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ABSTRACT 

 

WEIGHTED MEAN ITERATIVE METHODS FOR SOLVING FREDHOLM 

INTEGRAL EQUATIONS 

 
Integral equations (IEs) are used as mathematical models for many and varied 
physical circumstances, and also occur as reformulations of other mathematical 
problems. In this research, first and second kind linear IEs of Fredholm type are 
considered and solved using numerical approaches. The essential aim of this 
research was to investigate the effectiveness of the point and block Weighted Mean 
(WM) iterative methods categorized as two-stage iterative methods in solving linear 
systems generated from the discretization of the first and second kind linear 
Fredholm integral equations (FIEs). In the aspect of discretization schemes, three 
schemes of different order under composite closed Newton-Cotes quadrature and 
piecewise polynomial collocation methods were used to discretize first and second 
kind linear FIEs. Moreover, discussions on computational complexity of the tested 
point and block WM methods in this research were also included. By comparing 
point WM iterative methods, the point methods under Geometric Mean (GM) and 
Harmonic Mean (HM) families are slightly superior to equivalent Arithmetic Mean 
(AM) methods, particularly for first kind linear FIEs. Meanwhile, performance of the 
point GM and HM methods is comparable. Based on numerical experiments, results 
show that proposed 6-Point Quarter-Sweep Block Arithmetic Mean (6-QSBLAM), 6-
Point Quarter-Sweep Block Geometric Mean (6-QSBLGM) and 6-Point Quarter-
Sweep Block Harmonic Mean (6-QSBLHM) methods are the best tested AM, GM and 
HM iterative methods respectively in solving composite closed Newton-Cotes 
quadrature and piecewise polynomial collocation systems associated with numerical 
solutions of first and second kind linear FIEs in the sense of number of iterations 
and CPU time. For comparison purpose among 6-Point Quarter-Sweep Block 
Weighted Mean (6-QSBLWM) methods, 6-QSBLGM and 6-QSBLHM methods are 
slightly better than 6-QSBLAM method in solving FIEs. All variants of point and block 
WM methods, which were formulated using the half- and quarter-sweep iteration 
concepts reduce the computational complexity of the standard WM iterative 
methods at least 75% and 93.75% respectively. In terms of accuracy, all three 
schemes under piecewise polynomial collocation method yields more accurate 
approximation solutions than composite closed Newton-Cotes quadrature schemes 
particularly for the first kind FIEs problems. However, by comparing corresponding 
orders of composite closed Newton-Cotes quadrature and piecewise polynomial 
collocation schemes, the accuracy of the approximation solutions is comparable 
when solving second kind linear FIEs.       
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ABSTRAK 

 

Persamaan kamiran (IEs) digunakan sebagai model matematik untuk 
memperihalkan pelbagai keadaan fizikal, dan juga wujud dalam perumusan semula 
masalah-masalah matematik yang lain. Dalam kajian ini, persamaan kamiran 
Fredholm (FIEs) linear jenis pertama dan kedua dipertimbangkan dan diselesaikan 
dengan menggunakan pendekatan berangka. Tujuan utama kajian ini adalah untuk 
mengkaji keberkesanan kaedah lelaran titik dan blok Min Berpemberat (WM) yang 
juga dikategorikan sebagai kaedah lelaran dua tahap dalam menyelesaikan sistem 
persamaan linear yang dijana daripada pendiskretan FIEs linear jenis pertama dan 
kedua. Di dalam aspek skema pendiskretan, tiga skema dengan peringkat yang 
berbeza bagi kuadratur Newton-Cotes tertutup gubahan dan penempatan bersama 
polinomial cebis demi cebis digunakan untuk mendiskret masalah FIEs linear jenis 
pertama dan kedua. Selanjutnya, perbincangan mengenai kekompleksan pengiraan 
bagi kaedah titik dan blok WM yang dikaji di dalam kajian ini juga dimuatkan. 
Dengan membandingkan kaedah-kaedah lelaran titik WM, kaedah-kaedah lelaran 
titik dari famili Min Geometri (GM) dan Min Harmonik (HM) adalah lebih baik 
daripada kaedah Min Aritmetik (AM) yang sepadan, terutamannya bagi masalah 
FIEs linear jenis pertama. Sementara itu, pelaksanaan kaedah-kaedah GM and HM 
adalah setanding. Berdasarkan ujikaji berangka, keputusan menunjukkan bahawa 
kaedah usulan 6-Titik Blok Min Aritmetik Sapuan Sukuan (6-QSBLAM), 6-Titik Blok 
Min Geometri Sapuan Sukuan (6-QSBLGM) and 6-Titik Blok Min Harmonik Sapuan 
Sukuan (6-QSBLHM) merupakan kaedah AM, GM dan HM masing-masing yang 
paling efektif bagi menyelesaikan sistem kuadratur Newton-Cotes tertutup gubahan 
dan penempatan bersama polinomial cebis demi cebis yang berhubungkait dengan 
penyelesaian berangka FIEs linear jenis pertama dan kedua apabila kriteria bilangan 
lelaran dan masa CPU dipertimbangkan. Dalam membandingkan keberkesanan 
kaedah-kaedah 6-Titik Blok Min Berpemberat Sapuan Sukuan (6-QSBLWM), didapati 
bahawa kaedah 6-QSBLGM and 6-QSBLHM adalah lebih baik daripada kaedah 6-
QSBLAM bagi menyelesaikan masalah FIEs. Kepelbagaian kaedah titik dan blok WM 
yang diterbitkan dengan menggunakan konsep lelaran sapuan separuh dan sukuan 
masing-masing dapat mengurangkan kekompleksan pengiraan bagi kaedah lelaran 
piawai WM sekurang-kurangnya 75% dan 93.75%. Dalam hal kejituan, kesemua 
tiga skema penempatan bersama polinomial cebis demi cebis yang diaplikasikan 
menghasilkan penyelesaian berangka yang lebih jitu jika dibandingkan dengan 
skema kuardratur Newton-Cotes tertutup gubahan terutamanya bagi masalah FIEs 
linear jenis pertama. Walaupun demikian, kejituan penyelesaian berangka adalah 
hampir sama apabila skema-skema kuardratur Newton-Cotes tertutup gubahan dan 
penempatan bersama polinomial cebis demi cebis yang dibandingkan pada 
peringkat sepadan bagi masalah FIEs linear jenis kedua.        
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