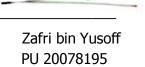
THE DEGREE OF OBESITY THAT CONTRIBUTE TO THE FAILURE EPIDURAL ANAESTHESIA FOR PARTURIENT MOTHERS UNDERGOING LOWER SEGMENT CAESARIAN SECTION

SCHOOL OF MEDICINE UNIVERSITI MALAYSIA SABAH 2013

THE DEGREE OF OBESITY THAT CONTRIBUTE TO THE FAILURE EPIDURAL ANAESTHESIA IN PARTURIENT MOTHERS UNDERGOING LOWER SEGMENT CAESARIAN SECTION

SCHOOL OF MEDICINE UNIVERSITI MALAYSIA SABAH 2013

UNIVERSITI MALAYSIA SABAH


BORANG	PENGESAHAN TESIS
JUDUL :	
ША Z АН :	
SAYA:	SESI PENGAJIAN :
(HURUF BESAR)	
Mengaku membenarkan tesis *(LPSM/Sarjana/Dokt Sabah dengan syarat-syarat kegunaan seperti beriku	tor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia ıt:-
 Perpustakaan dibenarkan membuat salinan tinggi. Sila tandakan (/) SULIT (Mengandungi makl seperti yang termak 	enarkan membuat salinan untuk tujuan pengajian sahaja. I tesis ini sebagai bahan pertukaran antara institusi pengajian lumat yang berdarjah keselamatan atau kepentingan Malaysia ktub di AKTA RAHSIA RASMI 1972) lumat TERHAD yang telah ditentukan oleh organisasi/badan di
TIDAK TERHAD	Disahkan oleh:
(TANDATANGAN PENULIS) Alamat Tetap:	(TANDATANGAN PUSTAKAWAN)
	(NAMA PENYELIA) TARIKH:
menyatakan sekali sebab dan tempoh tesis ini pe	urat daripada pihak berkuasa/organisasi berkenaan dengan Irlu dikelaskan sebagai SULIT dan TERHAD. tor Falsafah dan Sarjana Secara Penyelidikan atau disertai

bagi pengajian secara kerja kursus dan Laporan Projek Sarjana Muda (LPSM).

DECLARATION

I hereby declare that the material in this dissertation is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

9 October 2013

CERTIFICATION

NAME : ZAFRI BIN YUSOFF

MATRIC NO : **PU 20078195**

TITLE : THE DEGREE OF OBESITY THAT CONTRIBUTE TO

THE FAILURE EPIDURAL ANAESTHESIA IN

PARTURIENT MOTHERS UNDERGOING LOWER

SEGMENT CAESARIAN SECTION

DEGREE : MASTERS OF SCIENCE (MEDICAL SCIENCE)

DECLARED BY;

1. SUPERVISOR

Assoc. Prof. Datu Dr. Kamaruddin Bin Mudin

Signature

UNIVERSITI MALAYSIA SABAH

ACKNOWLEDGEMENT

Special thanks to Associate Professor Datu Dr. Kamaruddin bin Mudin who was very helpful and kind in supervising this thesis writing. Special thanks also extended to Dean of School of Medicine who was giving advice on research proposal and agreement to carry out this research project.

Beside that not being forgotten to anaesthetists at Hospital Tuanku Bainun Ipoh Perak Darul Ridzuan and staffs involved in collecting data and observing epidural procedure for data collection.

To my beloved wife Sister Rubiah Bte Hj Ahmad who always understands time constraints and sharing burden while collecting data for the period of one year. Also special thanks to all my children Muhd Azzuhry, Nik Anis Adlin, Muhd Hafiz Azzraai, Muhd Aizat and Nurul Farhah whereby at certain extend sharing some difficulties in completing this thesis writing.

Finally, my special sense of gratitude also extended to the staffs of Post Graduate Centre University Malaysia Sabah who assisting in registration and kind help in providing valuable information from time to time.

Zafri Yusoff

UNIVERSITI MALAYSIA SABAH

ABSTRACT

THE DEGREE OF OBESITY THAT CONTRIBUTE TO THE FAILURE EPIDURAL ANAESTHESIA IN PARTURIENT MOTHERS UNDERGOING LOWER SEGMENT CAESARIAN SECTION

The degree of obesity that contributing to failure epidural anaesthesia was the main focused in this study. The target samples were parturient mothers undergoing lower segment caesarian section either for an emergency or elective. Parturient mothers chosen as samples were analysed for anthropometry. Sampling of the study was done through universal convenience method whereby parturient mother planed for epidural anaesthesia or epidural anaesthesia converted to general anaesthesia included into this study. Samples were categorized into two groups non obese and obese. Samples strength were based on the Survey System with confidence level at 95.0% and confidence interval at 5.0%. The researcher observed the epidural anaesthesia procedure carried out by anaesthetist for the purpose of obtaining data in operating theatre. Research forms used in this data collection were divided into five sections. The first section (section A) was about the demographic background of parturient mothers. The second section (Section B) focused on the procedure and technique while the third section (Section C) involved with drugs used for epidural anaesthesia procedure. The fourth section (Section D) was pertaining to problems during attempt in epidural anesthesia procedure. The last section (Section E) was on sensory blocked level measured using pin-prick test and motor block evaluation based on Bromage Scale. Samples of parturient mothers planned for Lower Segment Caesarian Section either successful or failed epidural anaesthesia included in this study were considered as inclusion criteria. Samples of parturient mothers planned for Lower Segment Caesarian Section but ended with vaginal delivery were considered as exclusion criteria. Hypothesis of the study, there was a significant different in the occurrence of failure epidural anaesthesia between the degree of body mass index BMI group for parturient mothers undergoing lower segment caesarian section LSCS.

Based on descriptive analysis, Generally, respondents profiles related to demographic and ethnographic were considered not factors for the failure of epidural anaesthesia except age became the positive association based on Chi Square P = 0.02. The Visual Analogue Pain Score VAPS 1 (84.8% within non obese group). The percentage of pain rating scale VAPS 1 slightly higher in obese group (85.0% within obese group). With this aspect, some differences in pain rating scale VAPS 1 when P < 0.05 (P = 0.00) from Pearson Chi Square. The incident of general anesthesia conversion was much higher when parturient mothers experienced 0.0 - 33.0% the degree of block (Bromage Scale) for both right and left lower limbs. It was also been observed that between 66.0 % - 100 % degree of block (Bromage Scale) still got chance to be converted into general anesthesia.

Epidural anesthesia was used successfully for LSCS surgery in all 33 cases of non obese parturient mothers and 114 of 120 obese parturient mothers. Mean Bromage score based on four criteria degree of right lower limb for obese group (1.94 ± 0.124) much higher than non obese group (1.85 \pm 0.222). Similarly mean Bromage score based on four criteria degree of left limb for obese group (2.00 \pm 0.124) much higher than non obese group (1.85 ± 0.222) . Overall, there was no significant different in term of anaesthesia failure rate among the category of BMI as well as between non obese and obese parturient mothers undergoing the Lower Segment Caesarian Section LSCS surgery as tested with Chi Square two tailed with P = 0.38 (P > 0.05). Hence, epidural anaesthesia is still good perspective for obese parturient mothers even though pre obese category of Body Mass Index proven of epidural anaesthesia failure. The overall failure rate of epidural anaesthesia in this research was 3.9% and in looking to this, epidural anaesthesia became a good prospective to be practiced for non obese and obese parturient mothers undergoing LSCS.

ABSTRAK

Tahap obesiti yang menyumbang kepada kegagalan epidural anestesia adalah fokus utama dalam kajian ini. Sampel sasaran adalah ibu yg melahirkan menjalanii Lower Segmen Caesarian Section LSCS sama ada untuk kecemasan atau elektif. Ibu-ibu ya melahirkan dipilih sebagai sampel telah dianalisis untuk antropometri. Sampel kajian yang telah dilakukan melalui kaedah persampelan universal mana ibu ya melahirkan dirancang untuk epidural atau bius epidural anestesia ditukar kepada bius dimasukkan ke dalam kajian ini. Sampel telah dikategorikan kepada dua kumpulan bukan gemuk dan obes. Kekuatan sampel berdasarkan Sistem Survey dengan tahap keyakinan pada 95.0% dan selang keyakinan pada 5.0%. Penyelidik memerhatikan prosedur anestesia epidural dijalankan oleh pakar bius untuk tujuan mendapatkan data dalam dewan pembedahan. Bentuk format instrumen yang digunakan dalam pengumpulan data ini telah dibahagikan kepada lima bahagian. Bahagian pertama (bahagian A) adalah latar belakang demografi ibu-ibu yg melahirkan. Bahagian kedua (Seksyen B) memberi tumpuan kepada prosedur dan teknik manakala bahagian ketiga (Bahagian C) yang terlibat dengan ubatan yang digunakan untuk prosedur epidural anestesia. Bahagian keempat (Bahagian D) telah yang berkaitan dengan masalah semasa percubaan dalam prosedur bius epidural. Bahagian terakhir (Bahagian E) adalah pada tahap halanagn deria diukur menggunakan ujian pin-cucuk dan penilaian blok motor berdasarkan Skala Bromage. Sampel ibu-ibu yang melahirkan dirancang untuk LSCS sama ada berjaya atau gagal epidural bius dimasukkan ke dalam kajian ini dianggap sebagai kriteria kemasukan. Sampel ibu-ibu yang melahirkan dirancang untuk LSCS tetapi berakhir dengan kelahiran menerusi farahj (vaginal delivery) dianggap sebagai dikecualikan dari kriteria. Hipotesis kajian, bahawa terdapat perbezaan yang ketara dalam kinsiden kegagalan anestesia epidural antara tahap kumpulan indeks jisim badan BMI bagi ibu-ibu ya melahirkan menjalani LSCS.. Berdasarkan analisis deskriptif, Secara umumnya, responden profil yang berkaitan dengan demografi dan etnografi dianggap bukan faktor untuk kegagalan epidural anestesia kecuali umur menjadi persatuan yang positif berdasarkan Chi Square P = 0.02. Analog Skor Visual Sakit VAPS 1 (84.8% dalam kumpulan bukan gemuk). Peratusan sakit skala penarafan VAPS 1 lebih tinggi sedikit dalam kumpulan obes (85.0% dalam kumpulan obes). Dengan aspek ini, beberapa perbezaan dalam kesakitan skala penarafan VAPS apabila P < 0.05 (P = 0.00) dari Pearson Chi Square. Insiden penukaran anestesia am adalah lebih tinggi apabila ibu-ibu yg melahirkan mengalami tahap blok 0,0-33,0% (Skala Bromage) untuk kedua-dua kiri dan kanan anggota badan yang lebih rendah. Ia juga diperhatikan bahawa di antara 66.0% -100% tahap blok (Bromage Skala) masih mendapat peluang untuk ditukar kepada anestesia am. Bius epidural telah digunakan dengan jayanya untuk pembedahan LSCS dalam semua 33 kes bukan ibu ya melahirkan gemuk dan 114 daripada 120 gemuk ibu yg melahirkan. Skor min Bromage berdasarkan empat kriteria tahap anggota badan hak yang lebih rendah bagi kumpulan gemuk (1.94 \pm 0.124) lebih

tinggi daripada kumpulan bukan gemuk ($1.85 \pm 0,222$). Begitu juga skor skala Bromage berdasarkan empat kriteria tahap anggota kiri untuk kumpulan obes (2.00 ± 0.124) lebih tinggi daripada kumpulan bukan obes ($1.85 \pm 0,222$). Secara keseluruhannya, tidak ada perbezaan yang signifikan dari segi kadar kegagalan anestesia di kalangan kategori BMI serta antara obes dan bukan obes pada ibu ibu yg melahirkan menjalani pembedahan LSCS sebagaimana yang diuji dengan Chi Square dua ekor dengan P = 0.38 (P> 0.05). Oleh itu, epidural bius mempunyai perspektif baik untuk ibu-ibu yang melahirkan anak walaupun kategori pra obese Indeks Jisim Badan terbukti daripada epidural kegagalan anestesia. Kadar kegagalan keseluruhan epidural anestesia dalam penyelidikan ini adalah 3.9% dan dalam penyelidikani ini, serta epidural anestesia menjadi prospektif yang baik untuk diamalkan untuk ibu-ibu bukan obese serta obes yang menjalani kelahiran menerusi LSCS.

TABLE OF CONTENTS

			Page
TITL	.E		ii
DEC	LARATI	ON	iii
CER	TIFICA	TION	iv
ACK	NOWLE	DGEMENT	٧
ABS	TRACT		vi
ABS	TRAK		vii
LIST	OF CO	NTENTS	ix
LIST	OF TA	BLES	xii
LIST	OF GR	APHS	XV
LIST	OF AB	BREVIATIONS	xviii
LIST	OF AP	PENDIX	xix
СНА	PTER 1	: INTRODUCTION	1
1.1	Introd	uction	1
1.2	Proble	m statements	3
1.3	Re <mark>sea</mark>	rch objective	7
1	1.3.1	General Objectives	7
	1.3.2	Specific Objectives	7
СНА	PTER 2	: LITERATURE REVIEW / RESEARCH BACKGROUND	9
CHA	PTER 3	: RESEARCH DESIGN AND METHODOLOGY	15
3.1	Resea	rch Design	15
3.2	Sampl	ing and Methods	15
3.3	Tool L	Ised for Collecting Data	18
	3.3.1	Section A	18
	3.3.2	Section B	19
	3.3.3	Section C	20
	3.3.4	Section D	20
	3.3.5	Section E	21
3.4	Pilot S	tudy	23
CHA	PTER 4	: RESEARCH FINDINGS	25
4.1	Age Fa	actor	25

4.2	Ethnic Factor	25
4.3	Gravida factor	26
4.4	Parity Factor	27
4.5	Blood Pressure Factor	28
4.6	Initial Base Pulse	29
4.7	Respiration Rate Factor	30
4.8	Body Mass Index	30
4.9	Previous History Mode Delivery	32
4.10	Type of LSCS for Parturient Mothers	33
4.11	Living Area	34
4.12	Indication of Labour Factor	34
4.13	Duration of Labour	35
4.14	Level of Education	36
4.15	Profession of Parturient Mothers	37
4.16	ASA Category	37
4.17	Choice of Epidural for LSCS	38
4.18	Category of Anaesthetist Professional	39
4.19	Years of Service of Anaesthetist Who Conducted Epidural	39
E	Anaesthesia for LSCS	
4.20	Position of Epidural Anaesthesia Procedure	40
4.21	Lumbar Space Attempted for LSCS	41
4.22	Touhy Needle Size Factor Used for LSCS Procedure	41
4.23	Lost Resistance Testing for LSCS Procedure	42
4.24	Skin Epidural Space Distance	43
4.25	Incident of Scoliosis, Kyphosis and Kyphoscoliosis	44
4.26	Pharmacologic Factor	45
4.27	Incident of Bony Obstruction	47
4.28	Blood Tapping Factor	47
4.29	The Incident of Difficulty in Treading Tuohy Needle	48
4.30	Frequency Space Attempted During epidural Procedure	49
4.31	Dermatome Level of Anaesthesia Achieved	50
4.32	Visual Analogue Pain Score Observed During LSCS	51

GLOS	GLOSSARY		
REFERENCE			
5.3	Recommendation	95	
5.2	Conclusion	90	
5.1	Introduction	56	
CHAPTER 5: DISCUSSION			
4.35	General Anaesthesia Conversion	54	
	LSCS		
4.34	Bromage Scale Score at left Lower Limb During Epidural	53	
4.33	Bromage Scale Score at Right	52	
	Procedure		

LIST OF TABLES

			Page
Table	3.0	WHO (1993) Classification of Obesity	19
Table	3.1	Modified Bromage Score	23
Table	4.1	Age factor	25
Table	4.2	Blood Pressure Factor	29
Table	4.3	Respiration Rate Factor	30
Table	4.4	ANOVA Table for Classification of The Body Mass Index BMI	31
		among Ethnics	
Table	4.5	Body Mass Index BMI Classification	32
Table	4.6	Type of LSCS for Parturient Mothers Factor	33
Table	4.7	Obesity Group * Living Area Cross Tabulation	34
Table	4.8	Duration of Labour Factor	35
Table	4.9a	Level of Education Factor (Obesity Group * Highest	36
	ÆI.	Education Level Cross tabulation)	
Table	4.9b	Choice of Epidural Factor	38
Table	4.10	Category of Anaesthetist Professional	39
Table	4.11	Years of Service of Anaesthetists Who Conducted Epidural	40
L	187	Anaesthesia For LSCS:	
Table	4.12	Mean Years of Service of Anaesthetists Who Conducted	40
		Epidural Anaesthesia For LSCS	
Table	4.13	Position of Epidural Anaesthesia Procedure Chosen By	40
		Difference Of Professional Category Of Anaesthetist	
Table	4.14	Lumbar Space Attempted For LSCS	41
Table	4.15	Mean Skin Epidural Space Distance	43
Table	4.16	Skin Epidural Space Distance In Centimeter	43
Table	4.17	Incident of Scoliosis	44
Table	4.18	Incident of Kyphosis	44
Table	4.19	Incident of kyphoscoliosis	45
Table	4.20	The Cross Tabulation Of Pharmacologic Factor For	45
		Lignocaine Epidural Anaesthesia Converted To General	
		Anaesthesia	

Table '	4.21	The Cross Tabulation Of Pharmacologic Factor For	46
		Bupivacaine Epidural Anaesthesia Converted To General	
		Anaesthesia	
Table 4	4.22	The Cross Tabulation Of Pharmacologic Factor For	46
		Ropivacaine Epidural Anaesthesia Converted To General	
		Anaesthesia	
Table 4	4.23	The Cross Tabulation Of Pharmacologic Factor For Fentanyl	46
		As Supplementary Analgesia For Epidural Anaesthesia	
		Converted To General Anaesthesia	
Table 4	4.24	The Cross Tabulation Of Pharmacologic Factor For Pethidine	47
		As Supplementary Analgesia For Epidural Anaesthesia	
		Converted To General Anaesthesia	
Table 4	4.25	The Incident Of Bony Obstruction During Epidural Procedure	47
Table 4	4.26	The Incident Of Blood Tapping During Epidural Procedure	48
Table 4	4.27	The Incident Of Difficulty in Threading Tuohy Needle	49
Table	4.28	Visual Analogue Pain Score Cross Tabulation For Category	52
		of BMI For Epidural Anaesthesia	
Table 4	4.29	Bromage Scale Score At Right Lower Limb During Epidural	53
El		LSCS	
Table	4.30	Bromage Scale Score At Left Lower Limb During Epidural	54
		LSCS	
Table 4	4.31	Epidural Anaesthesia Converted To General Anesthesia	55
		(Obesity Group * GA Conversion Crosstabulation)	
Table !	5.1:	ANOVA correlation Statistic Of Systolic And Diastolic Blood	60
		Pressure	
Table !	5.2	ANOVA The Correlation of Category BMI versus Systolic and	62
		Diastolic Blood Pressure	
Table !	5.3	The Correlation of Category BMI versus Systolic and	65
		Diastolic Blood Pressure	
Table !	5.4	Comparative Analysis Of Handling Category Of BMI For	71
		LSCS BY Professional Category of Anaesthetist	
Table !	5.5	Chi Square Test GA Conversion And Dependent Variable:	75

		Tuohy Needle Number	
Table	5.6	Mean Catheter Needle Inserted	77
Table	5.7	T-Test Statistics For Skin Thickness Between Category Of	77
		BMI	
Table	5.8	Chi Square Test For Incidence of Bloody Tap	83
Table	5.9	Difficulty In Threading Needle Catheter Among Obesity	85
		Group	
Table	5.10	Correlation is significant at the 0.01 level (2-tailed) For	89
		Bromage Scale Of Right Limb	
Table	5.11	Descriptive Statistics For Grade Score Criteria	89
Table	5.12	Directional Measures For Bromage Scale Score For Category	89
		Of BMI	
Table	5.13	Comparison between categories of BMI in term of general	90
		anaesthesia conversion	
Table	5.14	GA Conversion * Visual Analogue Scale Cross Tabulation	92

UNIVERSITI MALAYSIA SABAH

LIST OF GRAPHS

			Page
Graph	4.1	Ethnic Factor	26
Graph	4.2	Gravida Factor	27
Graph	4.3	Parity factor	28
Graph	4.4	Pulse Rate Factor	29
Graph	4.5	Mean Body Mass Index Factor (Anthropometric Data)	32
Graph	4.6	Previous History Mode of Delivery Factor	33
Graph	4.7	Living Area Factor	34
Graph	4.8	Induction of Labour Factor	35
Graph	4.9	Level of Education Among Parturient Mothers	36
Graph	4.10	Profession of Parturient Mothers Factor	37
Graph	4.11	ASA Factor	38
Graph	4.12	Tuoly Needle Size Used for LSCS Procedure	42
Graph	4.13	Lost Resistance Testing	43
Graph	4.14	Frequency Space Attempted For Epidural Procedure:	50
Graph	4.15	Dermatome Level of Anesthesia Achieved For Epidural	50
d	A B	Anaesthesia	
Graph	4.16	Visual Analogue Pain Score Observed During LSCS	51
	VA B	Procedure UNIVERSITI MALAYSIA SABAH	
Graph	5.1A	Mean Systolic versus Category of BMI	61
Graph	5.1B	Mean Diastolic versus Category of BMI	62
Graph	5.2	Category of BMI versus Type of LSCS	66
Graph	5.3	Skin Thickness Between Category Of BMI	77
Graph	5.4	Incidence of Bloody Tap Among Obese and Non Obese	83
		Group	
Graph	5.5	Category Of BMI Experienced Bloody Tap	84
Graph	5.6	Frequency of Space Attempted	86
Graph	5.7	Bromage Score Based on Four Grade Criteria Degree	94
		of Block RightLimb * Categories of BMI versus GA	
		Conversion	

LIST OF STATISTIC NOTATIONS

P Probability

> Greater than

< Less than

≈ Almost equal to

a Alpha

± Plus minus sign

N Total ample (from SPSS calculation)

n Total sample (written in word processing)

= Equal to

m² Meter square

LIST OF ABBREVIATION

ACOG The American College of Obstetricians and Gynecologists

ANOVA Analysis Of Variance

ASA American Society Of Anaesthesiologist

BMI Body Mass Index

CMG The Current Medical Group

CSEGA Combined Spinal Epidural And General Anaesthesia

CSF Cerebro Spinal Fluid

DS - ES Distance Of Skin To Epidural Space

ECG Electrocardiogram

IOTF International Obesity Task Force

L 2 - L 3 Lumbar Two – Lumbar Three

LSCS Lower Segment Caesarean Section

OT Operating Theatre

Sig Significant

SD Standard Deviation

T6 – T7 Thoracix Six – Thoracix Seven Level

VAPS Visual Analogue Pain Score

WFSA THE World Federation of Societies of Anaesthesiologists

LIST OF APPENDIX

		Page
Appendix 1	ANOVA	111
Appendix 2	Independent Samples Test	114

CHAPTER 1

INTRODUCTION

1.1 Introduction

Socioeconomic advancements in Malaysia for the past two decades had brought about significant changes in the lifestyles of communities. These included significant changes in the dietary patterns of Malaysians women, including food habits, food purchasing and consumption patterns. The trends in food availability in the country, the nutritional status of communities made some of the Malaysia women became obese. The combined prevalence of overweight and obesity ranged from 26% to 53% with an overall mean of 39% as stated by Institute of Medical Research IMR (1999). Comparatively in terms of prevalence and epidemiology, there was a slow but steady increase in obesity in United Kingdom UK. In UK, in 1980 - 6% males and 8% females were obese (Adams and Murphy, 2000). In 1987 - 8% males and 12% females were regarded obese in United Kingdom UK (Adams and Murphy, 2000). However, from this perspective prevalence of obesity varies with socioeconomic status. In developing countries poverty was associated with greater prevalence, and thus put on more highlights than the obesity issues. Obesity is a complex issue by itself, and as Malaysia is developing the country will continue to tackle this issue as it progress into the year 2020 and beyond.

The changes in dietary patterns of Malaysians towards an "affluent" diet of the developed industrialized countries had been a cause for concern with the obesity among Malaysian women. Anthropometry analysis of body mass index BMI was the single most practical, easily applied, inexpensive and non-invasive method of assessing body composition. The BMI index reflects both health and nutrition and predicts performance, health and survival. The use of body mass index (BMI) as a measure of obesity was being practice by World Health Organization WHO. The World Health Organization's WHO's definitions for overweight 25 - 29.9 kg/m², obesity30 - 39.9 kg/m² and morbid obesity > 40 kg/m². Obesity claimed to be the contribution factor to the incidence of epidural anaesthesia failure and also

associated with increased body mass index (BMI). In this particular issue, Dresner (2006) analyzed data on 13,299 women who received an epidural for cesarean section between 1997 and 2005. The women were divided into groups according to their body mass index (BMI), based on World Health Organization categories. From his study it was found that 0.0% parturient mothers considered underweight, 22.8% were classified as being of normal body mass, 41.9% as being overweight, 31.9% as obese, and 3.4% as morbidly obese. According to Dresner (2006), the frequency of midwives' assessment of epidural analgesia as unsatisfactory and failed, increased with subjects' weight, with unsatisfactory rates of 5.1%, 5.7%, 7.7%, and 11.7% among normal weight, overweight, obese, and morbidly obese subjects, respectively. In other word, Dresner (2006) found that epidurals were more likely to fail as body mass index BMI increased.

Epidural anaesthesia was commonly used in developed countries for analgesia during labour and could therefore easily been used to produce anaesthesia for caesarean sections with larger doses of local anaesthetic if indicated. However, epidurals werre technically more difficult to perform than spinal anaesthesia and required more specialised equipment, which was often not available in some of country of the developing world. There were significant and potentially fatal complications and they require experienced anaesthetists and midwives for their safe use. The main advantage of epidurals was that they were suitable for prolonged use e.g., as pain relief in labour and for post Caesarean Section anaesthesia and analgesia. Epidural anaesthesia might be a choice in patients with poor condition, since surgical analgesia if ever needed, could be established slowly with small repeated doses of local anaesthetic, thereby minimising cardiovascular instability. However, since expertise to perform epidurals was often not easily available, they were not always a practical technique for routine anaesthesia for Caesarean section. Anaesthesia took longer time to develop compared with subarachnoid block and was induced by using increments of either 2% lignocaine with 1:200,000 adrenaline or 0.5% bupivacaine. Note that 0.75% bupivacaine was not recommended for anaesthesia for LSCS.

Epidural anaesthesia was considered a complex procedure which involves injection of local anaesthetic drugs through a catheter into the epidural space of the spine, blocking the transmission of pain signals through nerves in the spinal cord. This was causing a temporary loss of pain and sensation below the point of injection. Typically, a 4-inch long needle was inserted about 2.5 inches deep as explained by Dresner et al (2006) to Reuters Health. "But in very obese women, you could insert the needle up to the hilt, and you still haven't gotten to where you're going yet." Dresner et al (2006). Dresner et al (2006) reported in the British Journal Of Gynaecology that nearly 42 percent of patients were overweight, 32 percent were obese, and 3.4 percent were morbidly obese who presented with obstetric problem at Leeds General Infirmary between 1997 and 2005.

The onset of epidural block with all local anesthetics could usually be detected after 5 minutes in the dermatomes immediately surrounding the injection site. The time to peak effect was differed somewhat among local anesthetics. Shorter-acting drugs usually reach their maximum spread in 15-20 minutes, whereas longer acting drugs required 20-25 minutes. Increasing the dose of local anesthetic speeds the onset of both motor and sensory block. Unblocked segments or missed segments usually known as patchy block were usually one sided could occur which affect satisfactory field of epidural anesthesia. This occurred more often in obstetrical patients than in the general surgical population (Mcintosh, 1995). The occurrence of residual pain in one area means failure of the total block, since the pain in this area was just as agonizing as if no anesthesia existed in the neighbouring segments.

1.2 Problem Statement

Epidural anaesthesia in the morbidly obese could be complicated by a number of factors. First is psychological 'make-up' of the morbidly obese. The popular image of the plump, jovial women often felt guilty about their physical condition and body configuration, depressed about anticipated problems with childbirth and infant rearing and, sometimes, hostile and defensive to an anaesthetist encountering genuine technical difficulty. Besides that, inability to position the patient on a