
OPTIMISATION AND CONTROL OF 
FED-BATCH YEAST PRODUCTION USING 

Q-LEARNING

HELEN CHUO SIN EE 

SCHOOL OF ENGINEERING AND 
INFORMATION TECHNOLOGY 

UNIVERSITI MALAYSIA SABAH 
2013 



 

 

OPTIMISATION AND CONTROL OF  
FED-BATCH YEAST PRODUCTION USING  

Q-LEARNING 
 
 
 
 

HELEN CHUO SIN EE 
 
 
 
 
 

THESIS SUBMITTED IN FULFILMENT FOR 
THE DEGREE OF MASTER OF ENGINEERING  

 
 
 
 

SCHOOL OF ENGINEERING AND 
INFORMATION TECHNOLOGY 

UNIVERSITI MALAYSIA SABAH  
2013 



PUMS 99:1 

UNIVERSITI MALAYSIA SABAH 

BORANG PENGESAHAN TESIS 

 

JUDUL : ______________________________________________________________________________________ 

_____________________________________________________________________________________________

_____________________________________________________________________________________________ 

 

IJAZAH : _____________________________________________________________________________________ 

_____________________________________________________________________________________________ 

 

SAYA : ______________________________________ SESI PENGAJIAN : __________________________________ 

  (HURUF BESAR) 

 

Mengaku membenarkan tesis *(LPSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia 

Sabah dengan syarat-syarat kegunaan seperti berikut:- 

 

1. Tesis adalah hak milik Universiti Malaysia Sabah. 

2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja. 

3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian 

tinggi. 

4. Sila tandakan (/) 

 

SULIT  (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia 

  seperti yang termaktub di AKTA RAHSIA RASMI 1972) 

 

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di 

  mana penyelidikan dijalankan) 

 

TIDAK TERHAD 

          Disahkan oleh: 

 

 

 _____________________     _________________________ 

 (TANDATANGAN PENULIS)     (TANDATANGAN PUSTAKAWAN) 

Alamat Tetap: ________________ 

____________________________ 

____________________________ 

____________________________     _________________________ 

          (NAMA PENYELIA) 

 TARIKH: ______________     TARIKH: __________________ 

 

 

 

 

 

 

 

Catatan: 

*Potong yang tidak berkenaan. 

*Jika tesis ini SULIT dan TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan 

menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD. 

*Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana Secara Penyelidikan atau disertai 

bagi pengajian secara kerja kursus dan Laporan Projek Sarjana Muda (LPSM). 

 



 

ii 

DECLARATION 
 
 
The materials in this thesis are original except for quotations, excerpts, summaries 
and references which have been duly acknowledged. 

 
 

        
5 October 2012 HELEN CHUO SIN EE 

PK2010-8023 
 

 
 

 
 
 
 
 
 



 

iii 

CERTIFICATION 
 
 
NAME  : HELEN CHUO SIN EE  
 
MATRIC NO. : PK2010-8023 
 
TITLE  : OPTIMISATION AND CONTROL OF FED-BATCH YEAST 

PRODUCTION USING Q-LEARNING  
 
DEGREE : MASTER OF ENGINEERING (CHEMICAL ENGINEERING) 
 
VIVA DATE : 21 JANUARY 2013 
 
 
 
 

DECLARED BY 
 
 
         Signature 
1. SUPERVISOR        

Dr. Tham Heng Jin 
 
             _________________ 
 
 

2. CO-SUPERVISOR       
Mr. Kenneth Teo Tze Kin 
             _________________ 

 
 
 
 

 



 

iv 

  ACKNOWLEDGEMENT 
 
 
I owe my deepest gratitude and appreciation to my supervisors, Dr. Tham Heng Jin 
and Mr. Kenneth Teo Tze Kin, for their close supervision and invaluable advice 
throughout the studies. Without their vital encouragement and persistent help, the 
completion of this work would not be possible. 
 

 It’s also an honor for me to be able to work together with all my fellow 
friends in the Modelling, Simulation and Computing Laboratory (mscLab). The hard 
times and the treasured moment spent together would be my life-long 
unforgettable experience and I am indebted to them for their numerous supports 
and sharing.  

 
I would like to thank the university and the Ministry of Higher Education for 

their financial support on the work and the resource offering. Thank you is 
extended to the officers and lecturers in school and university level who took care 
of these matters and all the necessities of postgraduate students with patience.    

 
Another hearty thank you goes to my parents and my family for their 

precious understanding and full support throughout all these years.   
 
Lastly, I offer my regards and blessings to all of those who supported me in 

any respect during the completion of the work.   
 
 
Helen Chuo Sin Ee 
5 October 2012 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

v 

ABSTRACT 
 
 

OPTIMISATION AND CONTROL OF FED-BATCH YEAST PRODUCTION 
USING Q-LEARNING 

 
 
In this work, the optimal production of yeast with minimal production of ethanol in 
fed-batch yeast fermentation is investigated. Q-learning (QL) is a heuristic 
approach suggested for the process dynamic handling to achieve the multiobjective 
optimisation. The QL agent interacts with the fermentation environment will gain 
experience on the state transitions, which are represented by the change of 
substrate, yeast, oxygen and ethanol concentration and the system volume.  In the 
present study, multistep action (MSA) has been implemented in consideration of 
the inborn process delay for the substrate feeding to take effect on the yeast 
growth. Parameter deviated model has been implemented in the QL to test the 
robustness of the algorithm besides to identify the process disturbance. From the 
result, QL was able to perform multiobjective decision making for the optimal 
substrate feeding profile. The final yeast production using QL-optimised feeding 
profile is 20.86% higher compare to the nominal exponential feeding (EF), and 
19.59% higher compare to EF with process disturbance. To cater for the process 
disturbance, Q-learning with exploration (QLE) has been included in this work for 
online optimisation. QLE signifies the importance of exploration from time to time 
based on the developed “past experience” in Q-table to optimise the process. The 
performance of QLE in both nominal and disturbance cases yielded 51.00% and 
46.87% higher yeast production than EF respectively, while maintaining low 
ethanol production. In a nutshell, QL is an alternative that can be considered to 
perform multiobjective optimisation in a frequently changing bioenvironment and 
suggest a substrate feeding profile that satisfied the process goal. The QLE can 
cope better with the process disturbance. 
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ABSTRAK 
 
 

Kajian ini membincangkan pengoptimuman produksi ragi di samping mengurangkan 
produksi etanol untuk fermentasi ragi semi kelompok. Pembelajaran-Q (QL) 
merupakan satu kaedah heuristik yang digunakan untuk mengatasi masalah 
dinamik sistem fermentasi bagi mencapai optimisasi berbilang objektif 
(multiobjektif) iaitu memaksimumkan produksi ragi dan meminimumkan 
penghasilan etanol yang menjejaskan qualiti  ragi. Ejen pembelajaran berinteraksi 
dengan persekitaran proses fermentasi untuk menimba ilmu dan pengalaman 
mengenai keadaan peralihan sistem yang menggambarkan perubahan dalam 
kepekatan substrat, ragi, oksigen dan etanol, serta pertukuran isipadu sistem. 
Dalam kajian ini, tindakan berbilang langkah (MSA) telah diimplimentasikan 
menimbangkan kelewatan proses semula jadi yang menyebabkan pembekalan 
substrat lambat berkesan terhadap pertumbuhan ragi. Model yang berparameter 
terpesong juga telah diimplimentasikan di dalam QL untuk menguji keberkesanan 
dan kekukuhannya di samping mengidentifikasikan gangguan proses. Daripada 
keputusan kajian, QL berupaya berfungsi dalam penentuan profil pembekalan 
substrat optimum berdasarkan berbilang objektif. Produksi akhir ragi bagi QL dalam 
kes nominal mencapai 20.86% produksi lebih tinggi daripada pembekalan eksponen 
(EF), dan mencapai 19.59% produksi ragi lebih tinggi berbanding dengan EF bagi 
kes semasa gangguan proses berlaku. Demi menyelesaikan masalah gangguan 
proses, QL dengan eksplorasi (QLE) telah dikembangkan untuk pengoptimuman 
secara ‘online’. QLE menunjukkan kepentingan eksplorasi lanjutan dari semasa ke 
semasa berdasarkan “pengalaman” dalam jadual-Q yang bagi mengoptimumkan 
proses fermentasi.  Pencapaian QL dengan eksplorasi menunjukkan 51.00% dan 
46.87% produksi ragi lebih tinggi berbanding dengan pembekalan eksponen dalam 
kes nominal serta kes ganguan proses masing-masing, sementara mengekalkan 
kepekatan etanol yang rendah sepanjang proses fermentasi. Secara keseluruhan, 
QL merupakan satu pilihan yang boleh dipertimbang untuk bertindak terhadap 
biopersekitaran yang kerap berubah dan menentukan pembekalan substrat yang 
memuaskan objektif-objektif proses. QLE juga menunjukkan prestasi yang lebih 
memuaskan walaupun di bawah pengaruh gangguan proses untuk mencapai 
pengoptimuman berbilang objektif. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 The Growing Importance of Fermentation in Bioindustry 

In the 21st century, the remarkable growth in industrial biotechnology has 

represented the breakthrough of the efforts of bridging up the industrial science to 

the environment, without compromising the depleting natural resources. The 

development of the industry has been focusing more on the sustainability and 

value-adding to the production line, at the same time contributing to the 

competitiveness of existing industries. 

 

 The importance of bioindustry is proven in its globally growing development 

over the past 10 – 15 years and its ability to boost the economy of a country. The 

trend of increment in investment is bursting from United States to all around the 

world (Pefile, 2009; Strategic direction literature review, 2005). The chain reaction 

swifts towards the developing countries including India and China, who leverages 

the strength of trained manpower, cost-effective technologies, lower operational 

costs, and the richness in the raw materials.  In Malaysia, since the launching of 

National Biotechnology Policy (NBP) in 2005, Malaysian government had provided a 

development framework for the implementation of biotechnology up to the highest 

investment dollars close to USD$ 300 million (RM 1 billion), as reported in the 

Malaysian Biotechnology country report 2009/2010. 

 

The involvement of bioprocess, especially fermentation, covers up to a wide 

range of fields. As quoted in the SusChem agenda (2005), “Fermentation 

engineering is at the heart of industrial biotechnology.” For example, fermentation 

offers strategies for sustainable management of degraded or contaminated sites 

and wastewaters. In the energy field, biofuel is the most promising future energy 

source as a constituent for the depleting fossil fuels. Meanwhile in agriculture, 

biocrops increase the production of edible food source to all mankind and living 

creatures while the world population keeps boosting up. In medical and healthcare 
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production, yeast is involved in the production of enzymes, antibiotics and 

recombinant genes (El-Mansi et al., 2007). Since yeast is the raw material for the 

fermentation process for many uses, the price of yeast can be skyrocketing, up to 

USD$ 2000/݉݃.  Figure 1.1 shows the prices of various fermentation products with 

increasing process complexity. 

 

 

 

Figure 1.1: Correlation between product concentration and selling price 

for common fermentation products.  

Source:  Hoek et al. (2003) 

 

In this work, the optimisation of the yeast production is of major concern. 

In industrial bioprocess, fed-batch operation is one of the most common modes of 

operation used to optimise the input stream in the fermentation process. The 

operation theories, the merits and the challenges of using fed-batch operation in 

yeast fermentation will be further discussed in Chapter Two.   

 

 Among the most studied yeast strains in microbiology, Saccharomyces 

cerevisiae, also known as the baker’s yeast, is used for the studies of optimisation 

in this work. Research based on the fermentation of baker’s yeast is very important 
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as it serves as a benchmark for the fermentation of other yeast strains of similar 

metabolic behaviour. This yeast strain has achieved proven safety record in GRAS 

(‘generally recognised as safe’) for human consumption approved by US Food and 

Drug Administration (FDA) (Querol and Fleet, 2006), therefore it is widely utilised 

for all sorts of bioproductions. 

  

1.2 Problem Statement and Rationale of the Study 

Yeast fermentation process is highly nonlinear in nature due to the switching 

consumption and growth behaviour of yeast that causes difficulties in yeast 

production optimisation. Furthermore, the increasing yeast production could trigger 

the production of an unwanted product, i.e. ethanol production, which will toxify 

the fermentation system and inhibit the production of yeast. Unless the dynamic 

metabolic behaviour of yeast is well-captured and understood, the optimisation of 

such process can hardly be achieved. The optimisation strategies developed 

therefore has to base on multiobjective optimisation: to maximise yeast and 

minimise ethanol simultaneously when dealing with the metabolic behaviour of 

yeast. 

 

Most feeding strategies that have been developed for yeast fermentation in 

the literature are based on: (i) the prior knowledge of the process, which heavily 

depends on the experience of the human operator to predetermine the feeding 

strategies, (ii) theoretical or empirical modelling of the process, including the first 

principle models, which is good for general predictions on the dynamic process 

response but insufficient for precise control and optimisation, (iii) stochastic 

searching and converging to optimisation, which requires strong algorithm 

computation and reasonable settings to seek for optimal but with less primitive 

knowledge regarding the process, and (iv) supervised learning of dynamic nonlinear 

process, whereby sufficient data training is essential. The major reason that 

unsupervised Q-learning (QL) is suggested in this work is to lessen the dependence 

on human operators for their inconsistent decision making to optimise this dynamic 

process, besides studying the potential and possibility of applying QL in yeast 

fermentation process optimisation. QL is able to self-decide for the optimal solution 

based on the process objectives and its “experience” through interactions with the 


