FRACTURE TOUGHNESS INVESTIGATION OF METALLIC MATERIALS USING EXPERIMENT AND FINITE ELEMENT ANALYSIS

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2012

FRACTURE TOUGHNESS INVESTIGATION OF METALLIC MATERIALS USING EXPERIMENT AND FINITE ELEMENT ANALYSIS

MOHD KAMAL MOHD SHAH

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2012

PUMS 99:1

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN TESIS		
JUDUL :		
IJAZAH :		
SAYA :	SESI PENGAJIAN :	
(HURUF BESAR)		
Mengaku membenarkan tesis *(LPSM/Sarjana/Dokto Sabah dengan syarat-syarat kegunaan seperti berikut:	r Falsafah) ini disimpan di Perpustakaan Universiti Malaysia -	
 Tesis adalah hak milik Universiti Malaysia Saba Perpustakaan Universiti Malaysia Sabah diben Perpustakaan dibenarkan membuat salinan t tinggi. 	ah. Iarkan membuat salinan untuk tujuan pengajian sahaja. esis ini sebagai bahan pertukaran antara institusi pengajian	
4. Sila tandakan (/)	mat yang berdarjah keselamatan atau kepentingan Malaysia	
seperti yang termaktu TERHAD (Mengandungi maklu mana penyelidikan di	ıb di AKTA RAHSIA RASMI 1972) mat TERHAD yang telah ditentukan oleh organisasi/badan di jalankan)	
TIDAK TERHAD	Disahkan oleh:	
 (TANDATANGAN PENULIS) Alamat Tetap:	(TANDATANGAN PUSTAKAWAN)	
 	(NAMA PENYELIA) TARIKH:	
Catatan: *Potong yang tidak berkenaan. *Jika tesis ini SULIT dan TERHAD, sila lampirkan sur menyatakan sekali sebab dan tempoh tesis ini perlu *Tesis dimaksudkan sebagai tesis bagi Ijazah Dokto bagi pengajian secara kerja kursus dan Laporan Pro	at daripada pihak berkuasa/organisasi berkenaan dengan u dikelaskan sebagai SULIT dan TERHAD. r Falsafah dan Sarjana Secara Penyelidikan atau disertai ıjek Sarjana Muda (LPSM).	

CERTIFICATION

- NAME : MOHD KAMAL BIN MOHD SHAH
- MATRIC NO. : **PS02-008-540**
- TITLE : FRACTURE TOUGHNESS INVESTIGATION OF METALLIC MATERIALS USING EXPERIMENT AND FINITE ELEMENT ANALYSIS
- DEGREE : **DOCTOR OF PHILOSOFOR**
- VIVA DATE : 7 AUGUST 2010

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpt, equations, summaries and references, which have been duly acknowledged.

28 August 2012

Mohd Kamal Mohd Shah PS02-008-540

ACKNOWLEDGEMENT

Alhamdulillah, Syukur to ALLAH SWT for His great and awesome power. I thank ALLAH for His hand in my life, particularly during the process of completing my dissertation, and for blessing me with so many people in my life who provided support and encouragement along the way.

I would like to express deepest appreciation to Universiti Malaysia Sabah for providing the financial support and the study leave for two years as a full time research student. My heartfelt respect and profound gratitude to the Vice Chancellor, Universiti Malaysia Sabah. This thesis represents my process of becoming. Thank you for an enriching experience.

Sincere thanks to the Dean, School of Engineering and Information Technology, Associate Professor Dr. Rosalam Hj. Sarbatly for providing me an opportunity to make this PhD a reality, who taught me to value the uniqueness of people and encouraged in me a lifelong love of learning. I cannot thank him enough. He orchestrated an amazing array of diligent lab assistants to help on this project. I also express thanks to my colleagues at SKTM and by association precious friendships, whose faith in me pushed away self-doubt and made me smile.

Prof. Dr. M. Madhusudana Rao, my supervisor for this research study has been, to me, a teacher, guide, encourager, mentor, example and friend. I am constantly amazed at his knowledge and the unstinting way in which he shares his time and expertise. I have been inspired by his commitment to research and his breadth of understanding of its intricacies. He has 'been there' for me throughout the duration of the project and in spite of a crippling busy schedule of his own. I owe him more than I can adequately express and offer him my warmest appreciation and deepest thanks.

My beloved wife, Irma Wani Othman, has encouraged, supported and believed in me. For her unwavering love, friendship, and example of hard work, I will eternally be grateful. To my children, Nur Hidayah Iwani Mohd Kamal, Muhammad Huzaifah Mohd Kamal and Muhammad Abu Hurairah for their boundless love and being such a joy to come home to each day. To my family, without whom I would be lost, and whose love brought me comfort and warmth -I am grateful to my parents, Allahyarham Mohd Shah Munu and my mother Aishah Din, my brothers Mansor Mohd Shah, Amir Mohd Shah and Norsham Mohd Shah and the one and only sister, Salmah Mohd Shah. I thank my parents-in-law, Hj Othman Yusuf and Khatijah Mohd Noor, my sisters-in-law Imelda Wani Othman and Idora Wani Othman and my brothers-in-law Onny Iriawan Othman and Mohd Kamal Ghadafi Othman for their love and encouragement in completing this research work. Finally, this thesis is dedicated to the glory of ALLAH and to the many hundreds of PhD research students out there, all of whom have, each in their own ways, added to this accomplishment in my life.

ABSTRACT

FRACTURE TOUGHNESS INVESTIGATION OF METALLIC MATERIALS USING EXPERIMENT AND FINITE ELEMENT ANALYSIS

This research was conducted to determine the plane stress and plane strain fracture toughness of various metallic materials. Compact Tension specimens of a wide range of constant thickness such as 5 mm, 10 mm, 15 mm, 20 mm and 25 mm and various materials used to make comparisons of AISI 1030, AISI 1045, AISI 4320, AISI 4340, Alu 2024-T3 ,Alu 2014-T6. Different thickness and width is the same as the main focus in this study. Specimens have been designed using Computer Aided Design and Computer Numeric Control (CNC) machining with an average surface roughness of 10 microns. Compliance method has been proposed to determine the fracture resistance measurement of metals in experimental work. Precracking is used to introduce the beginning of the crack before the test. Fracture toughness was evaluated by the graph of load and displacement and produced type I and type II curves, which were used for evaluation. Results for different materials have shown the value of 2014-T6-36 MPa is $K_{IC} = 36$ MPa \sqrt{m} and the value of

cast iron is K_{IC} =23.3 MPa \sqrt{m} . This result shows both materials clearly indicate the

failure of the current state of plane strain fracture tests at room temperature happen rapidly in the environment. The main contribution to the experimental work has shown that the fracture toughness of five different thicknesses with a constant width of the influence of fixed width over the thickness and increase the influence of plastic deformation region significantly in the early stages of crack growth. The load applied to the thickness of 5 mm 12500 N was compared with 25 mm maximum load of 50000 N to obtain fracture toughness in these materials. Similarly, the critical load increases as thickness increases. The result shows that the plane stress appeared to determine the influence of controlled constant width and thickness of the high plastic deformation around the crack tip generated. For this reason ASTM 399-90 suggested that the strength ratio should be calculated for all differences in thickness. Fracture surface with high magnification has been determined using scanning electron microscopic thickness to determine the effect of fracture surface essentially attributable to changes in the pattern of holes and rivers. This may appear at the crack tip necking material difference. Unstable crack propagation was observed during the exchange between the plane stress plane strain. The finite element analysis (FEA) found the stress distribution based on gradual of von Misses stress to predict the stress stage near to crack tip of the compact tension specimen is highest stress range at the notch tip region. It is seen that the contours of the difference stress range of Von Misses stress distribution along the symmetry plane of the specimen corresponding to maximum loading pin displacement of 0.5 mm for 5 mm and 20 mm. For future studies, metals with high heat resistance using the actual thickness of specimen can be tested. It is proposed that the mesh using less than 0.1 mm.

ABSTRAK

Dalam kerja penyelidikan ini, kajian telah dijalankan untuk menentukan keliatan patah, pelbagai bahan logam. Ketegangan spesimen lebar malar ketebalan pelbagai iaitu 5 mm, 10 mm, 15 mm, 20 mm dan 25 mm dan pelbagai bahan digunakan untuk membuat perbandingan iatu of AISI 1030, AISI 1045, AISI 4320,AISI 4340,Alu 2024-T3, Alu 2014-T6. Spesimen telah direka menggunakan pemesinan kawalan komputer angka (CNC) dengan purata kekasaran permukaan sebanyak 10 mikron. Kaedah pematuhan telah dicadangkan untuk menentukan patah pengukuran rintangan bahan logam di dalam kerja ujikaji. Retak pra-digunakan untuk memperkenalkan permulaan retak sebelum ujian. Patah akibat keliatan telah dinilai oleh graf beban dan anjakan dan jenis I dan jenis II lengkung yang digunakan untuk penilaian. Keputusan untuk bahan-bahan perbezaan telah menunjukkan nilai 2014-T6 adalah $K_{IC} = 36MPa\sqrt{m}$ dan nilai besi tuang adalah

 K_{IC} =23.3 MPa \sqrt{m} . Ini menunjukkan kedua-dua bahan dengan jelas menunjukkan

keadaan terikan satah kegagalan semasa ujian patah pantas dalam persekitaran suhu bilik. Bagi perbezaan ketebalan, hasilnya menunjukkan bahawa tekanan telah muncul untuk menentukan lebar malar menguasai pengaruh ketebalan dan ubah bentuk plastik yang tinggi dijana di sekeliling hujung retak. Atas sebab ini, ASTM 399-90 disyorkan bahawa nisbah kekuatan perlu dikira bagi semua perbezaan ketebalan. Permukaan patah dengan pembesaran yang tinggi menggunakan elektron mikroskopik imbasan untuk menentukan kesan ketebalan pada asasnya diagihkan kepada perubahan lubang-lubang dan corak sungai. Ini boleh muncul pada hujung retak necking bahan perbezaan. Perambatan retak yang tidak stabil telah diperhatikan semasa pertukaran antara tegasan satah terikan satah. Analisis unsur terhingga dengan jelas menunjukkan kemungkinan tegasan von Mises dan agihan tegasan dengan kontur warna tegasan maksimum di sekitar hujung retak dan ia menunjukkan bahawa ekanada menguasai di kawasan zon perbezaan ketebalan keplastikan. Walau bagaimanapun, Von terlambat Tekanan (VMS) adalah dianggap sesuai untuk bahan mulur-rapuh. Bagi bahan-bahan perbezaan, ia dilihat bahawa satah tegasan-terikan dan zon kontur ditunjukkan berhampiran takuk retak. Untuk kajian masa depan di atas bahan logam yang mempunyai rintangan haba yang tinggi dengan menggunakan spesimen ketebalan sebenar, analisis unsur terhingga, adalah dicadangkan itu bersirat menggunakan kurang daripada 0.1 mm dan analisis fractotography memberi penekanan atau tumpuan yang lebih kepada jenis ubah bentuk kecacatan dalam sifat bahan.

LIST OF FIGURES

Figure 1.1	Typical crack failure on body frame of shearing machine	4
Figure 2.1	Stress at a point ahead of crack tip	12
Figure 2.2	Dependence of thickness on the fracture resistance of metallic materials	13
Figure 2.3	Stress field ahead of a crack tip for mode-I in linear elastic	15
Figure 2.4	Mode-I of fracture	17
Figure 2.5	Mode-II of fracture	17
Figure 2.6	Mode-III of fracture	18
Figure 2.7	Crack closing forces within the singularity dominated zone	21
Figure 2.8	Stresses at point of crack tip	23
Figure 2.9	Model of the plastic zone	24
Figure 2.10	Stress component. Left: stress vector and normal/shear	25
ABI	stress on an arbitrary area element dA . Right normal/ shear stresses on the surface of an elementary cube	
Figure 2.11	Stress vector relating to area element dA in the principal axes coordinate system	26
Figure 2.12	Crack tip plastic zone	30
Figure 2.13	Depth of field, h , on light of SEM	34
Figure 2.14	The SEM beam on the physical specimen and fracture surface Depth of field, h , on light of SEM	35
Figure 3.1	Model and fabrication of tensile specimen	39
Figure 3.2	Mechanical Testing using Universal Testing Machine	40

Figure 3.3	Specimen for composition analysis	41
Figure 3.4	A part of the shear machine in the experiment by using SEM- EDX machine	42
Figure 3.5	Flow-chart of microstructure preparation process	43
Figure 3.6	Microstructure preparation processes	44
Figure 3.7	Compact tension specimen standards measurement and tolerance follow ASTM E399-90	45
Figure 3.8	Difference thickness of AISI 1020 material	46
Figure 3.9	Number of compact tension specimen of AISI 1020 material	48
Figure 3.10	Power band saw machine	49
Figure 3.11	Surface grinding machine	50
Figure 3.12	EDM wire cut machine	51
Figure 3.13	5 axis milling machine	52
Figure 3.14	Tolerance of clevis and pins of specimens	53
Figure 3.15	Clip gauge at compact tension specimen	55
Figure 3.16	Crack opening Displacement Clip gauge	56
Figure 3.17	Traveling microscope with magnification of X 10 and accuracy of 0.01 mm	57
Figure 3.18	Notch for Fatigue Pre-cracking Requirement	58
Figure 3.19	(a)Fatigue pre cracking fracture toughness on compact tension specimen. (b) A fatigue crack is introduced at the tip of machined notch by cycle loading	59
Figure 3.20	Types of load - displacement curves	62
Figure 3.21	Schematic diagram, continue showing the load- displacement behavior	63

Figure 3.22	Specimen marking system	63
Figure 3.23	Fracture toughness testing under mode-1 static loading	64
Figure 3.24	Crack failure process	65
Figure 3.25	Flow chart for analysis of fracture toughness result	67
Figure 3.26	Scanning Electron Microscopy machine	68
Figure 3.27	Schematic diagram of crack observation for fractography analysis	69
Figure 3.28	Parabolic tetrahedron elements for mesh auto generation and illustration of 3D FE model, load application, and boundary condition. Pink arrow represents the load application, and green area is assumed as fixed as boundary condition	71
Figure 3.29	Flow chart of solution finite element code	73
Figure 4.1	Comparison stress and strain curve with theory and true stress curve of AISI 1020	78
Figure 4.2	Comparison stress and strain curve with theory and true stress curve of AISI 1045	79
Figure 4.3	Comparison stress and strain curve with theory and true stress curve of AISI 4320	80
Figure 4.4	Comparison stress and strain curve with theory and true stress curve of AISI 4340	80
Figure 4.5	Comparison stress and strain curve with theory and true stress curve of AISI 1030	81
Figure 4.6	Comparison stress and strain curve with theory and true stress curve of Cast iron	81
Figure 4.7	Comparison stress and strain curve with theory and true stress curve of Alu 2014-T6	82

Figure 4.8	Comparison stress and strain curve with theory and true	82
Figure 4.9	AISI 1020 microstructure by scanning electron microscope (SEM)	83
Figure 4.10	Load-displacement of 5 mm thickness	84
Figure 4.11	Load-displacement of 10 mm thickness	85
Figure 4.12	Load-displacement of 15 mm thickness	86
Figure 4.13	Load-displacement of 20 mm thickness	87
Figure 4.14	Load-displacement of 25 mm thickness	88
Figure 4.15	Load-displacement curve for difference thickness specimen	89
Figure 4.16	Load-displacement of Alu 2014-T6 thickness	91
Figure 4.17	Load-displacement of cast iron	92
Figure 4.18	Load-displacement of AISI 1045	93
Figure 4.19	Load-displacement of AIS 4320	94
Figure <mark>4.20</mark>	Load-displacement of Alu 2024-T3	95
Figure 4.21	Load-displacement of AISI 4340 ALAYSIA SABAH	96
Figure 4.22	Load-displacement of AISI 1030	97
Figure 4.23	Comparison of different material	98
Figure 4.24	Part of the shear machine materials examined by using EDX machine	99
Figure 4.25	Pre-cracking and fracture surface of AISI 1020material 5 mm to 25 mm	100
Figure 4.26	SEM image formed between pre-cracking and cleavage dominated region difference material	102
Figure 4.27	SEM image surface of cleavage dominated region different thickness	104
Figure 4.28	View of fracture surface of different material	106

Figure 4.29	Comparison for all thickness of Von Mises Stress	107
Figure 4.30	Von Mises Stress for 5 mm thickness	108
Figure 4.31	Von Mises Stress for 10 mm thickness	109
Figure 4.32	Von Mises Stress for 15 mm thickness	109
Figure 4.33	Von Mises Stress for 20 mm thickness	110
Figure 4.34	Von Mises Stress for 25 mm thickness	110
Figure 4.35	Stress distribution for 5 mm with plane stress-strain zone	111
Figure 4.36	Stress distribution for 10 mm with plane stress-strain zone	112
Figure 4.37	Stress distribution for 15 mm with plane stress-strain zone	112
Figure 4.38	Stress distribution for 20 mm with plane stress-strain zone	113
Figure 4.39	Stress distribution for 25 mm with plane stress-strain zone	113
Figure 4.40	Different stress range of Von Mises stress (a) 5 mm	114
	thickness (b) 20 mm thickness.	
Figure 4.41	Comparison von mises stress for all difference metallic material	115
Figure 4.42	Von Mises Stress of AISI 1045	116
Figure 4.43	Von Mises Stress of AISI 4320	117
Figure 4.44	Von Mises Stress of Cast iron	117
Figure 4.45	Von Mises Stress of Alu 2014-T6	118
Figure 4.46	Von Mises Stress of Alu 2024-T3	118
Figure 4.47	Von Mises Stress of AISI 1030	119
Figure 4.48	Deformation of VMS for AISI 1045	120
Figure 4.49	Deformation of VMS for AISI 4320	120
Figure 4.50	Deformation of VMS for cast iron	121
Figure 4.51	Deformation of VMS for Alu 2014-T6	121
Figure 4.52	Deformation of VMS for Alu 2024-T3	122

LIST OF TABLES

Table 2.1	Stress field ahead of a crack tip for mode-1	32
Table 2.2	Shown crack tip displacement field for mode-1	32
Table 3.1	AISI 1020 material with the different thickness with	47
	constants width	
Table 3.2	Other metallic material with the thickness, width, and High of specimens according Standards	47
Table 3.3	Machine parameter setting	46
Table 3.4	Shown COD gauges – Clip gauge specification	54
Table 3.5	COD gauges – Clip gauge specification	53
Table 3.6	Comparison auto mesh and manual mesh	66
Table 3.7	Summary of Failure Criterion applied on typical material type	72
Table 4.1	Material properties of shear machine body structure	74
Table 4.2	Chemical composition for shear machine body structure using	75
No.	EDX machine UNIVERSITI MALAYSIA SABAH	
Table 4.3	Chemical composition of AISI 1020	75
Table 4.4	Chemical composition of other metallic material	76
Table 4.5	Mechanical properties of AISI 1020	76
Table 4.6	Mechanical properties for variable metallic material	77
Table 4.7	Load —COD parameters for CT specimen with difference Thickness	90
Table 4.8	Results with difference material	98

TABLE OF CONTENTS

TITIE		Page
DECLA	RATION	II
CERTIE	FICATION	iii
ACKNO)WLEDGEMENT	iv
ABSTR	ACT	v
ABSTR	AK	vi
TABLE	OF CONTENTS	vii
LIST O	F FIGURES	xi
LIST O	FTABLES	xiv
LIST O	FSYMBOLS	xvi
СНАРТЕ	ER 1: INTRODUCTION	1
1.1 E	3ackground	T
1.2 M	Motivation and Relevance	2
1.3 R	Research Objective	5
1.4 C	Organisation of Thesis	5
СНАРТІ	ER 2: LITERATURE REVIEW ON FRACTURE TOUGHNESS	
2.1 I	ntroduction	7
2.2 H	listorical of Fracture Mechanics	7
2.3 Li	inear Elastic Fracture Mechanic (LEFM)	11
2.4 C	Crack Opening Displacement	13
2.5 A	tomic Model by Griffith	14
2.6 F	racture Mechanics Approach to Design Analysis	16
2.7 T	heory of Brittle Fracture	18
2.8 I	rwin's Theory	21

2.9	Plane Stress and Plane Strain Fracture Toughness	22
2.10	Theory of Elasticity	24
2.11	Hooke's Law	26
2.12	Crack Tip Estimation	29
2.13	Stress Intensity Factor	30
2.14	Fractography Study	33
	2.14.1 Scanning Electron Microscopy (SEM)	33
2.15	Finite Element Analysis	36
2.16	Summary	38

CHAPTER 3: MATERIALS AND EXPERIMENTAL PROCEDURE

3.1	Introduction	39
3.2	Material and Properties	39
3.3	Properties Investigation	40
3.4	Stress Strain Curve of AISI 1020	40
3.5	Composition Analysis	41
3.6	Microstructure Analysis	42
3.7	Other Metallic Material	44
3.8	Specimen Preparation UNIVERSITI MALAYSIA SABAH	44
3.9	Machining Process of Specimen	48
3.10	Power Band Saw Machine	49
3.11	Surface Grinding Machine	50
3.12	EDM Wire Cut Machine	51
3.13	Drilling Machine	51
3.14	Measurement and Tolerance	52
3.15	Experimental work	53
	3.15.1 Clevis Grips	53
	3.15.2 Clip Displacement Gauge	54
	3.15.3 Traveling Microscope	56
	3.15.4 Fatigue Pre-Cracking	57

3.16	Fracture Toughness Testing	61
3.17	Determination of Static Fracture Toughness	61
3.18	Fracture Toughness Process Flow	66
3.19	Fractography Analysis of Metallic Material	67
3.20	Preparation Using Scanning Electron Microscopy	68
3.21	Pre-cracking Observation	69
3.22	Finite Element Analysis Using Von Mises Stress	70
3.23	Geometry Modelling And Mesh Generation	71
3.24	Summary	73

CHAPTER 4: EXPERIMENTAL RESULT

4.1	Introduction	74
4.2	Shear Machine Material Investigation	74
	4.2.1 Composition Analysis	74
	4.2.2 Nondestructive Test	75
4.3	Tensile Test	76
Z	4.3.1 Other Metallic Material Properties	77
4.4	Stress Strain Curve of AISI 1020	78
	4.4.1 Stress Strain Curve of Other Metallic Material STA SABA	79
4.5	Microstructure Analysis	83
4.6	Plane Stress-Strain Fracture Toughness	84
4.7	Fracture Toughness of Different Thickness	88
4.8	Fracture Toughness of Other Metallic Materials	90
4.9	Comparison Toughness Properties of Different Thickness	97
4.10	Fractography Analysis	99
4.11	Pre-cracking of Different Material	99
4.12	Fractography of Different Thickness	103
4.13	Factography of Different Material	105
4.14	Finite Element Analysis of Different Thickness	107
4.15	Stress Distribution of Different Thickness	111

4.16	Finite Element of Different Thickness	115
4.17	Stress Distribution of Difference Metallic Material	119
4.18	Summary	122

CHAPTER 5: DISCUSSION

5.1	Introduction	125
5.2	Fatigue Pre-cracking on Specimen	125
5.3	Effect of Different Thickness In Specimen	125
5.4	Effect of Material Varition Of The Specimen	126
5.5	Effect on Fracture Surface	127
5.6	Finite Element Analysis	128

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS

6.1	Introduction	129
6.2	Research Background	129
6.3	Research Finding	129
6.3	Recommendation and Future Work	132
	UNIVERSITI MALAYSIA SABAH	
REFERENCE		
APPENDIX A Theory of Ramberg-Osgood		147
APPE	NDIX B List of Publications Derived From This Thesis	150

LIST OF SYMBOLS

P_Q	Applied load
α	Crack length, a divide by distance from the load line to far
W	Distance from the load line to far end of the specimen
$f(\alpha)$	Dimensionless geometry calibration or $f(a/W)$
R	Dugdale's plastic zone distance
$K_{e\!f\!f}$	Effective fracture toughness
В	Specimen thickness
P_{\max}	Maximum load
K _{IC}	Plane strain fracture toughness
$\{u_i\}$	Local displacement
$[N(x_i)]$	Displacement shape of interpolation function
$\left\{ u_{i}^{e}\right\}$	Nodal displacement
[<i>B</i>]	Matrix of coordinate positions of the nodes
{ <i>ɛ</i> }	Element strain
U ^e	Strain Energy UNIVERSITI MALAYSIA SABAH
$\left[k^{e}\right]$	Elemental stiffness matrix
[<i>D</i>]	Matrix of elastic coefficient
[<i>K</i>]	Global stiffness matrix
{ <i>U</i> }	Global nodal displacements
{ <i>F</i> }	Nodal forces
{ <i>0</i> }	Stress at nodal point
$U_{\scriptscriptstyle E}$	Elastic strain energy per unit of plate thickness
а	Crack length
E	Young Modulus or Modulus of Elasticity
σ	Tensile stress
U_{γ}	Elastic surface energy
γ_{s}	Surface energy

U	Total energy
V	Poisson's ratio
G	Energy release rate or crack driving force
R_{crack}	Crack resistance
f(a/W)	Dimensionless geometry calibration
K_{C}	Plane stress fracture toughness
G_{C}	Stored elastic strain energy
K_{IC}	Plane strain fracture toughness
r_{Y}	Plastic zone size by Irwin Approximation
$y(\theta)$	Plastic zone of plane stress condition from von Mises
	yielding criteria
$r(\theta)$	Plastic zone of plane strain condition from von Mises
- AP	yielding criteria
$\sigma_{\scriptscriptstyle YS}$	Yield strength of material
γ_P	Plastic strain work
с	Initial crack length
K _I	Plane stress fracture toughness, K_c or plane strain fracture
	toughness, K_{IC}
$a_{e\!f\!f}$	Effective crack length
‰ _{dif}	Difference percentage
$K_{\scriptscriptstyle FE}$	Fracture toughness computed by finite element modeling
K _{math}	Fracture toughness computed by mathematical modeling
R_{SC}	Strength ratio
V_m	Crack mouth opening displacement in m
E'	Effective Young's Modulus
$r(\theta)$	Dimensionless plastic zone of von Mises yielding criteria
С	Stress intensity factor correction

- δ_t Crack Opening Displacement or COD
- γ_s Elastic surface energy
- σ_{f} Fracture stress
- $\sigma_{\rm max}$ Theoretical cohesive strength

REFERENCE

- Ainsworth, A.A., 2000. Effects of Residual Stress on Fracture Behavior-Experimental Result and Assessment Method, *Journal of Strain Analysis*, **35**, (4): 307-316
- Anderson, T.L, 1995. Fracture Mechanics: Fundamentals and Applications. 2nd Edition. United State of America: *CRC Press Inc*.
- Anderson, T.L, 2005. Fracture Mechanics: Fundamentals and Applications. 3rd Edition. United State of America: *CRC Press Inc*.
- ASTM E399-90,1990. Standard Test Method of Plain-Strain Fracture Toughness of Metallic Materials. *American Society for Testing and Materials.*
- ASTM B 645-02, 1997. Standard Practice for Plane-Strain Fracture Toughness Testing of Aluminum Alloys. *American Society for Testing and Material.*
- ASTM E647-00, 2000. Standard Test Method for Measurement of fatigue Crack Growth Rates. *American Society for Testing and Materials*
- ASTM E1820-01, 2000. Standard Test Method for Measurement of Fracture Toughness. *American Society for Testing and Materials*
- ASTM E1290-02, 2001. Standard Test Method for Crack Tip Opening Displacement Fracture Toughness Measuremen*t. American Society for Testing and Materials*
- ASTM E8-01, 2001. Standard Test Method for Tension Test of Metallic Material, American Society for Testing and Materials
- ASTM B647-78, 1978. Standard Test Method for Indentation Hardness of Aluminum Alloy, *American Society for Testing and Materials*
- ASTM Bulletin, 1964. Reports of Special ASTM Committee on Fracture Testing of High-Strength Metallic Materials: 1st report: Fracture testing of high-strength sheet materials. *ASTM*
- Asserin. A & Besson. J. 2004, Fracture of 6065 Alu. Sheet Material, Efeect of Specimen Thickness and Hardening Behaviour on Strain Locaization and Toughness, *Int.Journal. Material Science and Engineering ,Elservier*, **395**:186-194
- ANSI/ASME. 1985. Instruments and Apparatus. Part I: Measurement Uncertainty. PTC American Society of Mechanical Engineers, New York.
- Balart, M. J. & Knott J. F, 2006. Effects of geometry and flow properties on the fracture toughness of a C–Mn reactor pressure vessel steel in the lower shelf region, *International Journal of Pressure Vessels and Piping* 83: 205–215

- Barbagallo S, 2003. Evaluation of the K_{IC} and J_{IC} fracture parameters in a sand cast AZ91 magnesium alloy, *International Journal Engineering Failure Analysis*, Paragamon, **11**: 20-25.
- Bhawesh K, 2011, Significance of K-dominance zone size and nonsingular stress field in brittle fracture Original Research Article, *Engineering Fracture Mechanics*, 78, 2042-2051.
- Bhargava and Hasan.S (2011), Crack opening displacement for two unequal straight cracks with coalesced plastic zones – A modified Dugdale model, *Applied Mathematical Modelling* **35**, 3788–3796
- Okwon Lee, 2003. Mode-1 Fracture Criterion and Finite Width Correction Factor for Notched Laminated Composite. *MSc. Thesis*, 18-55: Hong Kong.
- Boresi A.P S& Chmidt R. J, 2000. Advanced Mechanics of Material ,Fifth edition, John Willey and Son.
- BS 7448-05,2005. Fracture mechanics toughness tests, Part 1, Method for determination of fracture toughness of metallic materials at rates of increase in stress intensity factor greater than 3.0 MPa·m^{0.5}s⁻¹, *British Standards Institution, :* London
- BS, 7448-071997. Fracture mechanics toughness tests Part 4, Method for determination of fracture resistance curves and initiation values for stable crack extension in metallic materials , *British Standards Institution*,London
- BS, 7448-91,1991. Fracture mechanics toughness tests Part 1,Method for determination of KIc, critical CTOD and critical J values of metallic materials, *British Standards Institution*, London
- BS ISO 13586,2000.Plastic Determination of Fracture Toughness (G_{IC} and K_{IC}) -Linear Elastic Fracture Mechanics (LEFM) approach. 2000. British Standards Institution, London
- Bulloch, J. H,2004. *A study concerning material fracture toughness and some small punch test data for low alloy steels*, Engineering Failure Analysis **11**: 635–653
- Beer, F.P,2005, (2005) *Mechanics of materials*, 4th edn. McGraw-Hill International, Singapore, pp 360–378
- Bertolino & PerezIpina 2006.Geometrical effects on lamellar grey cast iron fracture toughness, *Journal of Materials Processing Technology* **179**: 202–206
- Broek D. 1982. Elementary engineering fracture mechanics. 3rd : *Columbus.*

Broek D.1984. Elementary engineering fracture mechanics. 4th Edition: *Columbus*

- Bueckner H. F, 1958. The propagation of crack and energy of elastic deformation, Transaction of the *American Society of Mechanical Engineer*, **80** : 1225-1230.
- Calister W,. 1994. Material Science and Engineering: An Introduction, 3rd Edition:194-196.
- Calister W,. 1994. *Material Science and Engineering: An Introduction*, 3rd Edition, *John Wiley & Sons* :4-20.
- CDM ,2000. Wire cut Manual user : Rovella Industry Press, Italy
- Calister W, 1994. *Material Science and Engineering: An Introduction*, 3rd Edition, John Wiley & Sons
- Cerolo.L & Tommaso A.D,. 1998, 2nd Int. Ph.D Symposium in Civil Engineering, Budapest.
- Chow C. & Nho K.H ,1997. Effect of thickness on the fracture toughness of irradiated Zr-2.5Nb pressure tubes, *Journal of Nuclear Materials* **246** : 84-87

Cockeram B.V, 2006. The mechanical properties and fracture mechanisms of wrought low carbon arc cast (LCAC), molybdenum–0.5pct titanium–0.1pct zirconium (TZM), and oxide dispersion strengthened (ODS) molybdenum flat products, *Materials Science and Engineering*: A, **418**, 1-2, 2006, Pages 120-136

Debdulal.D, 2010. Influence of sub-zero treatments on fracture toughness of AISI D2 steel, *Materials Science and Engineering*: A, **2**, 528,

David Hutton, 2004. Fundamentals of Finite Element Analysis. USA: McGraw-Hill.

- Degarmo E. P, J. T Black & Ronald A.K,2003, Material and Processes In Manufacturing, 9th Edition.McGraw-Hill
- Dieter G. E, 1986. Mechanical Metallurgy. 3rd Edition. U.S.A., McGraw-Hill Inc.
- Durelli,1970. Applied Stress Analysis, Prentice-Hall of India Private Limited, New Delhi:20-85.
- Dugdale, D. S., 1960. Yielding of steel sheets containing slits, *J Mech. Phys.*, **8**, 1960.
- Duga J. J, Fisher W.H., & Buxbaum R.W., 1983, Fracture Costs Us \$119 Billion A Year, Says Study By Battelle/Nbs, *Int. Journal of Fracture*. Elesiver