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ABSTRACT 

 

This study aims to model the extreme event with small sample sizes using a 
univariate Generalized Extreme Value (GEV) distribution. The Maximum Likelihood 
Estimation (MLE) is the most recommended method for parameter estimation with 
GEV distribution due to the consistency of the results and wide application in 
extreme value analysis. However, the MLE performs poorly in small sample sizes, 
creating uncertainties that may lead to inaccurate estimation. Therefore, the 
Generalized Maximum Likelihood Estimation (GMLE) was suggested to improve the 
performance of MLE in modelling the small sample sizes of extreme events. A 
simulation study was conducted using several methods which are probability 
weighted moment (PWM), MLE, and GMLE to choose the most suitable parameter 
estimation of GEV distribution base on bias and root mean square error (RMSE).  
Other than that, the simulation results showed that GMLE performs better than 
PWM and MLE for GEV parameter estimations. A case study was conducted by 
fitting Sabah’s annual maximum rainfall data with small sample sizes into GEV 
distribution with GMLE as the parameter estimation method. A stationary GEV 
model, which holds all parameters constant, is compared to a non-stationary model, 
consisting of a linear function of temperature as the covariate in the location 
parameter. From the results of the corrected Akaike’s Information Criterion (AICc) 
and likelihood ratio test, there was insufficient evidence to prove the existence of a 
trend to the extreme rainfall. Besides, homogeneity testing was conducted for each 
district using the likelihood ratio test. It showed that all the rainfall stations from 
these five districts should be modelled independently without common shape 
parameters. Since the GEV was fitted independently at each site and the inter-
dependency between sites was ignored, we applied the sandwich estimator to 
adjust the standard error. Hence, the quantile estimation at 10-, 100-, and 1000-
years return period was carried out using a modified model. Most of the stations 
were found to be exceeded the maximum level once every 100-years.  
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ABSTRAK 

PENDEKATAN NILAI EKSTRIM TERITLAK BAGI PERISTIWA EKSTRIM 

SPASIAL DENGAN SAMPEL SAIZ KECIL: APLIKASI KE ATAS HUJAN 

EKSTRIM DI SABAH 

Kajian ini bertujuan untuk menyesuaikan peristiwa ekstrim dengan sampel saiz kecil 

menggunakan kaedah ekstrim univariat iaitu taburan nilai ekstrim teritlak (GEV). 

Kaedah kebolehjadian maksimum (MLE) merupakan pendekatan piawai bagi 

penganggaran GEV ini disebabkan ketekalan hasil dan aplikasi meluas dalam 

analisis nilai ekstrim. Walaubagaimanapun, MLE mempunyai prestasi yang lemah 

dalam saiz sampel yang kecil dengan kewujudan ketidakpastian dalam model. 

Ketidakpastian dalam model dan peramalan akan menyebabkan penganggaran 

peristiwa yang kurang tepat. Oleh itu, kaedah kebolehjadian maksimum teritlak 

(GMLE) dicadangkan untuk menambah baik prestasi MLE dalam saiz sampel yang 

kecil. Kajian simulasi dijalankan untuk membandingkan kaedah penganggaran iaitu 

kaedah momen berpemberat (PWM), kaedah MLE  dan  GMLE untuk memilih 

kaedah penganggaran GEV yang paling sesuai berdasarkan ketidakpincangan dan 

punca min ralat kuasa dua (RMSE). Keputusan menunjukkan GMLE merupakan 

kaedah yang paling sesuai berbanding dengan PWM dan MLE dalam saiz sampel 

yang kecil. Selanjutnya, kajian kes dijalankan dengan menyesuaikan hujan 

maksimum tahunan dengan saiz sampell kecil di Sabah menggunakan GEV dengan 

anggaran GMLE. Model pegun yang mengandaikan semua parameter sebagai malar 

telah dibandingkan dengan model tidak pegun yang bergantung kepada suhu cuaca 

pada parameter lokasi. Keputusan pengubahsuaian kriteria maklumat Akaike (AICc) 

dan ujian nisbah kebolehjadian (LR test) menunjukkan tidak terdapat bukti yang 

kukuh untuk membuktikan kewujudan trend dalam hujan ekstrim. Selain itu, 

keputusan ujian homogen bagi setiap daerah menunjukkan data hujan maksimum 

tahunan semua stesen dari lima daerah dimodelkan secara bebas tanpa parameter 

bentuk yang sama. Dalam kajian ini, GEV disesuaikan pada data hujan maksimum 

tahunan secara bebas antara stesen, maka kaedah penganggaran “sandwich” 

digunakan untuk pelarasan ralat piawai. Oleh itu, anggaran kuantitatif pada tahap 

pulangan 10-, 100-, dan 1000- tahun diperolehi dengan model terubahsuai. 

Kebanyakan nilai pulangan stesen dijangka melebihi tahap maksimum sekali setiap 

100 tahun.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Background of Study 

 

Extreme Value Theory (EVT) is a branch of statistics that deals with statistical 

techniques for modelling and estimating rare events. EVT differs from most 

traditional statistical analyses that deal with the centre of the underlying 

distribution. Other than that, EVT focuses on the behaviour of the tails of the 

distribution function. The outcome of EVT is the examination of extreme 

observations (Minkah, 2016; Ramadhani et al., 2016). Historically, Nicholas 

Bernoulli started to work on EVT in 1709.  EVT has started by utilizing and rejecting 

outlying observations from the needs of astronomers. Then, the general theory 

began to develop with the publication of Bortkiewicz in 1992, which worked on the 

range distribution in random samples from a normal distribution (Kotz & Nadarajah, 

2000). In recent decades, other than geology and hydrology events, EVT has been 

widely applied in applied science and other disciplines, such as financial risk, the 

insurance industry and traffic prediction.  

 There are two different models in EVT, which are block maxima and peak 

over threshold (POT). These two models are differentiated by the classification 

method of observation of extreme events that are used in the data analysis process. 

By the block maxima method, the samples are taken from a particular period, such 

as hourly, weekly, or yearly. Each period’s maximum or minimum observations will 

be used as extreme observations. Using the POT method, a predetermined 

threshold is needed. The observations that exceed the given threshold will be 

considered extreme (Ramadhani et al., 2016).   
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 In application, the block maxima model is mostly used in climatological and 

hydrological data to determine the distribution of the maxima values. Maximum 

precipitation has always been treated as the extreme values in extreme rainfall 

analysis. Since rainfall is the primary cause of flooding, water management and 

water reservoir seem important. In wind speed analysis, the results obtained were 

essential for the design of offshore platforms, coastal marine structure, coastal 

management, wind climate and wind structural safety. Note that EVT has the ability 

to predict a better estimate of strong wind events (Rajabi & Modarres, 2008; 

Soukissian & Tsalis, 2015). Not only in wind speed analysis, but EVT also performed 

well in modelling and predicting earthquake magnitudes. The maximum possible 

size of an earthquake is beneficial for construction engineers and insurers to make 

considerations (Pisarenko et al., 2014).  The stress level was used to measure the 

safety of materials as the materials will easily break down when fails to overcome 

the stress level. EVT can also apply to the extremely small value. For example, the 

fibre strength collected by Smith & Naylor (1987). The outliers in a data set may 

influence the fibre strengths; if broken of smallest fibre may cause the entire fibre 

breaks too. Thus, EVT can be applied to study the smallest value in the data.  

 On the other hand, the POT model is mostly used in financial and insurance 

data which tends to be time independent. In the financial market, Value-at-Risk 

(VaR) is the capital sufficient to cover losses in a given period and estimate 

potential losses. EVT is able to compute the tail risk measure and the liquidity risk 

in the financial market. The return level of the distribution can be used to measure 

the maximum loss (Gilli, 2006). Besides, VaR in the insurance market is treated as 

the benchmark for risk estimation. VaR help in the estimate of the minimum 

amount of claims insurance in a given period (Adesina et al., 2016). In the road 

safety analysis, EVT was applied to estimate the head-on-collision probability in 

passing manoeuvres (Farah & Avezedo, 2017). Apat from that, EVT is able to link 

frequency estimation and traffic conflict analysis using a single probabilistic 

framework. The result estimated using EVT has a high probability of fewer mistakes 

than the stochastic model (Mouradian, 2016). Furthermore, application in 

transportation engineering is due to the benefits of EVT over regression models, 

which are able to estimate the return level from short data (Zheng et al., 2014).  
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 Nowadays, it can be seen that there is an increase in the occurrence of 

natural disasters due to the global warming all over the world. Human activities in 

the environment are the main cause of global warming. Due to global warming, the 

surface temperature has been increasing rapidly. Extreme high and low 

temperature on the global surface lead to heat and cold waves (Hasan et al., 2012). 

Additionally, human activities and natural disasters may be affected by this 

phenomenon. Natural disasters bring a lot of negative impact on a country and 

even the world economy. According to the annual climate catastrophe report 

(Benfield, 2017), the top three risks in the year 2012-2016 were floods, 

earthquakes and severe weather. The costliest weather events among these are 

the flooding event in the Yangtze River in China.  A flood is defined as an unusually 

high stage of river flow. This happens when the stream channel is filled, and the 

water covers the land outside the normal confines (Zakaullah et al., 2012). 

According to United Nations Intergovernmental Panel on Climate Change (IPCC) 

report in 2021, climate change will increase in all regions in the coming decades. It 

is likely that hot extremes, heat waves, and heavy precipitation events will continue 

to become more frequent. 

 Statistical modelling of extreme events is important for civil engineering and 

planners since the results could be used to estimate the ability to build the 

structure to survive under the utmost extreme conditions (Eli, 2012). Besides, the 

determination of hydrology extreme events is important for water resources 

management and the designs of the hydraulic structure such as pumping stations, 

tunnels, dams, and spillways (Chung & Kim, 2013). Moreover, extreme events may 

cause huge economic losses and negative impacts on agriculture and people. 

Consequently, it is very important to study the distribution as the return period of 

extreme events contributes to flooding risk, reservoir management, and 

construction development. Selection of a suitable probability distribution is always 

the first step in modelling extreme events, analysing data in the form of cumulative 

distribution, and determining the best fitting distribution function. In geophysical 

processes, EVT is applied to improve the prevention, preparedness, and mitigation 

of natural disasters.  
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 Selection of a probability distribution is always the first step in modelling 

extreme events, analysing the data set in the form of cumulative distribution, and 

then determining the best fitting distribution function. Most previous studies 

recommended the Generalized Extreme Value (GEV) distribution as a probability 

distribution to model extreme events. In the effort of flood risk management, Lim & 

Lye (2003) conducted a study on maximum river flow for 23 gauged river basins in 

Sarawak using GEV distribution. Besides, Zalina et al. (2002) proved that the GEV 

distribution is the most appropriate probability distribution among eight candidates 

of probability distribution to model extreme rainfall in Peninsular Malaysia, as GEV 

distribution has good descriptive and predictive abilities. The annual maximum 

rainfall data in Alor Setar, Kedah, also modelled using GEV distribution, was 

conducted by Eli & Shaffie (2012). Other than river flow and extreme rainfall, the 

annual maximum temperature data modelled by GEV distribution was carried out by 

previous studies where the data were collected from numerous locations in 

Malaysia, India, and Europe with the period of 32 years, 117 years, and 68 years, 

respectively (Hasan et al., 2012; Gurung et al., 2021; Auld et al., 2021). 

 When sample data are collected from numerous locations, it is considered 

spatial data. Normally, spatial and multivariate extreme analyses were employed to 

model spatial data to capture the dependency between sites. Since several 

locations refer to the multivariate variables, multivariate extreme value distribution 

is suitable to model spatial data collected from several locations (Dixon & Tawn, 

1999). From the study of Coles & Tawn (1991), they applied a trivariate distribution 

to oceanographic data to capture the dependencies. Apart from that, a joint 

estimation proposed by Buishand (1991) is one of the methods for spatial extreme 

modelling to capture inter-site dependencies. Coles & Tawn (1996) model spatial 

extreme analysis to extreme rainfall in England. From their study, geographical bias 

was corrected, and spatial dependence was captured. However, these two methods 

may lead to high dimensional difficulties (Gabda & Tawn, 2017). There were 

previous studies that proposed a method by modelled spatial data using a 

univariate extreme approach independently using GEV distribution. However, the 

results that were modelled by the univariate extreme approach were based on the 

wrong assumption since the dependency was ignored. Therefore, a standard error 

modification is needed to capture the data dependency. The standard error 



5 
 

modification proposed by Smith (1990) was the sandwich estimator. This method 

modified the standard error to capture the dependencies without affecting the 

parameters estimated independently. On the other hand, Zheng et al. (2015) 

compare the performance of the independent method with a sandwich estimator 

and three spatial extreme models. They presented that the independent method 

with a sandwich estimator performs better in terms of bias and root mean square 

error. Additionally, Northdrop & Jonathan (2011) have applied the sandwich 

estimator to model the hurricane-induced wave heights independently. Both studies 

showed that modelling independently with a sandwich estimator has a more 

efficient computation and avoids model misspecification. Among these 

aforementioned methods, this study will apply a sandwich estimator as the 

standard error modification with marginal estimation to avoid model 

misspecification and for efficient computation. 

 Parameter estimation is required in a probability distribution to determine 

the experimental values of the parameters. Several estimators can be employed 

with GEV distribution to obtain parameters and quantiles of the probability 

distribution, such as Maximum Likelihood Estimation (MLE), probability weighted 

moment (PWM) as well as L-moment. Note that MLE was the most recommended 

model because this method can be easily extended to non-stationary cases (Coles, 

2001). MLEs are popular due to their inferences, such as standard error and 

statistical tests. However, scarcity of data is always a weakness in MLE. The sample 

sizes that are less than 50 are considered small sample sizes since MLE is only 

preferable when the sample sizes are modes(    ) (Martin & Stedinger, 2000). 

Therefore, the employment of an alternative method of MLE is important to 

improve the performance in small sample sizes to reduce uncertainties. MLE was a 

physically infeasible shape parameter for small samples (Hosking et al., 1985). 

Meanwhile, Generalized Maximum Likelihood Estimation (GMLE) is a modified MLE 

proposed by Martin & Stedinger (2000). This method is able to improve analysis 

and reduce the uncertainties in small sample sizes by adding a beta prior function 

to the shape parameter. In previous studies, GMLE was able to improve the 

performance of MLE without affecting the advantage of MLE, which retained the 

modelling flexibility and large sample optimality. Apart from that, Song et al. (2018) 

showed that GMLE outperformed in most of the cases in their study to estimate the 


