DETERMINATION OF TREE STEM VOLUME: A CASE STUDY OF *CINNAMOMUM*

SCHOOL OF SCIENCE AND TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2013

DETERMINATION OF TREE STEM VOLUME: A CASE STUDY OF *CINNAMOMUM*

THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF SCIENCE AND TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2013

PUMS 99:1

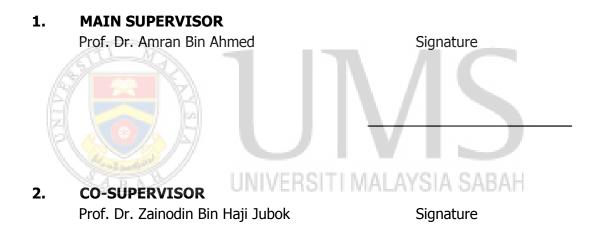
UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN TESIS		
JUDUL :		
IJAZAH :		
SAYA :	SESI PENGAJIAN :	
(HURUF BESAR)		
Mengaku membenarkan tesis *(LPSM/Sarjana/Dokto Sabah dengan syarat-syarat kegunaan seperti berikut:	r Falsafah) ini disimpan di Perpustakaan Universiti Malaysia -	
	ah. narkan membuat salinan untuk tujuan pengajian sahaja. resis ini sebagai bahan pertukaran antara institusi pengajian	
4. Sila tandakan (/)	mat yang berdarjah keselamatan atau kepentingan Malaysia	
Charles and Charles	ub di AKTA RAHSIA RASMI 1972) mat TERHAD yang telah ditentukan oleh organisasi/badan di jalankan)	
TIDAK TERHAD	Disahkan oleh:	
 (TANDATANGAN PENULIS) Alamat Tetap:	(TANDATANGAN PUSTAKAWAN)	
 	(NAMA PENYELIA) TARIKH:	
menyatakan sekali sebab dan tempoh tesis ini perlu	r Falsafah dan Sarjana Secara Penyelidikan atau disertai	

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

15 August 2013


Noraini Binti Abdullah PS20088328

CERTIFICATION

NAME	:	NORAINI BINTI ABDULLAH
MATRIC NO.	:	PS20088328
TITLE	:	DETERMINATION OF TREE STEM VOLUME:
		A CASE STUDY OF CINNAMOMUM
DEGREE	:	DOCTOR OF PHILOSOPHY
VIVA DATE	:	12 [™] June 2012

DECLARED BY:

ACKNOWLEDGEMENT

Thanks to Allah Azzawalla, the Most Beneficent and the Most Merciful for it is due to His continuous guidance and provision of health that I was finally able to complete this thesis successfully.

I would also wish to express my deepest gratitude and appreciation to Professor Dr. Amran Ahmed and Professor Dr. Zainodin H.J. of the School of Science and Technology, Universiti Malaysia Sabah who had been zealously patient in advising, guiding and supervising me throughout the past few years of research and preparation of this thesis. Their continuous encouragement and motivation had provided me the necessary impetus to complete the research and hence publish this thesis.

I would also like to express my sincere thanks to the former dean of the School of Science and Technology and currently, the Vice-Chancellor of UMS, Datuk Prof. Dr Mohd.Harun Abdullah for his continuous support in my research.

I am also grateful to my beloved husband Hj Suhaimi bin Datuk Hj Salleh, and all my loving children, NorBasirah, Dr.Salimah, Naaemah, Md.Shihab Rijalluddin and NurSakinah Najwah for their continuous support, patience and encouragement, morally and financially in completing my dissertation.

This thesis is also dedicated to the soul of my mother Hajah Zubaidah binti Hassan, may her soul rest in peace, insya'allah.

My special sense of gratitude.....SIA SABAH

Noraini Binti Abdullah PS20088328 15 August 2013

ABSTRACT

DETERMINATION OF TREE STEM VOLUME: A CASE STUDY OF *Cinnamomum*

Modelling of trees has attracted scientific research in various fields and disciplines since trees and forests play very important roles in the global system. It helps in the proper decision makings and implementation of policies. Hence, this research is designed such that the idea of determining the best models and solving their parameters that give the best estimates are conceptualized. The significant factors and their relationships are identified through a modelling approach. A modeling approach is developed which focuses on the phases in the model-building procedures, effects of interactions variables on the model, minimizing the effects of multicollinearity on the variables and recommending remedial techniques to overcome them, identification of the significant variables by removing insignificant variables, selecting the best model using the eight selection criteria (8SCs), and finally using the residual analysis to validate the chosen best model. Illustrations and algorithms are incorporated into the procedures. Non-normal and nonlinear data variables are addressed, hence data characterization is presented. A data transformation approach is introduced, based on the different data characteristics using the maximum coefficient of determination (R²) and maximum p-value approaches. Transformations are numerically optimized for linearity and normality of models. The three stem biomass equations adopted are namely, the Newton, Huber and Smalian's formulae, based on the multiple regression (MR) and polynomial regression (PR) techniques. Relevant mathematical models are identified from the 684 models obtained in estimating the volume and the biomass equations used. The best MR model is model M52.5.5 Newton, however, the best PR model (P57.14.6 Newton) is found to give an improved estimation. Comparisons between the MR and PR models of the case studies are analyzed based on the eight selection criteria (8SCs). Factors contributing to the stem volume estimation are identified as tree height (7) and diameter at base (Db) as main contributors, while diameter at the middle (Dm), breast height (Dbh) and top (Dt) are significant contributors. Simulations of the best models are done using the Maple software.

ABSTRAK

Pemodelan tentang pokok telah menarik kajian saintifik dalam berbagai bidang dan disiplin, lebih-lebih lagi pokok dan hutan memainkan peranan penting dalam sistem global. Ia di perlukan dalam pembuat keputusan dan mengimplementasikan polisipolisi yang telah ditetapkan. Justru, kajian ini telah dibentuk agar konsep untuk menentukan model terbaik dan menyelesaikan nilai parameter yang memberi penganggaran terbaik dapat diketengahkan. Faktor-faktor signifikan dan hubungannya dikenalpasti melalui satu pendekatan pemodelan. Pendekatan pemodelan ini memfokuskan kepada fasa-fasa dalam pembentukan model, kesan interaksi pada pembolehubah untuk penganggaran, meminimakan kesan multikollinearan dan mencadangkan teknik untuk mengatasinya, mengenalpastikan pembolehubah yang tidak signifikan dengan proses penyingkiran, pemilihan model terbaik berdasarkan lapan kriteria pemilihan (8SC), dan akhir sekali, menentukan kewajaran pemilihan model dengan analisis reja. Illustrasi dan algoritma yang berkaitan dipersembahkan untuk menunjukkan teknik penyingkiran pembolehubah multikolinearan dan yang tidak signifikan. Ketidak normalan dan kelinearan data telah ditangani dengan pencirian data. Untuk kelinearan dan kenormalan, transformasi_data dilakukan dengan perhatian diberikan kepada sifat kekalutan pembolehubah. Satu pendekatan transformasi dibentuk dengan menggunakan pendekatan kaedah pekali penentuan (R²) dan nilai-p. Kekalutan model dikenali dengan penggunaan transformasi yang sesuai dan dioptimumkan untuk meningkatkan darjah kepersisan model pilihan secara statistik. Tiga persamaan batang pokok telah digunakan iaitu, Newton, Huber dan Smalian. Pemodelan ini dibangunkan bersandarkan kaedah regresi berganda dan polinomial. Model matematik dan persamaan yang digunakan telah dikenalpastikan untuk menganggar isipadu batang pokok daripada 684 model yang terbentuk . Model regresi berganda terbaik adalah M52.5.5 Newton. Satu penganggaran yang lebih baik didapati dengan model P57.14.6. Perbandingan model regresi berganda dengan model polinomial telah dibuat berdasarkan lapan kriteria pemilihan (8SC). Faktor-faktor utama yang mempengaruhi penganggaran isipadu adalah tinggi pokok (T) dan diameter bawah (Db) sementara faktor-faktor signifikan adalah diameter paras dada (Dbh), tengah (Dm) dan atas (Dt). Simulasi model terbaik juga dilakukan dengan menggunakan perisian Maple.

TABLE OF CONTENTS

	Page
TITLE	i
DECLARATION	ii
CERTIFICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xv
LIST OF PHOTOGRAPHS	xvii
LIST OF APPENDICES	xviii
LIST OF ABBREVIATIONS CHAPTER 1 : INTRODUCTION	xix
1.0 Background	1
1.1 Importance of Study: Why Cinnamon Trees? ALAYSIA SABA	2
1.2 Uses and Potentials of Cinnamon	3
1.2.1 Modern Researches on Cinnamon	8
1.2.2 Value-Added Significance	13
1.2.3 Potential Economic Contributions	13
1.3 Issues Contemplated in Research	16
1.4 The Main Objectives Of Research	18
1.5 Overview	19
CHAPTER 2: LITERATURE REVIEW	
2.0 Forests and Their Sustainability	20
2.1 Tree Modelling	21
2.2 Trees Biomass2.2.1 Definition and Typesa. Foliage Biomass	25 26 27

	b.	Crown Biomass	28
	с.	Stem Biomass	29
	2.2.2 Tre	e Stem Biomass Formulae	33
	а.	Huber	33
	b.	Newton	34
	с.	Smalian	34
2.3	Least Squares Regression Models and Applications		34
	2.3.1 Leas	st Squares Regression Models and Applications	34
	а.	Linear Regression	35
	b.	Multiple Regression	36
	с.	Polynomial Regression	44
2.4	Interpolati	on Techniques and Applications	59

CHAPTER 3: RESEARCH METHODOLOGY

3.0	Research Scope and Limitations	52
3.1	Method of Measuring Trees Properties	52
3.2	Stem Biomass Formulae a. Newton's Formula b. Huber's Formula c. Smalian's Formula	56 56 57 57
3.3	Site Description and Sampling Methods	58
3.4	Parameter Estimation in Regression Models: 3.4.1 Ordinary Least Squares (OLS) 3.4.2 Types of Regression Analysis 3.4.3 Assumptions in Regression	61
3.5	 Data Description and Preparation: 3.5.1 Transformation for Randomness and Normality a. Maximum Coefficient of Determination (R²) Approach b. P-Value Approach 	67
3.6	Model Building Techniques	72
	a. Phase 1: All Possible Models	73
	: Global Test b. Phase 2: Selected Models Phase 2.1: Multicollinearity Test Phase 2.2: Coefficient Test	80
	c. Phase 3 : Best Model Selection Criteria : Wald Test	83
	d. Phase 4 : Goodness-of-Fit : Randomness Test : Normality Test	86
3.7	Model Validation	87
3.8	Applying Cubic Interpolating Polynomials	87

CHAPTER 4: DATA DESCRIPTION AND PREPARATION

4.0	Overview	91
4.1	Data Definition and Descriptions	91
4.2	Normality and Linearity	93
4.3	Data Descriptive Statistics	94
4.4	 Data Transformation Characterization 4.4.1 Ladder-Power Transformed Variables a. Maximum R² Approach b. Maximum P-value Approach 4.4.2 Generated Variables 4.4.3 Transformation into Dummy Variables 	107 111 112 120 131 134
4.5	Descriptive Statistics of Newly Transformed Data	135

CHAPTER 5: DATA ANALYSES AND RESULTS

138

5.0	Introduction	138
5.1	Modelling Approach	139
5.2	Stage 3: Model Building 5.2.1 Phase 1: All Possible Models 5.2.2 Phase 2: Selected Models	139 141 149 150
	 a. Multicollinearity Test: Multicollinearity Remedial Techniques b. Global test: Overall Significance Test SIA SABAH c. Coefficient Test: Backward Elimination Method d. Wald Test 	160 161 166
	5.2.3 Phase 3: Best MR Model Selection	167
	5.2.4 Phase 4: MR Model Goodness-of-Fit a. Randomness Test b. Normality Test	169 170 171
5.3	 5.2.5 Phase 2: Selected PR Models 5.2.6 Phase 3: Best PR Model Selection 5.2.7 Phase 4: PR Model Goodness-of-Fit 5.2.8 Best Model Comparisons Stage 4: Model Validation 	174 176 178 140 185
5.4	Stage 5: Model Simulation	187
5.5	Stage 6: Model Optimization	190
	5.5.1 Stem Taper Plots	193
	5.5.2 Improvised Local Volume Table (ILVT)	196

CHAPTER 6: DISCUSSIONS AND CONCLUSIONS

6.0	Introduction	200
6.1	Discussions	201
6.2	Conclusions	209
6.3	Recommendations	212
REFERENCES		214
LIST OF PUBLICATIONS		230
APPENDICES		234

LIST OF TABLES

Table 1.1	Malaysia Country Report on Spice Crops	14
Table 3.1	Total Number of All Possible Models	74
Table 3.2	Total Number of Possible Models of Five Single Independent Variables	75
Table 3.3	All Possible MR Models of Five single independent Variables up to First Order Interactions	76
Table 3.4	All Possible PR Models of Five Single Independent Variables up to First Order Interactions	77
Table 3.5	ANOVA table for Global test (Ramanathan, 2002)	79
Table 3.6	Eight Selection Criteria (8SC) for Best Model Identification	83
Table 3.7	Sum of Squares Table for Wald test	84
Table 3.8	ANOVA Table for the Unrestricted Model	85
Table 3.9	ANOVA Table for the Restricted Model	85
Table 3.10	Improvised Local Volume Table (ILVT) LAYSIA SABAH	90
Table 4.1	Definition for all Main Independent Variables	92
Table 4.2	Component Matrix of Factor Analysis on Variables	93
Table 4.3	Descriptive Statistics of Defined Variables of 85 trees (Case I)	95
Table 4.4	Normality Tests of Main Variables of 85 Trees in Case I	96
Table 4.5	Descriptive Statistics of Defined Variables of 34 trees (Case II)	101
Table 4.6	Normality Tests of Main Variables of 34 Trees in Case II	102
Table 4.7	First Digit Power Transformation for Diameter at top (Dt)	114
Table 4.8	Second Digit Power Transformation for Diameter at top (Dt)	115

Table 4.9	Third Digit Transformation Range for Diameter at top (Dt)	116
Table 4.10	Fourth Digit Power Transformation for Diameter at top (Dt)	117
Table 4.11	Iterations and Power Digits for Transformed Variable Dm	118
Table 4.12	Iterations and Power Digits for Transformed Variable Db	119
Table 4.13	Iterations and Power Digits for Transformed Variable Dbh	120
Table 4.14	Normality tests Using Other Transformations for <i>Dm</i> (Case I)	122
Table 4.15	Power Transformations for λ = 3.5- 4.5	123
Table 4.16	Kolmogorov-Smirnov Statistics of Variable $Dm^{4.0} - Dm^{4.2}$	124
Table 4.17	Power Transformations for λ = 4.15- 4.25	124
Table 4.18	Kolmogorov-Smirnov Statistics of Variable $Dm^{4.20} - Dm^{4.25}$	125
Table 4.19	Power Transformations for λ = 4.245- 4.255	126
Table 4.2 <mark>0</mark>	Kolmogorov-Smirnov Statistics of Variable <i>Dm</i> ^{4.250} – <i>Dm</i> ^{4.255}	127
Table 4.21	Normalities of Ladder Transformations on <i>Dt, Db</i> and <i>Dbh</i> in Case I	128
Table 4.22	Normality Using Ladder transformation methods for VN, VH, VS, T and Dm in Case II	130
Table 4.23	P-values of Normality Tests for Generated Variables in Case I	132
Table 4.24	P-values of Normality Tests for Generated Variables in Case II	133
Table 4.25	Descriptive Statistics for H as Dummy in Case I and Case II	134
Table 4.26	Summary of Power Transformation Using Maximum \mbox{R}^2 Approach of Case I	135
Table 4.27	Summary of Power Transformation Using Maximum R^2 Approach of Case II	135
Table 4.28	Summary Before and After Transformations Using P-value Approach (Case I)	136
Table 4.29	Summary Before and After Transformations Using P-value Approach (Case II)	137

Table 5.1	Number of Possible Models with Five Single Independent Variables	140
Table 5.2	All Possible MR Models of Five single independent Variables up to First Order Interactions	141
Table 5.3	Possible PR Models of Five single independent Variables up to First Order Interactions	145
Table 5.4	Summary of the Multicollinearity Remedial Procedures	152
Table 5.5	Pearson Correlation Coefficient Matrix of Model M52 (Excel)	154
Table 5.6	Pearson Correlation Coefficient Matrix of Model M52.1	155
Table 5.7	Pearson Correlation Coefficient Matrix of Model M52.2	156
Table 5.8	Pearson Correlation Coefficient Matrix of Model M52.3	157
Table 5.9	Pearson Correlation Coefficient Matrix of Model M52.4	158
Table 5.10	Pearson Correlation Coefficient Matrix of Model M52.5	159
Table 5.11	ANOVA table of Global test for M52.5 Newton	160
Table 5.12	Iterations of Coefficient Test for model M52.5 Newton	161
Table 5.13	Final Table for model M52.5.5	163
Table 5.14	Summary of Selected Newton MR models (Case I)	164
Table 5.15	Reduced Selected Newton MR models (Case I)	165
Table 5.16	ANOVA Table for Unrestricted Model M52.5.0 Newton	166
Table 5.17	ANOVA Table for Restricted Model M52.5.5 Newton	167
Table 5.18	ANOVA Table of Wald test for Model M52.5.5 Newton	167
Table 5.19	Comparisons of Newton MR Models Based on 8 SC's (Case I)	168
Table 5.20	Final Correlation Coefficient Matrix of Best Model M52.5.5	169
Table 5.21	Normality Test on Standardised Residuals M52.5.5	171

Table 5.22	Summary of Selected Newton MR models (Case II)	172
Table 5.23	Comparisons of Newton MR Models Based on 8 SCs (Case II)	173
Table 5.24	Comparisons of Best MR Models (Case I)	174
Table 5.25	Comparisons of Best MR Models (Case II)	175
Table 5.26	Pearson Correlation Coefficient Matrix of Model P32	175
Table 5.27	Correlation Coefficient Matrix of Model P32.4.0	176
Table 5.28	Elimination of Insignificant Variables	177
Table 5.29	Final Correlation Coefficient Matrix of Model P32.4.3	178
Table 5.30	Summary of Selected Newton PR models (Case II)	179
Table 5.31	Comparisons of the Newton PR Models (Case II)	180
Table 5.32	Normality Test on Standardised Residuals P57.14.6	181
Table 5.3 <mark>3</mark>	Comparisons of Best PR Models (Case I)	182
Table 5.34	Comparisons of Best PR Models (Case II)	182
Table 5.35	Comparisons Between Best MR and PR Models (Case I)	183
Table 5.36	Comparisons Between Best MR and PR Models (Case II)	184
Table 5.37	Factors Contributing to Best Models of Case I and Case II	185
Table 5.38	MAPE for Best MR Model M52.5.5 Newton (Case I)	186
Table 5.39	MAPE for Best PR Model P57.14.6 Newton (Case II)	186
Table 5.40	Stem Taper Polynomial Equations (Case I)	195
Table 5.41	Stem Taper Polynomial Equations (Case II)	195
Table 5.42	Improvised Volume Table (ILVT) for <i>C.iners</i> in Kota Kinabalu	197

LIST OF FIGURES

		Page
Figure 1.1	Listing of Interesting Plants of the World	9
Figure 1.2	Chart on the Researches Using Cinnamomum species	10
Figure 1.3	World Market Trends for Cinnamon Oils	15
Figure 2.1	Flowchart of Contributions in Tree Modelling	21
Figure 2.2	Flowchart of the Contributions in Modelling Tree Stem Biomass	26
Figure 2.3	Chart on the Applications Using Linear Regression Models	35
Figure 2.4	Chart on the Modelling Applications Using Multiple Regression Technique	37
Figure 2.5	Chart on the Modelling Applications Using Polynomial Regression Technique	46
Figure 3.1	Schematic Diagram for Measuring Tree Stem Biomass	53
Figure 3.2	Merchantable Tree Log	55
Figure 3.3	Five Google Earth Maps on Plot locations and pictures of trees	59-61
Figure 3.4	Types of Regression Analysis	63
Figure 3.5	The Four Phases in Model-Building Development	73
Figure 4.1	Normality plots of <i>Dt</i> of 85 trees in Case I showing their non-normalities	97
Figure 4.2	Normality plots of <i>Dm</i> of 85 trees in Case I	98
Figure 4.3	Normality plots of <i>Db</i> of 85 trees in Case I	99
Figure 4.4	Normality plots of <i>Dbh</i> of 85 trees in Case I	100
Figure 4.5	Normality plots of VN of 34 trees in Case II	103
Figure 4.6	Normality plots of VH of 34 trees in Case II	104

Figure 4.7	Normality plots of VS of 34 trees in Case II	105
Figure 4.8	Normality plots of T of 34 trees in Case II	106
Figure 4.9	Normality plots of <i>Dm</i> of 34 trees in Case II	107
Figure 4.10	Flow Chart on the Procedures of Data Transformations	108
Figure 4.11	Scatter Plots of VN with Dt, Dm, Db and Dbh	109
Figure 4.12	Scatter Plots of VH with Dt, Dm, Db and Dbh	110
Figure 4.13	Scatter Plots of VS with Dt, Dm, Db and Dbh	110
Figure 4.14	Flow Chart on the Power Transformation Procedures	112
Figure 5.1	Modelling Flowchart	139
Figure 5.2	Model Labelling	149
Figure 5.3	Standardized Residuals Scatter Plot Model M52.5.5	170
Figure 5. <mark>4 🔗</mark>	Standardized Residuals Normality Plot Model M52.5.5	171
Figure 5.5	Scatterplot for Standardized Residuals Model P57.14.6	179
Figure 5.6	Standardized Residuals Normality Plot P57.14.6	180
Figure 5.7	Simulation Plots of Best Model on Parameters of (V, T, Db)	188
Figure 5.8	Plots of T vs Db and Db vs V Curves	189
Figure 5.9	Surface Plot Showing Volume Optimization	190
Figure 5.10	Surface Plot Showing Maximum Volume Optimization	191
Figure 5.11	Contour Plot Showing Maximum Volume Optimization	192
Figure 5.12	Volume and Surface Optimization for Model P52.5.5	193
Figure 5.13	General Shape of Stem Taper Plot	194
Figure 6.1	Complete Modelling Flowchart	205

LIST OF PHOTOGRAPHS

Page

Photo 1	A Cinnamomum iners tree grown alongside Jalan UMS	53
Photo 2	Measuring the tree circumference using a girth tape	54
Photo 3	Trees along Jalan UMS	59
Photo 4	Trees in front of UMS-CIMB	60
Photo 5	Trees towards UMS Chancellery	60
Photo 6	Trees along Jalan Indah Permai	60
Photo 7	Trees near Padang Merdeka	71
Photo 8	Taking Measurements of the Diameters Using the Girthtape	235
Photo 9	Girthtape Used During Data Collection	235

LIST OF APPENDICES

Appendix A	Tree Measurement	234
Appendix B	Derivation of Stem Volume Formulae	236
Appendix C	All Possible Multiple Regression (MR) Models (5 Independent Variables)	240
Appendix D	All Possible Polynomial Regression (PR) Models (5 Single Independent Variables)	245
Appendix E	Pearson Correlation Coefficient Matrix of Model M52 (SPSS)	252
Appendix F	Series of Stem Taper Plots	253

LIST OF ABBREVIATIONS

Ab	Area at the base
Am	Area at the middle
ASEAN	Association of South-East Asian Nations
At	Area at the top
ВН	Breast Height
Db	Diameter at the base
Dbh	Diameter at breast height
Dm	Diameter at the middle
Dt	Diameter at the top
MR	Multiple Regression
PR	Polynomial Regression
RWEDP	Regional Wood Energy Development Programme
8SC	8 Selection Criteria

CHAPTER 1

INTRODUCTION

1.0 Background

Tree stem biomasses have stimulated economic and scientific interests, especially, where trees with medicinal values, industrial and economic benefits are concerned. Tree wood and biomass attributes from chemical and physical structures have made them valuable for a given end use. An example would be deciding the time for tree cropping and harvesting that would have benefitted many sectors, especially in forestry and agriculture. Innovative forest management practices can capture commercial opportunities and deliver environmental outcomes in waste water re-use, biofuels, carbon sequestration, fodder crops and timber (Gillison *et al.*, 2004).

The forest inventory and timber volume estimation are needed for forest management by all forest inventories and timber companies. The measurement of sample trees is a costly process, and at times impossible for logs in standing trees. Any difference in volume estimation will affect accuracy. Since majority of the saw log sales are still on a volume basis, hence, any changes in the estimation will indirectly produce huge changes in profits or revenues. Hence, it is necessary to obtain a good estimation tool which can give accurate qualitative and quantitative evaluation and yet reduce costs.

Since the advent of the new millennium, there is an increasing need to find alternatives to fossil fuel and consequently, biomass and bioenergy have started to give significant contributions to global fuel production and consumption. Biomass can be derived from the carbonaceous wastes of various human and natural activities, including such from the forestry plantations and wastes from the timber industry, agricultural residues, raw materials from the forest, major parts of household waste for example, sewage and municipal solid waste (MSW), agroindustrial wastes such as rice husks and palm oil residues, and wood from natural forests and woodlands (Salman Zafar, 2009). In developing countries, biomass energy usually originates from fuel wood, animal wastes, and agricultural residues, and is primarily utilized for activities which are essential for survival. In Malaysia, the types of biomass potential for use in generating biomass energy have been identified to have come primarily from agricultural activities (Nerenberg, 2011; Koh and Hoi, 2003). Hence there is a need of the correct parameter chosen for biomass estimation and prediction.

In other words, the growth of trees would contribute significantly, directly or indirectly in various fields of multiple-objectives, besides balancing water, air as well as wind of the Earth's ecosystem. Hence, this has incurred interest in looking at the optimised production of tree stem biomasses of multi-purposes and utilities. Thus, tree species which have multiple usages will be of the primal choice, as such, contributions of modelling the tree stem biomass in the various disciplines can be realised. In this research, an indigenous tree species, *Cinnamonum iners* is chosen whereby the volumes of the tree stem biomasses are modelled, and can be shown to contribute in the various fields stipulated in the following sections.

1.1 Importance of Study: Why Cinnamon trees?

The choice of tree in this particular study would make a difference in terms of its significance and potential contributions to the country's economic revenue besides the identification of new value-added innovative products into the world market for export. Besides that, new mathematical concepts can be derived while undergoing these modelling processes.

Hence, in this chapter, the uses and potentials of Cinnamon is preliminary introduced, followed by some examples in modern researches using the Cinnamon species that can still be explored, and finally its value-added significance and economic contributions towards the world economic model.

1.2 Uses and Economic Potentials of Cinnamon

In Malaysia, *Cinnamomum iners,* or in short, *C. iners,* is one of the cinnamon tree species grown. It is not just being environmentally friendly, but also being used in

landscaping with an aesthetic quality as well as planted in recreational parks and as shade trees to parking cars (Bruner *et al.*, 2001; Nowak *et al.*, 2006). Besides that, it also can be manufactured into products that have commercial benefits. For example, the bark can be used as a medicine, which is sometimes traded, and is called *mesni* in Sarawak (Lemmens *et al.*, 1995). The wood is used as *medang*, as in for example, house building and cabinet work. Besides that, the oils from the leaves are used for flavouring sweets and confectionery. The bark is sometimes used together with the leaves in brewing tea, and also as a substitute for cinnamon. Furthermore, the mucilage has found technical applications, for example, in the manufacture of mosquito coils, fragrant joss-sticks, plastic products, formica, glue, inner layering of tyres, coating of high-quality paper products, paints and fibre glass (Babu *et al.*, 2004).

Even though cinnamon oil is of very high value, yet, there is no international standard for it. The increased price would depend on the higher *cinnamaldehyde* content which possesses antimicrobial, antibacterial, antioxidant and antifungal properties. It inhibits aflatoxin production, that is, by causing complete inhibition of *Candida albicans, A.fumigatus, A.niger, Penicillium frequentans, P.decumbens* and *Cladosporium bantiannum* at 0.33mm concentration (Babu *et al.*, 2004). However, cinnamon oil has to be used with caution during pregnancy because it has been reported to have caused miscarriages, since it is an irritant and narcotic poison in large doses.

Cinnamon had also been widely used in culinary and as food additives (Samy, 2005). There are many species of cinnamon that produce oils through the process of distillation. Researches had shown that the various types of cinnamon can be used for different purposes, such as, antimicrobial, antifungal and anti-pest. An example would be *Cinnamomum iners*, being used in traditional therapy for illnesses such as to relieve fever (Lin *et al.*, 2007), and are found to have antifungal and amylase inhibitor properties.

In terms of medicinal properties, *C. iners*' bark, also called *cassia*, is found to help in relieving those who have Type 2 diabetes melitus. The effects of brewing