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ABSTRAK 
 
Salah satu masalah utama dan terbaru yang membelunggu hospital di Malaysia 
adalah masalah kekurangan pakar atau pakar bedah, terutamanya di kawasan luar 
bandar. Pakar bedah khusus yang tidak mencukupi di kawasan-kawasan itu 
terutamanya dalam bidang ortopedik menyebabkan lebih banyak kematian di 
kalangan pesakit disebabkan oleh kekangan masa. Sistem robot mudah alih yang 
dikenali sebagai OTOROB telah direka dan dibangunkan untuk membantu pakar 
bedah untuk hadir secara maya di kawasan itu bagi menghadiri pesakit. Sistem  
robot mudah alih tersebut memerlukan lengan robotik yang fleksibel untuk 
memeriksa pesakit yang dikawal dari jauh oleh pakar bedah. Lengan robot yang 
fleksibel dengan sistem penglihatan sebagai efector akhir telah direka, dirumuskan 
dan diuji pada masa nyata. Sebelum pembangunan prototaip, pemodelan maya 
lengan robot dilakukan mengunakan perisian Solidworks. Model yang direka telah 
disimulasi dan dianalisis untuk mengkaji kesesuaian reka bentuk. Keputusan 
simulasi membuktikan bahawa reka bentuk berkenaan sesuai untuk dibangunkan. 
Kemudian, prototaip yang dibangunkan telah diuji kebolehulangan, dan ujian 
kelinearan untuk menentukan kawalan pergerakan lengan robot. Analisis kelinearan 
dan sudut pergerakan lengan robot menunjukkan ralat kurang daripada 5% 
kesilapan. Perisian pengawalan lengan robotic (GUI) telah dibangunkan untuk 
mengawal lengan robot dan mendapatkan data dari lengan robot mengenai 
orientasi dan kedudukan. Logik kabur dilaksanakan dalam sistem kawalan 
keselamatan untuk artikulasi lengan robot. Sistem keselamatan lengan robot terdiri 
daripada Sistem Pemantauan Bahaya (DMS), Sistem Pengelakan Rintangan (OAS) 
dan Sistem Gagal Selamat dan Pemulihan Sendiri (FSARS). DMS yang dikawal 
system logic kabur diuji dan dinilai. Hasil kajian menunjukkan bahawa DMS mampu 
menilai and menunjukkan tahap bahaya di sekeliling lengan robotik kepada 
pengguna melalui GUI dengan tanda-tanda amaran dan kedudukan halangan. 
Kemudian, OAS memberikan maklum balas kepada halangan mobil dan statik di 
sekeliling lengan robot. Lengan robot didapati mampu mengelakkan halangan 
menghampiri secara autonomi melalui kawalan logik kabur. FSARS lengan robot 
adalah tertakluk kepada pelbagai keadaan kegagalan, dan sistem membuktikan 
bahawa pengunaan sistem pemulihan berjaya. Akhirnya, sistem penglihatan dinilai 
dengan menganalisis sistem pencahayaan pengelihatan menggunakan perisian 
Matlab. Integrasi sistem lampu LED meningkatkan kejelasan visual yang diperolehi 
melalui kamera video. Kawalan lancar lengan robotik dan juga rutin keselamatan 
melalui logik kabur telah menambah baikkan keseluruhan artikulasi lengan robotik. 
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ABSTRACT 
 

DESIGN AND DEVELOPMENT OF A FLEXIBLE ROBOTIC ARM VISION 
SYSTEM FOR ORTHOPAEDIC ROBOT (OTOROB) 

 
One of the main and recent problems in Malaysian hospitals is the lack of surgeons 
and specialists, especially in rural areas. Insufficient specialised surgeons in such 
regions particularly in the niche of orthopaedic causes more fatalities and amputees 
due to time constrain in attending the patients. Broken limbs due to accidents can 
be treated and recovered. But severed blood vessels results in blood loss and leads 
to amputation or even worst fatalities. A mobile robotic system known as OTOROB 
is designed and developed to aid orthopaedic surgeons to be virtually present at 
such areas for attending patients. The developed mobile robotic platform requires a 
flexible robotic arm vision system to be controlled remotely by the surgeon. To be 
present virtually is still insufficient if clearer view is not obtained. Thus, a flexible 
robotic arm with vision system as end effector is designed, developed and tested in 
real time. Prior to the development of the prototype, virtual modelling of the robotic 
arm is done in Solidworks. The designed model is simulated and analysed to study 
the suitability of the design. The simulation results proved that the design is 
applicable. Then, the developed prototype is subjected to repeatability, and 
linearity tests in order to determine the movement control of the robotic arm. The 
robotic arm linear and angular movements resulted in less than 5% of error. A 
Graphical User Interface (GUI) is developed to control the robotic arm and obtain 
data from the robotic arm regarding the orientation and position. Fuzzy logic is 
implemented in the control system to provide safety for the robotic arm 
articulation. The safety systems of the robotic arm consist of Danger Monitoring 
System (DMS), Obstacle Avoidance System (OAS) and Fail Safe and Auto Recovery 
System (FSARS). The fuzzy controlled DMS system was tested and evaluated. The 
results prove that the DMS is capable of conveying danger level surrounding the 
robotic arm to the user through GUI with warning indication and obstacle positions. 
While, the developed OAS, responded to the approaching and static obstacle 
around the robotic arm. The robotic arm is capable of avoiding approaching 
obstacle autonomously via fuzzy control. FSARS of the robotic arm was subjected to 
various failure circumstances and the system executed the recovery system 
successfully. Finally, the vision system was evaluated by analysing the vision 
lighting system using Matlab software. The integration of LED lighting system 
improved the visual clarity obtained through the video camera. The smooth control 
of the robotic arm coupled with the safety routines improved the overall articulation 
of the robotic arm.  
 
 
 
 
 
 
 
 
 
 



CHAPTER 1 
 

INTRODUCTION 
 
 

1.1 Robot 
The advancement of human civilization aside from those core elements such as 
agriculture, trade, transportation, architecture, mathematics, science, politics, and 
astronomy has brought human kind into a new era of sophisticated and modern 
living. The use of tools and “know-how-to-make” ability of human marked the 
beginning of technology, or the science of engineering which have brought 
mankind into a new era of highly sophisticated and advance civilization, where in 
this 21st century robotics play a major role (Mitsuishi et al., 2007).  
 

The early development of robot can date back to 12th century AD, such as 
the Automata of Al-Jazari, which is a self-operating machine and Leonardo Da 
Vinci’s humanoid automaton in the 15th century (Vijay Kumar, 2010).  Since then 
robots also evolved on the path of human civilization until the development of the 
world most advanced humanoid robots like ASIMO by Honda and TOPIO by Tosy 
Robotics. Automata of Al-Jazari and ASIMO are shown in Figure 1.1. 
 

 
Figure 1.1: Sketch of Automata of Al-Jazari (A) and ASIMO the 

humanoid robot by Honda (B) 
Source: (A) www.wikipedia.org/wiki/Al-Jazari and (B) asimo.honda.com/products 

A B 

http://en.wikipedia.org/wiki/Transportation
http://en.wikipedia.org/wiki/Architecture
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http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/wiki/Politics
http://en.wikipedia.org/wiki/Astronomy
http://www.wikipedia.org/wiki/Al-Jazari
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 A robot in modern world according to Robot Institute of America is an 
automatic, reprogrammable, multifunctional manipulator designed to move 
materials, parts, tools or specialized devices through various programmed motions 
for the performance of variety of tasks (Robot Institute of America, 1975). While, 
Broadbent et al. (2009) described a robot as a very powerful computer with equally 
powerful software housed in a mobile body and able to act rationally on its 
perception of the world around it. Robots were initially used in the automation 
sector to replace human labours for handling repetitive and simple tasks reliably, 
with the objective of cost reduction (Haydars and Levent, 2007).  
 

Besides that, wide application of robots include deployment  in dangerous 
and hazardous work spaces which are potentially dangerous to humans, such as 
underwater, underground, space and other extreme environments (Park et al., 
2006). The usage of robots can be traced in almost every field ventured by 
humans, from household robots such as vacuum cleaner robots to bomb disposing 
robots in military operations and NASA Spirit Rover for Mars exploration.  
  
 However, the new trends in robotics research have been denominated by 
service robotics because of their general goal of getting robots closer to human 
social needs, especially in the areas such as medical robotics, rehabilitation 
robotics, field robotics, construction robotics and humanoid robotics (Garcia et al., 
2007). 
 
1.2 Medical Robotics 
Medical robotics refers to robotic systems applied within the domain of health care 
which evolved from multidisciplinary field of science and engineering involving 
topics from mechanical engineering, electrical engineering, materials science and 
computer science (Wang et al., 2006).  
 

Initial surgical robotic systems in the 1980s employed general-purpose 
industrial manipulators, either directly or with minor modifications (Taylor and 
Stoianovici, 2003). The designed robotic system often shares its working area with 
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operators or medical staff and has a close interaction with the patient (Vilchis et al., 
2003).  
 

According to Kanade et al. (2006) and Taylor (2006), the term medical 
robotics has often been construed to refer strictly to surgical procedures.  However 
due to its indefatigability, accuracy, and repeatability, robotic technology is 
increasingly affecting the entire healthcare sector through advances in surgery, 
diagnosis, preoperative planning, postoperative evaluation, chronic assistive 
devices, acute rehabilitation, hospital logistics and scheduling, long-term follow-up 
and quality control. 

 
Medical robotics also extensively improves existing medical procedures to be 

less invasive and produce fewer side effects that would result in faster recovery 
times and improved worker productivity, improve risk-benefit, cost-benefit ratios 
and reduced medical errors (Okamura et al., 2010). The major niche in medicine 
that employs robotics is surgical and interventional robotics. The development of 
surgical robots is motivated by the desire to enhance the effectiveness of a 
procedure by coupling information to action in the operating room or interventional 
suite and transcend human physical limitations in performing surgery and other 
interventional procedures (Wang et al., 2006). The earlier surgical robots were 
used in neurosurgery and orthopaedic surgery as the anatomic landmarks provided 
convenient, fixed and accurate points of registration by the computer (Hong et al., 
2006).  

 
The Zeus and da Vinci robots are robots with master-slave configuration 

where the surgeon controls the surgery and a set of positioners and camera-control 
equipment that is mounted on the operating room table are used effectively in 
telesurgery (Butner and Ghodoussi, 2003; Mitsuishi et al., 2007). Surgical robots 
such as the da Vinci surgical system and Zeus surgical system shown in Figure 1.2, 
are beginning to realize their potential in terms of improved patient outcomes. 
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Figure 1.2: The Da Vinci (A) and Zues (B) surgical robots 
Source: (A) www.davincisurgery.com and (B) www.allaboutroboticsurgery.com 

 
 The other types of health care robot that are widely used in medical field 
are the telemonitoring robots. Normally, a telemonitoring robot is controlled by a 
remote doctor for telerounding in hospitals which employs two ways audio visual 
communication with patients. This type of robots, for instance Remote Presence-7 
(RP7) by Intouch Inc., were successfully used as telehealth system and become a 
new modality for doctor-patient interactions, particularly in areas where access to 
medical expertise is limited (Bartneck et al., 2010). Figure 1.3 shows the RP7 robot 
during telerounding check on a patient in Shawnee Mission Medical Center, Kansas 
City.      
  

 
Figure 1.3: Telerounding by a remote doctor using RP7 robot in Shawne 

Mission Medical Centre, Kansas City 
Source: www.intouchhealth.com/produts/rp-7/ 

 

A B 

http://www.davincisurgery.com/
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 The development of surgical and telemonitoring robots in medical field is 
targeted to overcome human resource shortages and improve health care services. 
Moreover, robotic assistive limbs and rehabilitation robots are widely used to assist 
patients to lead a better life. For instance, robotic prosthetic devices aim to emulate 
the missing limb or other body part through replication of many joints and limb 
segments and seamless neural integration that provides intuitive control of the limb 
as well as touch feedback to the patient with missing limbs (Wang et al., 2006). 
Robot assisted recovery and rehabilitation reduces recovery period of the patient 
and reduces trauma.  
 
1.3 Research Motivation 
The increase of road accidents is related to the rapid growth in population, 
economic development, industrialisation and motorisation encountered by the 
country (Nizam Mustafa, 2005). According to Abdul Rahman et al. (2005) injuries 
due to road traffic accidents are the third cause of admission and the fifth cause of 
death in Malaysian government hospitals in 2003, where traffic accidents in 
Malaysia have been increasing at the average rate of 9.7% per annum over the last 
three decades. Table 1.1 presents road accidents statistic from year 2003 to 2010, 
released by Road Safety Department, Ministry of Transportation (MOT). 
 

Table 1.1: Road accidents statistics from year 2003 to 2010 
 

Year 2003 2004 2005 2006 2007 2008 2009 2010 

Total Accidents 298,653 326,814 328,268 341,232 363,319 373,047 397,330 414,421 

Type 
of 

Injury 

Death 6,286 6,228 6,188 6,287 6,282 6,527 6,745 6,872 

Critical 9,040 9,229 9,397 9,254 9,273 8,866 8,849 7,781 

Light 37,415 38,631 31,429 19,884 18,444 16,901 15,823 13,616 

Source: Road Safety Department, Malaysian Ministry of Transportation 
 

Studies also revealed that the number of fatalities (death within 30 days after 
accident) also increased due to serious injuries (Nizam Mustafa, 2005). Malaysia as 
a developing country, has introduced various campaigns, safety regulations and 
technological implementation to prevent road accidents rate. Measures taken to 
deliver efficient treatment and healthcare services to victims particularly in remote/ 


