OPTIMISATION AND CONTROL OF FED-BATCH YEAST PRODUCTION USING Q-LEARNING

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2013

OPTIMISATION AND CONTROL OF FED-BATCH YEAST PRODUCTION USING Q-LEARNING

HELEN CHUO SIN EE

THESIS SUBMITTED IN FULFILMENT FOR THE DEGREE OF MASTER OF ENGINEERING

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2013

PUMS 99:1

UNIVERSITI MALAYSIA SABAH

BORANG PI	ENGESAHAN TESIS
JUDUL :	
IJAZAH :	
SAYA :	SESI PENGAJIAN :
(HURUF BESAR)	
Mengaku membenarkan tesis *(LPSM/Sarjana/Dokto Sabah dengan syarat-syarat kegunaan seperti berikut:	r Falsafah) ini disimpan di Perpustakaan Universiti Malaysia -
 Tesis adalah hak milik Universiti Malaysia Saba Perpustakaan Universiti Malaysia Sabah diben Perpustakaan dibenarkan membuat salinan t tinggi. 	ah. Jarkan membuat salinan untuk tujuan pengajian sahaja. esis ini sebagai bahan pertukaran antara institusi pengajian
4. Sila tandakan (/)	mat yang berdarjah keselamatan atau kepentingan Malaysia
seperti yang termaktu TERHAD (Mengandungi maklu mana penyelidikan di	ıb di AKTA RAHSIA RASMI 1972) mat TERHAD yang telah ditentukan oleh organisasi/badan di jalankan)
TIDAK TERHAD	Disahkan oleh:
 (TANDATANGAN PENULIS) Alamat Tetap:	(TANDATANGAN PUSTAKAWAN)
 TARIKH:	(NAMA PENYELIA) TARIKH:
Catatan: *Potong yang tidak berkenaan. *Jika tesis ini SULIT dan TERHAD, sila lampirkan sur menyatakan sekali sebab dan tempoh tesis ini perlu *Tesis dimaksudkan sebagai tesis bagi Ijazah Dokto bagi pengajian secara kerja kursus dan Laporan Pro	at daripada pihak berkuasa/organisasi berkenaan dengan u dikelaskan sebagai SULIT dan TERHAD. r Falsafah dan Sarjana Secara Penyelidikan atau disertai ıjek Sarjana Muda (LPSM).

DECLARATION

The materials in this thesis are original except for quotations, excerpts, summaries and references which have been duly acknowledged.

HELEN CHUO SIN EE PK2010-8023

5 October 2012

CERTIFICATION

NAME : HELEN CHUO SIN EE

MATRIC NO. : **PK2010-8023**

- TITLE : OPTIMISATION AND CONTROL OF FED-BATCH YEAST PRODUCTION USING Q-LEARNING
- DEGREE : MASTER OF ENGINEERING (CHEMICAL ENGINEERING)
- VIVA DATE : 21 JANUARY 2013

DECLARED BY

ACKNOWLEDGEMENT

I owe my deepest gratitude and appreciation to my supervisors, Dr. Tham Heng Jin and Mr. Kenneth Teo Tze Kin, for their close supervision and invaluable advice throughout the studies. Without their vital encouragement and persistent help, the completion of this work would not be possible.

It's also an honor for me to be able to work together with all my fellow friends in the Modelling, Simulation and Computing Laboratory (mscLab). The hard times and the treasured moment spent together would be my life-long unforgettable experience and I am indebted to them for their numerous supports and sharing.

I would like to thank the university and the Ministry of Higher Education for their financial support on the work and the resource offering. Thank you is extended to the officers and lecturers in school and university level who took care of these matters and all the necessities of postgraduate students with patience.

Another hearty thank you goes to my parents and my family for their precious understanding and full support throughout all these years.

Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of the work.

UNIVERSITI MALAYSIA SABAH

Helen Chuo <mark>Sin Ee</mark> 5 Octob<mark>er</mark> 2012

ABSTRACT

OPTIMISATION AND CONTROL OF FED-BATCH YEAST PRODUCTION USING Q-LEARNING

In this work, the optimal production of yeast with minimal production of ethanol in fed-batch yeast fermentation is investigated. O-learning (OL) is a heuristic approach suggested for the process dynamic handling to achieve the multiobjective optimisation. The QL agent interacts with the fermentation environment will gain experience on the state transitions, which are represented by the change of substrate, yeast, oxygen and ethanol concentration and the system volume. In the present study, multistep action (MSA) has been implemented in consideration of the inborn process delay for the substrate feeding to take effect on the yeast growth. Parameter deviated model has been implemented in the QL to test the robustness of the algorithm besides to identify the process disturbance. From the result, QL was able to perform multiobjective decision making for the optimal substrate feeding profile. The final yeast production using OL-optimised feeding profile is 20.86% higher compare to the nominal exponential feeding (EF), and 19.59% higher compare to EF with process disturbance. To cater for the process disturbance, Q-learning with exploration (QLE) has been included in this work for online optimisation. QLE signifies the importance of exploration from time to time based on the developed "past experience" in Q-table to optimise the process. The performance of QLE in both nominal and disturbance cases yielded 51.00% and 46.87% higher yeast production than EF respectively, while maintaining low ethanol production. In a nutshell, QL is an alternative that can be considered to perform multiobjective optimisation in a frequently changing bioenvironment and suggest a substrate feeding profile that satisfied the process goal. The QLE can cope better with the process disturbance.

ABSTRAK

Kajian ini membincangkan pengoptimuman produksi ragi di samping mengurangkan produksi etanol untuk fermentasi ragi semi kelompok. Pembelajaran-Q (QL) merupakan satu kaedah heuristik yang digunakan untuk mengatasi masalah dinamik sistem fermentasi bagi mencapai optimisasi berbilang objektif (multiobjektif) iaitu memaksimumkan produksi ragi dan meminimumkan penghasilan etanol yang menjejaskan gualiti ragi. Ejen pembelajaran berinteraksi dengan persekitaran proses fermentasi untuk menimba ilmu dan pengalaman mengenai keadaan peralihan sistem yang menggambarkan perubahan dalam kepekatan substrat, ragi, oksigen dan etanol, serta pertukuran isipadu sistem. Dalam kajian ini, tindakan berbilang langkah (MSA) telah diimplimentasikan menimbangkan kelewatan proses semula jadi yang menyebabkan pembekalan substrat lambat berkesan terhadap pertumbuhan ragi. Model yang berparameter terpesong juga telah diimplimentasikan di dalam QL untuk menguji keberkesanan dan kekukuhannya di samping mengidentifikasikan gangguan proses. Daripada keputusan kajian, QL berupaya berfungsi dalam penentuan profil pembekalan substrat optimum berdasarkan berbilang objektif. Produksi akhir ragi bagi QL dalam kes nominal mencapai 20.86% produksi lebih tinggi daripada pembekalan eksponen (EF), dan mencapai 19.59% produksi ragi lebih tinggi berbanding dengan EF bagi kes semasa gangguan proses berlaku. Demi menyelesaikan masalah gangguan proses, QL dengan eksplorasi (QLE) telah dikembangkan untuk pengoptimuman secara 'online'. QLE menunjukkan kepentingan eksplorasi lanjutan dari semasa ke semasa berdasarkan "pengalaman" dalam jadual-Q yang bagi mengoptimumkan proses fermentasi. Pencapaian QL dengan eksplorasi menunjukkan 51.00% dan 46.87% produksi ragi lebih tinggi berbanding dengan pembekalan eksponen dalam kes nominal serta kes ganguan proses masing-masing, sementara mengekalkan kepekatan etanol yang rendah sepanjang proses fermentasi. Secara keseluruhan, QL merupakan satu pilihan yang boleh dipertimbang untuk bertindak terhadap biopersekitaran yang kerap berubah dan menentukan pembekalan substrat yang memuaskan objektif-objektif proses. QLE juga menunjukkan prestasi yang lebih memuaskan walaupun di bawah pengaruh gangguan proses untuk mencapai pengoptimuman berbilang objektif.

TABLE OF CONTENTS

	Page
TITLE	i
DECLARATION	ii
CERTIFICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	x
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xvi
LIST OF SYMBOLS	xvii
 CHAPTER 1: INTRODUCTION 1.1 The Growing Importance of Fermentation in Bioindustry 1.2 Problem Statement and Rationale of the Study 1.3 Aim and Objectives 1.4 Scope of Work 1.5 Organisation of the Thesis 	1 3 4 4 5
 CHAPTER 2: RESEARCH BACKGROUND 2.1 Chapter Overview 2.2 Yeast Fermentation 2.2.1 Monod Growth Kinetics 2.2.2 Dynamic Mass Balance in Fermentation System 2.3 Fed-Batch Control and Optimisation Problems 2.3.1 Nature and Characteristic of the Process 2.3.2 Determination of Optimal Substrate Feeding Strategies 2.4 Reviews on Optimisation Approaches for Fed-Batch Yeast Fermentation 2.4.1 Predetermined Feeding and Exponential Feeding 2.4.2 Feedback control 2.4.3 Knowledge-based Fuzzy Inference 2.4.4 Evolutionary Algorithm 2.4.5 Artificial Neural Network 	6 9 12 14 15 16 16 17 20 22 24 26

CHA	PTER 3: Q-LEARNING – THEORY AND APPLICATION	
3.1	Introduction	27
3.2	Concept of Q-learning	27
3.3	Structure of Q-learning	29
	3.3.1 State Space, Action Space and Q-Table	30
	3.3.2 Reward Function and Action Selection	31
	3.3.3 Learning Rate and Discount Factor	31
3.4	Limitations of Q-Learning	32
	3.4.1 Exploitation and Exploration Trade-Off	32
	3.4.2 Curse of Dimensionality	33
3.5	Application of Q-Learning in Chemical Processes	34
3.6	Chapter Summary	35

CHAPTER 4: MODELLING AND SIMULATION OF FED-BATCH FERMENTATION PROCESS

4.1	Introduction	37
4.2	Modelling of Fed-Batch Yeast Fermentation System	38
	4.2.1 Kinetic Model	38
	4.2.2 Dynamic Model	43
	4.2.3 Parameters Setting	46
4.3	Process Setup and Settings	46
	4.3.1 Process Input and Output	47
	4.3.2 Simulation Settings and Initial Conditions	47
4.4	Open-Loop Simulation of Fed-Batch Yeast Fermentation	48
	4.4.1 Fermentation Response under Different Conditions	52
- VC	4.4.2 Effect of Disturbances	54
4.5	Chapter Summary	56

CHAPTER 5: OPTIMISATION OF EXPONENTIAL FEEDING IN FED-BATCH FERMENTATION

~ .	- · · · ·	
СНА	PTER 6: OPTIMISATION OF LEARNING-BASED FED-BATCH FERMENTATION	
5.5	Chapter Summary	72
	5.4.1 Simulation Response of Exponential Feeding under Disturbance 5.4.2 Performance Analysis of Exponential Feeding under Disturbance	68 70
5.4	Disturbance Case of Exponential Feeding	68
	5.3.2 Performance Analysis of Exponential Feeding	63
	5.3.1 Simulation Response of Exponential Feeding	61
5.3	Nominal Case of Exponential Feeding	61
5.2	Exponential Feeding and Simulation Settings	58
5.1	Introduction	58

6.1	Introd	uction	/4
6.2	Applic	ation of Q-Learning in Yeast Fermentation System	74
	6.2.1	Multistep Action	75
	6.2.2	Action Selection	76
	6.2.3	Reward Function Approximation	77

6.2.4 Development of Q-Table 6.2.5 Implementation of Q-Learning	78 78
6.3 Nominal Case of Q-Learning Feeding	79
6.3.1 Simulation Response of Q-learning	79
6.3.2 Performance Analysis of Q-learning	84
6.4 Disturbance Case of Q-Learning Feeding	89
6.4.1 Simulation Response of Q-learning Feeding under Disturbance	89
6.4.2 Performance Analysis of Q-learning Feeding under Disturbance	e 93
6.5 Chapter Summary	99
CHAPTER 7: CONCLUSIONS	100
7.1 Summary	102
7.2 Achievement 7.3 Euture Work	103
	104
REFERENCES	106
APPENDIX A: MATLAB CODES	
A.1 MATLAB Codes for Open-loopProcess Simulation using Exponential	111
Feeding	
A.2 MATLAB Codes for Closed Loop Process Simulation using Q-Learning	116
Feeding	
APPENDIX B: SIMULATION RESPONSE IN TERMS OF MASS	101
B.1 Constant Feeding	121
B.2 Exponential Feeding	122
B.3 Q-Learning recuiling B.4 Q Learning with Exploration Fooding	123
B.5 Comparison of Substance Mass between Constant Fooding, Exponen	124 tial 125
Feeding, Q-Learning and Q-Learning with Exploration	
APPENDIX C: LIST OF PUBLICATIONS	127

LIST OF TABLES

		Page
Table 2.1	Application of predetermined feeding in fed-batch yeast fermentation	17
Table 2.2	Application of feedback control in fed-batch yeast fermentation	19
Table 2.3	Application of fuzzy in fed-batch yeast fermentation	21
Table 2.4	Application of evolutionary algorithms in fed-batch yeast fermentation	23
Table 2.5	Application of artificial neural network in fed-batch yeast fermentation	25
Table 4.1	Model parameters for yeast fermentation process	46
Table 4.2	Final concentration of substances for open-loop constant (non-optimal) feeding	57
Table 4.3	Final mass of substances for open-loop constant (non- optimal) feeding	57
Table 5.1	Final concentration of substances for nominal case using constant and exponential feeding strategies	63
Table 5.2	Final concentration of substances for disturbance case using constant and exponential feeding strategies	70
Table 5.3	Final concentration of substances for nominal and disturbance cases using constant and exponential feeding	72
Table 5.4	Final mass of substances for nominal and disturbance cases using constant and exponential feeding	72
Table 6.1	Q-table for fed-batch yeast fermentation system	78
Table 6.2	Final concentration of substances for nominal case using different feeding strategies	84
Table 6.3	Final concentration of substances for disturbance case using different feeding strategies	94
Table 6.4	Final mass of substances for nominal case using different feeding strategies	100
Table 6.5	Final mass of substances for disturbance case using different feeding strategies	101

LIST OF FIGURES

		Page
Figure 1.1	Correlation between product concentration and selling price for common fermentation products	2
Figure 2.1	Metabolism of yeast undergoing either oxidative or fermentative pathway to reproduce yeast or generate ethanol respectively	8
Figure 2.2	Typical growth curve for yeast and bacteria (batch)	9
Figure 2.3	Limited respiratory capacity of <i>Saccharomyces cerevisiae</i> illustrated as a bottleneck	10
Figure 2.4	Continuous, batch and fed-batch mode of operations	13
Figure 2.5	The four elements in the operation of fuzzy logic	20
Figure 2.6	Conceptual search way for a global optimal value based on the evolutionary algorithm	22
Figure 2.7	Structure of artificial neural network inspired by the neural system	24
Figure 3.1	The interactions of learning agent and the environment	28
Figure 3.2	State space, action space and Q-table in a discretized learning system	31
Figure 3.3	The dilemma of exploitation and exploration	33
Figure 4.1	Overall work flow chart	37
Figure 4.2	Modelling of Fed-batch yeast kinetics and dynamic system	38
Figure 4.3	The substrate consumed undergoes oxidative and fermentation pathway	41
Figure 4.4	The simulation flow for fed-batch yeast fermentation process	47
Figure 4.5	Concentration profile of yeast, glucose, oxygen and ethanol at constant feed flow input	48
Figure 4.6	Graph of constant feeding profile against bioreactor system volume	49
Figure 4.7	Response of total specific growth rate at constant feed flow input	49
Figure 4.8	Response of respiratory quotient at constant feed flow input	50

Figure 4.9	Response of substrate kinetics in yeast at constant feed flow input	51
Figure 4.10	Response of ethanol kinetics in yeast at constant feed flow input	51
Figure 4.11	Concentration profile of yeast, glucose, oxygen and ethanol at low initial yeast concentration and high initial glucose concentration for constant feed flow input	52
Figure 4.12	Concentration profile of yeast, glucose, oxygen and ethanol at high initial yeast concentration and low initial glucose concentration for constant feed flow input	53
Figure 4.13	Disturbance in substrate feeding	54
Figure 4.14	Concentration profile of yeast, glucose, oxygen and ethanol for constant feed flow input under process disturbance	55
Figure 4.15	Response of total specific growth rate for constant feed flow input under process disturbance.	55
Figure 4.16	Response of respiratory quotient for constant feed flow input under process disturbance	56
Figure 5.1	The relationship between maximum exponential coefficient (initial substrate feeding) and maximum exponential correlation factor	60
Figure 5.2	Concentration profile of yeast, glucose, oxygen and ethanol using exponential feeding	61
Figure 5.3	Graph of exponential feeding profile and change of bioreactor system volume	62
Figure 5.4	Response of total specific growth rate using exponential feeding	62
Figure 5.5	Response of respiratory quotient using exponential feeding	63
Figure 5.6	Comparison of constant and exponential feeding profile	64
Figure 5.7	Comparison of final yeast production using constant and exponential feeding	64
Figure 5.8	Comparison of glucose remained in system using constant and exponential feeding	65
Figure 5.9	Comparison of ethanol generation using constant and exponential feeding	66
Figure 5.10	Comparison of oxygen consumption using constant and exponential feeding	66

Figure 5.11	Comparison of specific growth rate using constant and exponential feeding	67
Figure 5.12	Comparison of respiratory quotient using constant and exponential feeding	67
Figure 5.13	Concentration profile of yeast, glucose, oxygen and ethanol with exponential feeding under process disturbance	68
Figure 5.14	Response of total specific growth rate using exponential feeding under process disturbance	69
Figure 5.15	Response of respiratory quotient using exponential feeding under process disturbance	69
Figure 5.16	Comparison of final yeast production using constant and exponential feeding under process disturbance	70
Figure 5.17	Comparison of oxygen consumption using constant and exponential feeding under process disturbance	71
Figure 5.18	Comparison of specific growth rate using constant and exponential feeding under process disturbance	71
Figure 6.1	The schematic flow diagram of Q-learning with fed-batch yeast fermentation process	75
Figure 6.2	Concentration profile of yeast, glucose, oxygen and ethanol using Q-learning	80
Figure 6.3	Graph of Q-learning optimised feeding profile and change of bioreactor system volume	80
Figure 6.4	Response of total specific growth rate using Q-learning	81
Figure 6.5	Response of respiratory quotient using Q-learning	81
Figure 6.6	Concentration profile of yeast, glucose, oxygen and ethanol using Q-learning with exploration	82
Figure 6.7	Graph of Q-learning feeding profile with exploration and change of bioreactor system volume	82
Figure 6.8	Response of total specific growth rate using Q-learning with exploration	83
Figure 6.9	Response of respiratory quotient using Q-learning with exploration	83
Figure 6.10	Comparison of exponential feeding profile, QL-optimised feeding profile and QL-optimised feeding profile with exploration	84

Figure 6.11	Comparison of final yeast production using exponential feeding, Q-learning and Q-learning with exploration	85
Figure 6.12	Comparison of glucose remained in system for exponential feeding, Q-learning and Q-learning with exploration	86
Figure 6.13	Comparison of ethanol generation using exponential feeding, Q-learning and Q-learning with exploration	86
Figure 6.14	Comparison of oxygen consumption using exponential feeding, Q-learning and Q-learning with exploration	87
Figure 6.15	Comparison of specific growth rate using exponential feeding, Q-learning and Q-learning with exploration	88
Figure 6.16	Comparison of respiratory quotient using exponential feeding, Q-learning and Q-learning with exploration	88
Figure 6.17	Concentration profile of yeast, glucose, oxygen and ethanol with Q-learning for disturbance	89
Figure 6.18	Response of total specific growth rate using Q-learning for disturbance	90
Figure 6.19	Response of respiratory quotient using Q-learning for disturbance	90
Figure 6.20	Concentration profile of yeast, glucose, oxygen and ethanol with Q-learning with exploration for disturbance	91
Figure 6.21	Graph of Q-learning feeding profile with exploration and change of bioreactor system volume for disturbance	92
Figure 6.22	Response of total specific growth rate using Q-learning with exploration for disturbance	92
Figure 6.23	Response of respiratory quotient using Q-learning with exploration for disturbance	93
Figure 6.24	Comparison of exponential feeding profile, QL-optimised feeding profile and QL-optimised feeding profile with exploration under the influence of disturbance	94
Figure 6.25	Comparison of final yeast production using exponential feeding, Q-learning and Q-learning with exploration under process disturbance	95
Figure 6.26	Comparison of glucose remained in system for exponential feeding, Q-learning and Q-learning with exploration under process disturbance	96

Figure 6.27	Comparison of ethanol generation using exponential feeding, Q-learning and Q-learning with exploration under process disturbance	96
Figure 6.28	Comparison of oxygen consumption using exponential feeding, Q-learning and Q-learning with exploration under process disturbance	97
Figure 6.29	Comparison of specific growth rate using exponential feeding, Q-learning and Q-learning with exploration under process disturbance	98
Figure 6.30	Comparison of respiratory quotient using exponential feeding, Q-learning and Q-learning with exploration under process disturbance	99
Figure B.1	Mass of yeast, glucose, oxygen and ethanol at constant feed flow input	121
Figure B.2	Mass of yeast, glucose, oxygen and ethanol at constant feed flow input under disturbance	121
Figure B.3	Mass of yeast, glucose, oxygen and ethanol at exponential feed flow input	122
Figure B.4	Mass of yeast, glucose, oxygen and ethanol at exponential feed flow input under disturbance	122
Figure B.5	Mass of yeast, glucose, oxygen and ethanol at Q-learning feed flow input	123
Figure B.6	Mass of yeast, glucose, oxygen and ethanol at Q-learning feed flow input under disturbance	123
Figure B.7	Mass of yeast, glucose, oxygen and ethanol at Q-learning with exploration feed flow input	124
Figure B.8	Mass of yeast, glucose, oxygen and ethanol at Q-learning with exploration feed flow input under disturbance	124
Figure B.9	Mass profile of yeast production under different feeding strategies	125
Figure B.10	Mass profile of glucose remained in system under different feeding strategies	125
Figure B.11	Mass profile of ethanol production in system under different feeding strategies	126
Figure B.12	Mass profile of oxygen remained in system under different feeding strategies	126

LIST OF ABBREVIATIONS

AI	Artificial Intelligence
ANN	Artificial Neural Network
CER	Carbon dioxide Evolution Rate
CPR	Carbon dioxide Production Rate
CSTR	Continuous Stirred Tank Reactor
DE	Differential Evolution
EA	Evolutionary Algorithm
EF	Exponential Feeding
FDA	Food and Drug Administration
FL Di	Fuzzy Logic
GA	Genetic Algorithm
GRAS	Generally Recognised As Safe
MDP	Markov Decision Process
MSA CER	Multistep Action VERSITI MALAYSIA SABAH
NBP	National Biotechnology Policy
OUR	Oxygen Uptake Rate
PI	Proportional-Integral
POMDP	Partial Observable Markov Decision Process
QL	Q-learning
QLE	Q-learning with Exploration
RL	Reinforcement Learning

LIST OF SYMBOLS

α	Learning rate
β	Weight of preference index of QL reward function
δ	Stoichiometric coefficient for hydrogen
γ	Discount factor
μ	Total specific growth rate
μ_{max}	Critical specific growth rate
μ_{cr}	Maximum specific growth rate
θ	Stoichiometric coefficient for nitrogen
ζ	Stoichiometric coefficient for oxygen
A	Action space
a'	Maximum rewarded action
	Action at time t
Ce	Ethanol concentration
C _o	Oxygen concentration SITI MALAYSIA SABAH
C_o^*	Oxygen saturation coefficient
C_s	Substrate concentration
C_x	Yeast concentration
DO	Dissolved oxygen
F ₀	Initial substrate feed flow rate
F	Substrate feed flow rate
K _e	Saturation constant for ethanol
K _i	Inhibition constant
$k_L a_o$	Mass transfer coefficient

Ko	Saturation constant for oxygen
K _s	Saturation constant for substrate
Q _c	Carbon dioxide production rate (CPR)
$Q_{e,max}$	Maximum oxidative ethanol metabolism
$Q_{e,ox}$	Respiratory ethanol consumption
$Q_{e,pr}$	Ethanol production rate
$Q_{e,up}$	Ethanol uptake rate
Q_o	Oxygen uptake rate (OUR)
Q_m	Cell maintenance
$Q_{o,lim}$	Oxidation capacity of yeast
$Q_{o,max}$	Maximum oxidation capacity of the yeast
Qs	Substrate uptake rate
Q _{s,lim}	Limiting substrate flux
Q _{s,max}	Maximum substrate consumption rate of yeast
Q _{s,red}	Reductive glucose consumption
$Q_{s,ox}$	Oxidative glucose consumption
R	Reward function
RQ	Respiratory quotient
r _t	Reward generated from reward function at time t
S	State space
s'	Resulting state, s of maximum rewarded action, a'
So	Substrate concentration of the feed flow input
s _t	State at time t
Т	State transition function
t	Time (s)

t_d	Time delay in substrate consumption
U	Input
V	Fermentation system volume
у	Output
$Y_{p/q}$	Yield coefficient of p over q
$Y_{o/s}^{ox}$	Oxidative yield coefficient of oxygen over substrate
$Y_{n/s}^{ox}$	Oxidative yield coefficient of nitrogen over substrate
$Y_{x/s}^{ox}$	Oxidative yield coefficient of biomass over substrate
$Y_{c/s}^{ox}$	Oxidative yield coefficient of carbon dioxide over substrate
$Y_{w/s}^{ox}$	Oxidative yield coefficient of water over substrate
Y ^{red}	Reductive yield coefficient of nitrogen over substrate
Y ^{red}	Reductive yield coefficient of yeast over substrate
Y ^{red}	Reductive yield coefficient of ethanol over substrate
Y ^{red}	Reductive yield coefficient of carbon dioxide over substrate
Y ^{red} w/s	Reductive yield coefficient of water over substrate
Y ^{eth} _{o/s}	Oxidative yield coefficient of oxygen over substrate based on ethanol consumption
$Y_{n/s}^{eth}$	Oxidative yield coefficient of nitrogen over substrate based on ethanol consumption
$Y_{x/s}^{eth}$	Oxidative yield coefficient of biomass over substrate based on ethanol consumption
Y ^{eth} _{c/s}	Oxidative yield coefficient of carbon dioxide over substrate based on ethanol consumption
Y ^{eth} w/s	Oxidative yield coefficient of water over substrate based on ethanol consumption

CHAPTER 1

INTRODUCTION

1.1 The Growing Importance of Fermentation in Bioindustry

In the 21st century, the remarkable growth in industrial biotechnology has represented the breakthrough of the efforts of bridging up the industrial science to the environment, without compromising the depleting natural resources. The development of the industry has been focusing more on the sustainability and value-adding to the production line, at the same time contributing to the competitiveness of existing industries.

The importance of bioindustry is proven in its globally growing development over the past 10 – 15 years and its ability to boost the economy of a country. The trend of increment in investment is bursting from United States to all around the world (Pefile, 2009; Strategic direction literature review, 2005). The chain reaction swifts towards the developing countries including India and China, who leverages the strength of trained manpower, cost-effective technologies, lower operational costs, and the richness in the raw materials. In Malaysia, since the launching of National Biotechnology Policy (NBP) in 2005, Malaysian government had provided a development framework for the implementation of biotechnology up to the highest investment dollars close to USD\$ 300 million (RM 1 billion), as reported in the Malaysian Biotechnology country report 2009/2010.

The involvement of bioprocess, especially fermentation, covers up to a wide range of fields. As quoted in the SusChem agenda (2005), "Fermentation engineering is at the heart of industrial biotechnology." For example, fermentation offers strategies for sustainable management of degraded or contaminated sites and wastewaters. In the energy field, biofuel is the most promising future energy source as a constituent for the depleting fossil fuels. Meanwhile in agriculture, biocrops increase the production of edible food source to all mankind and living creatures while the world population keeps boosting up. In medical and healthcare production, yeast is involved in the production of enzymes, antibiotics and recombinant genes (El-Mansi *et al.*, 2007). Since yeast is the raw material for the fermentation process for many uses, the price of yeast can be skyrocketing, up to USD\$ 2000/mg. Figure 1.1 shows the prices of various fermentation products with increasing process complexity.

Source: Hoek *et al.* (2003)

In this work, the optimisation of the yeast production is of major concern. In industrial bioprocess, fed-batch operation is one of the most common modes of operation used to optimise the input stream in the fermentation process. The operation theories, the merits and the challenges of using fed-batch operation in yeast fermentation will be further discussed in Chapter Two.

Among the most studied yeast strains in microbiology, *Saccharomyces cerevisiae*, also known as the baker's yeast, is used for the studies of optimisation in this work. Research based on the fermentation of baker's yeast is very important

as it serves as a benchmark for the fermentation of other yeast strains of similar metabolic behaviour. This yeast strain has achieved proven safety record in GRAS ('generally recognised as safe') for human consumption approved by US Food and Drug Administration (FDA) (Querol and Fleet, 2006), therefore it is widely utilised for all sorts of bioproductions.

1.2 Problem Statement and Rationale of the Study

Yeast fermentation process is highly nonlinear in nature due to the switching consumption and growth behaviour of yeast that causes difficulties in yeast production optimisation. Furthermore, the increasing yeast production could trigger the production of an unwanted product, i.e. ethanol production, which will toxify the fermentation system and inhibit the production of yeast. Unless the dynamic metabolic behaviour of yeast is well-captured and understood, the optimisation of such process can hardly be achieved. The optimisation strategies developed therefore has to base on multiobjective optimisation: to maximise yeast and minimise ethanol simultaneously when dealing with the metabolic behaviour of yeast.

Most feeding strategies that have been developed for yeast fermentation in the literature are based on: (i) the prior knowledge of the process, which heavily depends on the experience of the human operator to predetermine the feeding strategies, (ii) theoretical or empirical modelling of the process, including the first principle models, which is good for general predictions on the dynamic process response but insufficient for precise control and optimisation, (iii) stochastic searching and converging to optimisation, which requires strong algorithm computation and reasonable settings to seek for optimal but with less primitive knowledge regarding the process, and (iv) supervised learning of dynamic nonlinear process, whereby sufficient data training is essential. The major reason that unsupervised Q-learning (QL) is suggested in this work is to lessen the dependence on human operators for their inconsistent decision making to optimise this dynamic process, besides studying the potential and possibility of applying QL in yeast fermentation process optimisation. QL is able to self-decide for the optimal solution based on the process objectives and its "experience" through interactions with the