battery; (c) Conduit, Ladder, AC Cable,	
		Distribution Box, and many others; and (d) Solar PV	
Eiguro 2 20		Mounting	104
Figuro 3 20	:	Electrocorder DC voltage and Current Logger DC-3VA	104
rigure 5.29	•		105
Figure 3 30		Delta OHM (Italy) Automatic Weather Station (AWS) of	105
rigure 5.50		Model HDMCS -200	105
Figure 3.31		The Fabrication Process of The Battery Rack: (a) Angle	106
		Bar Cutting Process; (b) The Angle Bar is Welded	
BA		According to The Design; (c) Completed Fabrication of	
		The Battery Rack Main Frame; (d) Smoothing Process of	
100	A B	The Surface of The Iron; (e) Final Touch on The Battery	
		Rack Before Painting; And (f) Painting Process	
Figure 3.32	:	Final Product of The Battery Rack	107
Figure 3.33	:	(a) Fabrication Process of The Connector Between	107
		Batteries; and (b) Intended Purposes of The Connector	
Figure 3.34	:	Construction of a Four-Inch Cement Slab Which was	108
		Outsourced to EPLISSI's Staff for The Purpose of	
		Placement of Solar Panel's Support Mounting	
Figure 3.35	:	The Testing of The Solar Panel Mounting: (a) Half of The	109
		Mountings System Is Installed; (b) All the Legs of The	
		Mounting System Are Installed; (c) The Completed Solar	
		Panel Mounting System, And (d) The Solar Panel Which	
		Placed on The Rall and Poured with Water to Make Sure	
Eiguro 2.26		(a) Tan Palancing Process of The Patteries: (b) Testing	110
Figure 3.30	•	(a) Top Datation Process of The Datteries; (b) Testing of Solar Danals with Batteries; (c) And (d) Testing of The	110
		Hybrid Inverter Charger with Batteries (c) And (f)	
		Testing of The Battery Pack: As Well As (a) And (b)	
		resung of the ballety rack, AS Well AS (y) AND (II)	

Testing of The Automatic Weather System at Universiti Malaysia Sabah (UMS)

- Figure 3.37 : The Process Of Installing An Off-Grid Solar PV System At EPLISSI: (a) Loading Goods And Components To Be Taken To EPLISSI; (b) The Process Of Cement Mixing; (c) Installing The Battery Rack; (d) Stacking And Installing The Batteries Inside The Battery Rack; (e) Setting Up The Solar Panel's Support Mounting; (f) And (g) Installing Conduit And Socket Plug Inside One Of The Lodges; (h) Briefing On The Step To Install The Solar Lighting; (i) Combiner Box Wiring; And (j) Installation Of Grounding System
- Figure 3.38 : The Measuring Devices Installed in EPLISSI: (a) The 113 Probe of the DC-3VA And CT-2VA are Installed on The Battery Input (Live Wire) and AC Output Wires, respectively; (b) The Installed Delta OHM Automatic Weather System HDMCS -200; and (c) Final Inspection of The Measuring Devices Through Wireless Connection to Ensure That They are Properly Placed, and That the Data Can be Read

Figure 3.39	1	A Flowchart	of The	Methodoloav in	The Current Study	115

- Figure 3.40 : EPLISSI's Average Daily Electrical Load Profile (May 117 2021 to April 2022) Figure 2.41 : EPLISSI's and HOMEP's Monthly Average Solar 118
- Figure 3.41 : EPLISSI's and HOMER's Monthly Average Solar 118 Radiation Data and Clearness Index
- Figure 3.42 : EPLISSI's And HOMER's Monthly Average Wind Speed 120 Data
- Figure 3.43 : EPLISSI's And HOMER's Monthly Average Temperature 120 Data
- Figure 3.44 : System Configuration: (a) Current System In EPLISSI; 123 (b) Configuration 1, I.E., C1; (c) Configuration 2, I.E., C2; And (d) Configuration 3, I.E., C3
- Figure 3.45 : The Definition of Scenario A (SA) And Scenario B (SB) 124
- Figure 3.46 : Types Of Pollutants That Are Being Tracked by HOMER 128 Software
- Figure 3.47:C2 With Added Lithium-Ion Battery Diagram129
- Figure 3.48 : Type of Configuration which Undergone HOMER 131
- Figure 4.1 : (a) The Signboard of EPLISSI Built by Their Staff 133 Members; (b) Entrance to the EPLISSI; (c) Some of The Lodges Inside EPLISSI; And (d) EPLISSI's Surrounding Area
- Figure 4.2: The Layout of EPLISSI's Surrounding Area134

Figure 4.3	:	(a) Solar Lantern of Model SOLARMO SKU: SM-L045B;(b) Solar Street Lighting/Lamp	135
Figure 4.4	:	Peak And Average Daily Demand Profile Based on Three Months Data	136
Figure 4.5	:	Direct Normal Irradiation, DNI (Wh/m ²) Average Hourly	138
Figure 4.6	:	The Total Photovoltaic Power Output of Hourly Profiles (Wh) and Sum	138
Figure 4.7	:	Monthly Variation Tilt Angle ($\alpha_2 = 0^\circ$)	140
Figure 4.8	•	Monthly Insolation, H (kWh/m ² /Day)	142
Figure 4.9	:	Monthly Optimum Tilt Angle, B_{opt}	143
Figure 4.10	:	Yearly Average Insolation, H, Of Orientation Facing Due South ($\alpha_2 = 0^\circ$) And Facing Due North ($\alpha_2 = 180^\circ$)	144
Figure 4.11	:	Daily Average Insolation, <i>H</i> , Of $\beta_2 = 6.25^{\circ}$ And $\beta_2 = 8.05^{\circ}$	146
Figure 4.12	:	GSA 2.3 Data of Average Hourly Profiles of Total PV Power Output (Wh) Of Collector Tilt Angle (a) $\beta 2 = 6^{\circ}$, (b) $\beta 2 = 7^{\circ}$. And (c) $\beta 2 = 8^{\circ}$	149
Figure 4.13	÷	Result Of Total PV Power Output of The Isotropic Models and GSA 2.3	150
Figure 4.14		The Completed System: (a) The Completed Installation Of AC Lamp At The Public Toilet; (b), (c), (d), (e), And (f) The AC Circuit, Lamp, And Socket Plug Which Have Been Installed Inside The Lodges; (g) And (h) The Fully Secured Battery Rack; (i) The Inverter Which Mounted On The Battery Rack And The AC Distribution Box; (j), (k), And (l) The Side View And Front View Of The Solar Support Mounting, As Well As The PV Or DC Combiner Box; And (m) The Completed Set-Up Of The Solar Panel Mounting With The Solar Panels, A Signboard, And A Small Solar Lighting System.	154
Figure 4.15	:	The EPLISSI's Solar Radiation (kWh/m ² /day) of GSA 2.3 Data, Fieldwork Data, and HOMER Data	155
Figure 4.16	:	The Fieldwork Data of Monthly Average Solar PV Output (Acksen PV Output Data) And the Monthly Average Solar Radiation (Delta OHM Solar Radiation Data or Fieldwork Data)	157
Figure 4.17	:	Solar Photovoltaic Power Output in The First Condition of The Existing System	159
Figure 4.18	:	Theoretical Three-Day Power Sources and The Total Electrical Load Served (Kw): (a) First Condition (MACS 15%) and (b) Second Condition (MACS 15%) Of Existing Solar PV Systems	162

Figure 4.19	:	The Distribution of The Total Cost of All Configurations with Respect to Its Capital, Replacement, Operation and	165
		Maintenance, Fuel, And Salvage Costs	
Figure 4.20	:	The Graph of NPC And COE Of All Configurations	166
Figure 4.21	:	Carbon Dioxide Emission with Respect to The Fuel	167
		Consumed by All Configurations	
Figure 4.22	:	Graph of Excess Energy and Its Percentage Out of The	168
		Total Load Demand for All Configurations	
Figure 4.23	:	The Renewable Fraction of All Configurations Over the	169
		Total Power Production Percentage	
Figure 4.24	:	DG Power Output Daily Profile (C1)	171
Figure 4.25	:	The Configurations That Utilised the Fieldwork Versus	176
		HOMER Wind Speed Data	
Figure 4.26	:	The Renewable Fraction and Carbon Tax Penalty of C3	178
		Under Two Scenarios, I.E., SA And SB, Using Different	
		Wind Speed Resources	
Figure 4.27	:	The Cost Type Induced by Using Lead-Acid Batteries Vs.	182
		Lithium-Ion Batteries Based on Their Total Net Present	
Æ		Values	
Figure 4.28		EPLISSI Load Scaled Average Versus Fuel Price	182
		Superimposed by Total NPC (RM)	
Figure 4.29		EPLISSI Load Scaled Average Versus Fuel Price	183
		Superimposed by COE (RM/kWh)	
Figure 4.30	* : /	EPLISSI Load Scaled Average Versus Fuel Price	183
1 10-3	and P	Superimposed by The Renewable Fraction (%)	
Figure 4.31	BIA	EPLISSI Load Scaled Average Versus Fuel Price	184
		Superimposed by CO ₂ Emissions (Kg/Year)	
Figure 4.32	:	EPLISSI Load Scaled Average Versus Fuel Price	184
		Superimposed by The Quantity of Battery (Lead-Acid)	

LIST OF SYMBOLS

	Α	-	Area of a circle
	R	-	Radius of a circle
	neolar	_	Solar power
	Q301UI I	_	Solar constant
	I _{SC}	-	
	Bopt	-	Optimum tilt angle
	δ	-	Declination Angle
	N	-	Day number of year
	L	-	Latitude
	Lona	-	Longitude
	h	-	Hour angle
	I I	_	Total solar irradiance
	tot T		Direct irradiance
	TD	-	Direct indulatice
		-	Direct normal irradiance
	Is	-	Diffuse irradiance or sky radiation
	I _R	-	Reflected irradiance
	p/p_o	-	Atmospheric pressure relative to a
			standard atmosphere
	z	-	Elevation
AN	4	-	Apparent solar irradiation or apparent
R		S	extra-terrestrial solar intensity
57	D	- A.3	Atmospheric extinction coefficient
7 📃	C	14	Patie of diffuse rediction on a herizontal
	L	[sa]	Ratio of ultruse radiation on a nonzontal
1. 1		H	surface to direct normal irradiation
101	ρ	14	Foreground reflectivity
No.	H	-//	Insolation
NG.	Esolar	2	Total solar energy MALAVELA SARAL
	Acollector	-	Surface area of a collector
	Ealact	-	Total electrical energy
	n	-	Solar cell efficiency
		_	Ohm (internal resistance unit)
			Datio of the average daily diffuse radiation on
	DIF	-	Ratio of the average taily unitse ratiation of
	•		a tilted surface to that on a norizontal surface
	β_1	-	Solar altitude angle
	β_2	-	Collector or module tilt angle
	α ₁	-	Solar azimuth angle
	α_2	-	Azimuth angle of the normal to the collector
			surface
	θ	-	Collector angle
	â	_	Ground surface friction coefficient
	u V	_	Measured wind speed
	V 1		Mind anod calculated at the reference height
	V 2	-	
	<i>n</i> ₁	-	Height
	h ₂	-	Reference height
	C _{ann,tot}	-	Total annualised cost
	C_{boiler}	-	Boiler marginal cost
	Hearnad	-	Total thermal load served
	JUIVEU		

xviii

-	Total electrical load served
-	Renewable fraction
-	Non-renewable electrical production
	- -

 H_{nonren} - Non-renewable thermal production

LIST OF ABBREVIATIONS

EPLISS	5 I -	Eco-Tourism Destination of Liogu Ku Silou-Silou
AST	-	Apparent solar time
LST	-	Local standard time
LSTM	-	Local standard time meridian
ET	-	Equation of time
BOS	-	Balance of System
SP	-	Solar Panel
BSS	-	Battery Storage System
SCC	-	Solar Charge Controller
INV	-	Inverter
HIC	-	Hybrid Inverter Charger
PV	-	Photovoltaic
SPV	-	Solar Photovoltaic
DG	-	Diesel Generator
WT	-	Wind Turbine
Batt	-	Battery
Conv	-	Converter
C1	-	Configuration 1
C2	-	Configuration 2
C3	A - 1	Configuration 3
SA	- //~?	Scenario A
SB	1-11 -	Scenario B
F	- 12	Fieldwork
	/A/ -	Homer
COE	// - 🤜	Cost of Electricity
NPC	-LIMI	Net Present Cost
MACS	_ 0141	Maximum Allowable Capacity Shortage
Mono-S	Si -	Monocrystalline
Poly-Si	-	Polycrystalline
TFSC	-	Thin-Film Solar Cell
A-Si	-	Amorphous Silicon
CdTe	-	Cadmium Telluride
CVP	-	Concentrated PV
HCVP	-	High Concentrated PV
MC4	-	Multi-Contact, 4 millimetres
DNI	-	Direct Normal Irradiance
DHI	-	Diffuse Horizontal Irradiance
GHI	-	Global Horizontal Irradiance
DOD	-	Depth of Discharge
SOC	-	State of Charge
ROI	-	Return of Investment
IRR	-	Internal Rate of Return
CSR	-	Corporate Social Responsibility
RE	-	Renewable Energy
RMSD	-	Root-Mean-Square Deviation

LIST OF APPENDICES

			Page
Appendix A	:	The Front Page of The Questionnaire Form	214
Appendix B	:	Project Logo	215
Appendix C	:	The Format Dimension of The Solar Panel	216
Appendix D	:	The Design of Solar Panel Support	217
Appendix E	:	The Outsourced Drawing of The Solar Panel Support	218
Appendix F	:	The Quotation of The Material for The Outsourced Solar Panel Mounting	219
Appendix G	:	The Datasheet of The Hanwha Qcells Q.Peak Duo-G7 310-320	220
Appendix H	:	Epever Upower Series Hybrid Inverter Charger Datasheet	222
Appendix I		Recalibration Order of The Acksen Devices (1-year warranty of calibration)	224
Appendix J	:	Bluesun Solar Battery FCD12-100 Datasheet	225
Appendix K	- 	VRLA Battery Instruction Manual	227
Appendix L	40	The Drawing of The Battery Rack	229
Appendix M	:	EPLISSI Business Card	233
Appendix N	Ż	Acksen Electrocorder DC-3VA Datasheet (Acksen, no yrb)	234
Appendix O		Acksen Electrocorder CT-2VA Datasheet (Acksen, no yra)	236
Appendix P	Q.	Delta OHM (Italy) AWS of model HDMCS -200 Datasheet (Delta OHM, no yr.)	238
Appendix Q	:	Schematic Diagram of The Off-Grid Solar PV System	240
Appendix R	:	PEREKA UMS 2020 Certification of Award	241
Appendix S	:	MDPI, Sustainability Article (Matius et al., 2021)	242
Appendix T	:	Tech Science Press, Energy Engineering Article (Matius et al., 2022)	243
Appendix U	:	Proof of Conference Attendance	244

CHAPTER 1

INTRODUCTION

1.1 Introduction

In terms of a country's development, the electricity use rate could signify how welldeveloped the country is (Seshie et al., 2018; United States Energy Information Administration, 2017). However, it is not applied to the Organization for Economic Cooperation and Development (OECD) countries (i.e., the United States, Japan, and the United Kingdom), focusing on service economies rather than manufacturing economies (United States Energy Information Administration, 2017). According to International Energy Agency (2017), the global demand for electricity in 2018 rose by 4%. It has been at its fastest pace since 2010. For the power generation system to meet the rising electrical demand, the primary sources, such as coal and natural gas, represent nearly 60% of the global electricity supply (International Energy Agency, 2020).

However, researchers from all over the world are putting in continuous efforts to develop renewable energy (RE) technology. It is an effort to discover a worthy substitute for fossil fuels. They are the world's most significant culprit of triggering global warming and responsible for causing a high uncertainty of alarming climate (Shahzad, 2015). It can be implied that renewable technologies are here to stay and expand even more through various uses of RE technologies and judging from the current capability of this type of energy source, as stated by Gielen et al. (2019). A higher adoption rate will reduce the cost of owning these technologies (International Energy Agency, 2017). Soon, there is no doubt that RE technology will be the primary source of electricity, offering hope for a cleaner and better environment.