BIOSORPTION OF HEAVY METALS (Cu, Zn, Cd and Pb) BY MARINE ALGAE BIOMASS

SCHOOL OF SCIENCE AND TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2010

BIOSORPTION OF HEAVY METALS (Cu, Zn, Cd and Pb) BY MARINE ALGAE BIOMASS

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF SCIENCE AND TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2010

PUMS 99:1

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN TESIS	
JUDUL :	
IJAZAH :	
SAYA :	SESI PENGAJIAN :
(HURUF BESAR)	
Mengaku membenarkan tesis *(LPSM/Sarjana/Dokto Sabah dengan syarat-syarat kegunaan seperti berikut:	r Falsafah) ini disimpan di Perpustakaan Universiti Malaysia -
 Tesis adalah hak milik Universiti Malaysia Saba Perpustakaan Universiti Malaysia Sabah diben Perpustakaan dibenarkan membuat salinan t tinggi. 	ah. Jarkan membuat salinan untuk tujuan pengajian sahaja. esis ini sebagai bahan pertukaran antara institusi pengajian
4. Sila tandakan (/)	mat yang berdarjah keselamatan atau kepentingan Malaysia
seperti yang termaktu TERHAD (Mengandungi maklu mana penyelidikan di	ıb di AKTA RAHSIA RASMI 1972) mat TERHAD yang telah ditentukan oleh organisasi/badan di jalankan)
TIDAK TERHAD	Disahkan oleh:
 (TANDATANGAN PENULIS) Alamat Tetap:	(TANDATANGAN PUSTAKAWAN)
 TARIKH:	(NAMA PENYELIA) TARIKH:
Catatan: *Potong yang tidak berkenaan. *Jika tesis ini SULIT dan TERHAD, sila lampirkan sur menyatakan sekali sebab dan tempoh tesis ini perlu *Tesis dimaksudkan sebagai tesis bagi Ijazah Dokto bagi pengajian secara kerja kursus dan Laporan Pro	at daripada pihak berkuasa/organisasi berkenaan dengan u dikelaskan sebagai SULIT dan TERHAD. r Falsafah dan Sarjana Secara Penyelidikan atau disertai ıjek Sarjana Muda (LPSM).

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

30th October 2009

Ching Mei Lan PS2002-001-564

CERTIFICATION

- MATRIC NO. : **PS2002-001-564**
- TITLE : BIOSORPTION OF HEAVY METALS (Cu, Zn, Cd and Pb) BY MARINE ALGAE BIOMASS
- DEGREE : MASTER OF SCIENCE
- VIVA DATE :12 MAY 2010

DECLARED BY

ACKNOWLEDGEMENT

Firstly, I would like to sincerely thank my fantastic supervisor Prof. Dr. Marcus Jopony for his continuous encouragement, guidance and enthusiasm in order for me to complete this thesis. His patience and sacrifice, both in time and effort, are very much appreciated.

To the staffs of chemistry lab for their kind and valuable assistance while doing my lab work. Thank you for your co-operation.

To my fellow postgrads for their friendship and encouragement throughout the year.

And last but not least, to my friends and family for their unending support, motivation and love throughout the up and down.

ABSTRACT

BIOSORPTION OF HEAVY METALS (Cu, Zn, Cd and Pb) BY MARINE ALGAE BIOMASS

The use of biological materials or biomass as adsorbent for the removal of heavy metals from aqueous solutions or wastewater is increasingly getting attention. In the present studies, biosorption of heavy metals (i.e Cu, Zn, Cd and Pb) by nonliving biomass of marine algae, Sargassum sp., was investigated according to batch and column techniques. The experimental variables include contact time, initial metal concentration, biosorbent dosage, metal type, pH, solution composition, biosorbent pre-treatment, flow rate and bed height. The residual concentration of the metals in solution was determined by flame atomic absorption spectroscopy (FAAS). The results showed that the adsorption of all the metals by the biosorbent was rapid and approached maximum within 30 min contact time but attained equilibrium after 120 min. The adsorption obeyed pseudo- 2^{nd} order kinetics (R² ~ 1.0) with the rate constant, k_{2i} following the order Pb > Cu ~ Zn > Cd. The amount of each metal adsorbed increased proportionally from approximately 980 µg/g to 4900 μ g/g while percentage removal was fairly constant (~ 98 %) with increase in initial metal concentration from 10 µg/mL to 50 µg/mL. The equilibrium adsorption data fitted better to Freundlich isotherm ($R^2 = 0.97 - 0.99$) compared with Langmuir isotherm ($R^2 = 0.74 - 0.88$). The calculated maximum monolayer adsorption, q_{max} of the biomass vary according to the type of metal: Cd (16.67) mg/g > Pb (14.29 mg/g) > Cu = Zn (12.50 mg/g). Percent adsorption increased slightly (i.e 2.32 % - 15.9 %) with increase in the biosorbent dosage from 0.1 to 1.0 g. The adsorption of all the metals increased with increase in pH from pH 2.0 to 4.0, with no further significant increase beyond pH 4.0. Metal removal efficiency was lower in mixed metal solutions compared to single metal solutions. The presence of other metal ions in solution resulted in the reduction of the adsorption of a particular metal in the order Zn > Cu > Cd > Pb, and this was more apparent at high initial metal concentrations. Acid pre-treatment of the biomass resulted in the reduction (14.5 % - 48.8 %) in its efficiency to adsorb the metals. Meanwhile, the results of the column experiments showed that the efficiency of Cu, Zn, Cd and Pb removal decreased with the increase in flow rate but increased with the increase in bed height. Overall, non-living biomass of the locally available marine algae, Sargassum sp., have promising potential as biosorbent for the heavy metals Cu, Zn, Cd and Pb.

ABSTRAK

Penggunaan bahan biologi atau biojisim sebagai bahan penjerap untuk menyingkirkan logam berat dari larutan akuas atau air kumbahan semakin mendapat perhatian. Dalam kajian ini, jerapan logam berat (Cu, Zn, Cd dan Pb) oleh biojisim alga laut, Sargassum sp. telah dikaji menggunakan kaedah kelompok dan kaedah turus. Pembolehubah eksperimen termasuklah masa sentuhan, kepekatan asal logam, dos bahan jerapan, jenis logam, pH, komposisi larutan, prarawatan bahan jerapan, kadar aliran dan ketinggian turus. Kepekatan akhir logam dalam larutan ditentukan menggunakan spektrokopi serapan atom cahaya (FAAS). Hasil kajian menunjukkan bahawa jerapan untuk semua logam berat berlaku dalam masa yang singkat dan menghampiri maksimum dalam masa sentuhan 30 minit tetapi mencapai keseimbangan selepas 120 minit. Jerapan ini mematuhi kinetik tertib kedua ($R^2 \sim 1.0$) dengan pemalar kadar k₂ mengikut urutan Pb > Cu ~ Zn > Cd. Amaun setiap logam yang dijerap oleh biojisim Sargassum sp. meningkat secara berkadaran dari sekitar 980 µg/g ke 4900 µg/g manakala peratusan penyingkiran adalah malar (~ 98 %) dengan peningkatan kepekatan awal logam dari 10 µq/mL ke 50 uq/mL. Data keseimbangan jerapan lebih mematuhi isoterma Freundlich ($R^2 = 0.97 - 0.99$) berbanding isoterma Langmuir ($R^2 = 0.74 - 0.88$). Nilai kapasiti jerapan maksima, q_{max} adalah berbeza mengikut jenis logam: Cd (16.67 mg/g) > Pb (14.29 mg/g) > Cu = Zn (12.50 mg/g). Peratusan jerapanlogam meningkat sedikit sahaja (2.32 % - 15.9 %) dengan peningkatan amaun biojisim yang digunakan dari 0.1 g sehingga 1.0 g. Jerapan untuk semua logam meningkat dengan peningkatan pH larutan dari pH 2.0 ke pH 4.0, kemudian menjadi malar pada pH > 4.0. Keberkesanan penyingkiran logam adalah rendah dala<mark>m la</mark>rutan campuran logam berbanding logam tunggal. Kehadiran logam lain dalam larutan menyebabkan pengurangan dalam efisiensi jerapan bagi logam spesifik mengikut urutan Zn > Cu > Cd > Pb dan kesan ini lebih ketara pada kepekatan awal logam yang tinggi. Pra-rawatan biojisim alga dengan asid menghasilkan penurunan (14.5 % - 48.8 %) dalam keupayaan untuk menjerap logam. Hasil eksperimen turus menunjukkan bahawa keberkesanan biojisim untuk menyingkirkan logam Cu, Zn, Cd dan Pb menurun dengan peningkatan kadar aliran tetapi meningkat dengan peningkatan ketinggian turus biojisim. Secara keseluruhannya , biojisim dari alga marin tempatan, Sargassum sp. berpotensi sebagai bahan penjerap biologi bagi logam berat, Cu, Zn, Cd dan Pb.

LIST OF CONTENTS

	Page
TITLE	i
DECLARATION	ii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
LIST OF CONTENTS	vii
LIST OF TABLES	Х
LIST OF FIGURES	xii
LIST OF SYMBOLS AND ABBREVIATIONS	XV

CHAPTER 1: INTRODUCTION

1.1	Heavy Metals Pollution	1
1.2	Controls of Heavy Metal Discharges	4
1.3	Biosorption	
	1.3.1 Definition	5
	1.3.2 Types of biosorbents	6
1.4	Marine Algae	6
1.5	Previous Studies on Biosorption of Heavy Metals Using	
	Algae Biomass	9
1.6	Objectives of Study	9
1.7	Scope of Study	12
1.8	Outlines of Thesis	12

CHAPTER 2: LITERATURE REVIEW NIVERSITI MALAYSIA SABAH

	Wastewater Treatment Technologies for Removal of		
	Heavy	Metals	13
	2.1.1	Chemical methods	13
	2.1.2	Biological methods	14
	2.1.3	Physical methods	14
2.2	Heavy	Metal Biosorption By Marine Algae Biomass	17
	2.2.1	Characteristics of marine algae biomass	17
	2.2.2	Effect of contact time on heavy metal biosorption	19
	2.2.3	Effect of initial metal concentration on heavy metal	
		biosorption	20
	2.2.4	Effect of biomass dosage on heavy metal biosorption	22
	2.2.5	Effect of type of algal biomass	23
	2.2.6	Effect of metal type on heavy metal biosorption	24
	2.2.7	Effect of pH on metal biosorption	24
	2.2.8	Effect of metals competition on metal biosorption	29
2.3	Effects	s of Pre-Treatment	30
2.4	Kinetic	s of Metal Biosorption	32
	2.4.1	Pseudo-first order model	32
	2.4.2	Pseudo-second order model	33
	2.4.3	Intraparticle diffusion model	33

2.5	Adsorption Equilibrium	34
	2.5.1 Freundlich isotherm	34
	2.5.2 Langmuir isotherm	36
2.6	Column Studies of Heavy Metal	37
2.7	Mechanisms of Heavy Metal Biosorption on Marine Algae	
	Biomass	40

CHAPTER 3: MATERIALS AND METHODS

3.1	Marine Algae Sample	42
3.2	Pre-Treatment of Non-Living Algae Biomass	43
3.3	Characterization of Marine Algae Biomass	44
	3.3.1 Potentiometric titration	44
	3.3.2 Fourier Transform Infrared Spectroscopy (FTIR)	44
	3.3.3 Determination of ash content	45
3.4	Preparation of Aqueous Metal Solutions	46
	3.4.1 Stock solutions (1000 µg/mL)	46
	3.4.2 Standard solutions	46
	3.4.3 Working solutions	46
3.5	Batch Studies on Metal Removal By Marine Algae	47
	3.5.1 Effect of contact time on metal removal	48
	3.5.2 Effect of initial metal concentration on metal removal	49
	3.5.3 Effect of biomass dosage on metal removal	49
	3.5.4 Effect of pH on metal removal	49
	3.5.5 Effect of other metal ions in solution on metal removal	50
	3.5.6 Effect of biomass pre-treatment on metal removal	50
7	3.5.7 Calculations	51
3.6	Desorbability of Adsorbed Heavy Metals	51
3.7	Column Experiments	52
3.8	Analysis of Heavy Metals UNIVERSITI MALAYSIA	SABAH

CHAPTER 4: HEAVY METAL REMOVAL – BATCH EXPERIMENTS

4.1	Characteristics of Algae Biomass	56
	4.1.1 Potentiometric titration	56
	4.1.2 FTIR analysis	58
	4.1.3 Ash content	59
4.2	Heavy Metal Removal From Solution By Natural Algal	
	Biomass: Batch Experiments	60
	4.2.1 Effect of contact time on metal removal	60
	4.2.2 Effect of initial metal concentration	69
	4.2.3 Effect of biosorbent dosage	76
	4.2.4 Effect of metal type on metal adsorption by	
	marine algae biomass	79
	4.2.5 Effect of pH on metal adsorption by marine algae	
	biomass	80
	4.2.6 Effect of solution composition	83
	4.2.7 Effect of acid pre-treatment	87
4.3	Adsorption mechanisms	88
4.4	Heavy Metal Removal From Solution By Marine Algae	
	Biomass: Column Experiments	93

4.4.1 4.4.2	Effect of flow rate Effect of bed height	93 96
CHAPTER 5: CONCLUSIONS		98
REFERENCES		100
LIST OF APPENDICES		

LIST OF TABLES

		Page
Table 1.1	Heavy metal discharges from various industries	2
Table 1.2	Effects of heavy metals	3
Table 1.3	Discharged standards for industrial effluent in Malaysia according to Environmental Quality Act 1974 (Sewage and Industrial Effluents Regulation 1978)	5
Table 1.4	Algal divisions	7
Table 1.5	Examples of biosorbents used in biosorption studies	8
Table 1.6	Biosorption studies using non living biomass of macroalgae	10
Table 1.7	Biosorption studies using non living biomass of brown algae <i>Sargassum</i> sp.	11
Table 1.8	Biosorption studies in Malaysia using non living biomass of macroalgae	12
Table 2.1	Conventional metal removal technologies	16
Table 2.2	Commonly observed stretching wavelength in marine algae biomass FTIR spectrum	18
Table 2.3	Equilibrium time for biosorption of heavy managements by selected macroalgae adsorbents	BAH 21
Table 2.4	Heavy metal adsorption capacity (q_{mak}) of different marine algae biomass	26
Table 2.5	Comparison of heavy metals adsorption capacities of various adsorbents	27
Table 2.6	Heavy metal adsorption capacity of selected marine algae biomass	28
Table 2.7	Metal affinity of selected marine algae in mixed-metal solution	30
Table 2.8	Effect of various type pre-treatment on metal adsorption by marine algae	31
Table 2.9	Conformation to pseudo-first order, pseudo-second order and intraparticle diffusion kinetic model of metal adsorption by selected marine algae biomass.	35

Table 2.10	Examples of heavy metal adsorption by algae biomass that conforms to Freundlich isotherm	36
Table 2.11	Examples of heavy metal adsorption by algae biomass that conforms to Langmuir isotherm	38
Table 3.1	Standard solutions concentrations	46
Table 3.2	Conditions employed for batch adsorption studies	47
Table 3.3	Conditions employed for column studies	54
Table 3.4	Standard FAAS conditions for selected metals (Perkin-Elmer, 1994)	55
Table 4.1	Functional groups of <i>Sargassum</i> sp. and the corresponding infrared adsorption frequencies	58
Table 4.2	Ash contents of various algae sample	59
Table 4.3	Values of pseudo-first order, pseudo-second order and intra-particle diffusion parameters for heavy metal removal from aqueous solution ($C_0 = 20 \ \mu g/mL$)	69
Table 4.4	Freundlich and Langmuir isotherms parameters	75
Table 4.5	Chemical properties of elements	79
Table 4.6	Percentage of desorption for Cu, Zn, Cd and Pb	88
Table 4.7	Characteristic of FTIR spectra after react with Cd, Zn, Cu and Pb	89
Table 4.8	Breakthrough point for heavy metals in column experiment (fixed bed height)	95

LIST OF FIGURES

Page

		-
Figure 2.1	A schematic diagram of an adsorption process	15
Figure 2.2	Structure of alginic acid	17
Figure 2.3	Potentiometric titration curves for six seaweeds samples	18
Figure 2.4	Effect of contact time on the adsorption of Ni(II) by algae biomass at different initial metal concentration	20
Figure 2.5	Effect of pH on the adsorption of Ni(II) on algae	25
Figure 2.6	A schematic graph showing a breakthrough curve/ breakthrough time	39
Figure 2.7	FTIR spectra for <i>Fucus vesiculosus</i> without metal (a), with Cd (b), Pb (c) and Cu (d)	41
Figure 3.1	Pantai Bak Bak, Kudat	42
Figure 3.2	Fresh brown algae (<i>Sargassum</i> sp.) sample	43
Figure 3.3	Grinded dried brown algae (<i>Sargassum</i> sp.)	43
Figure 3.4	Pre-treated algae (<i>Sargassum</i> sp.) biomass sample	44
Figure 3.5	FTIR Spectroscopy (Thermo Nicolet Model 470/670/870)	45
Figure 3.6	Orbital shaker (Protech Model 721)	48
Figure 3.7	Schematic diagram for column experiment	53
Figure 3.8	Flame atomic absorption spectroscopy, (Perkin-Elmer Model 41000)	54
Figure 4.1	Potentiometric titration curve of <i>Sargassum</i> sp. biomass with 0.01 M NaOH	57
Figure 4.2	Potentiometric titration curve of <i>Sargassum</i> sp. biomass with 0.01 M HNO ₃	57
Figure 4.3	FTIR spectrum of Sargassum sp. biomass	58
Figure 4.4	Plots of percent Cu removal versus contact time at different initial metal concentration (solid-solution ratio = $1:100$)	61
Figure 4.5	Plots of percent Zn removal versus contact time at different initial metal concentration (solid-solution ratio = 1:100)	62
	\/	

Figure 4.6	Plots of percent Cd removal versus contact time at different initial metal concentration (solid-solution ratio = 1:100)	63
Figure 4.7	Plots of percent Pb removal versus contact time at different initial metal concentration (solid-solution ratio = 1:100)	64
Figure 4.8	Pseudo first-order kinetic plots of Cu, Zn, Cd and Pb adsorption by <i>Sargassum</i> sp. $(C_{o} = 20 \ \mu g/mL$, solid-solution ratio = 1:100)	66
Figure 4.9	Pseudo second-order kinetic plots of Cu, Zn, Cd and Pb adsorption by <i>Sargassum</i> sp. $(C_o = 20 \ \mu g/mL \text{ solid-solution ratio} = 1:100)$	67
Figure 4.10	Intra-particle diffusion plots for the adsorption of Cu, Zn, Cd and Pb on <i>Sargassum</i> sp. biomass. $(C_o = 20 \ \mu g/mL$, solid-solution ratio = 1:100)	68
Figure 4.11	Effect of initial heavy metal concentration on metal (Cu, Zn, Cd and Pb) adsorption (solid-solution ratio = 1:100, equilibrium time = 120 min)	70
Figure 4.12	Plot of percent heavy metal removal at different initial concentration (solid-solution ratio = 1:100, equilibrium time = 120 min)	71
Figure 4.13	Adsorption isotherms of Cu, Cd, Pb and Zn onto Sargassum sp. biomass (solid-solution = 1:100)	72
Figure 4.14	Freundlich isotherms for Cu, Zn, Cd and Pb adsorption by <i>Sargassum</i> sp. biomass (solid-solution ratio = 1:100)	73
Figure 4.15	Langmuir isotherms for Cu, Zn, Cd and Pb adsorption by <i>Sargassum</i> sp. biomass (solid-solution ratio = $1:100$)	74
Figure 4.16	Effect of biosorbent dosage on the removal of Cu, Zn, Cd and Pb by <i>Sargassum</i> sp. biomass ($C_0=100 \ \mu g/mL$, V = 50 mL)	77
Figure 4.17	Effect of biosorbent dosage on total amount removal of Cu, Zn, Cd and Pb by <i>Sargassum</i> sp.	79
Figure 4.18	The percentage removal of Cu, Zn, Cd and Pb by <i>Sargassum</i> sp. biomass at different pH. $(C_0 = 50 \text{ mg/L}, \text{ solid-solution ratio} = 1:100)$	81
Figure 4.19	Effect of pH on Cu, Zn, Cd and Pb adsorption by <i>Sargassum</i> sp. biomass. ($C_o = 50 \text{ mg/L}$, solid-solution ratio = 1:100)	82

Figure 4.20	Cu and Cd removal in a single-metal and mixed-metals solution at different initial metal concentrations (solid-solution ratio = 1:100)	84
Figure 4.21	Zn and Pb removal in a single-metal and mixed-metals solution at different initial metal concentrations (solid-solution ratio = 1:100	85
Figure 4.22	Comparison of Cu, Cd, Pb and Zn removal in single-metal and mixed-metals solution $(C_o = 20 \ \mu g/mL$, solid-solution ratio = 1:100)	86
Figure 4.23	Effect of pre-treatment by <i>Sargassum</i> sp. biomass. ($C_o = 20 \ \mu g/mL$, solid-solution ratio = 1:100, agitation speed = 100 rpm)	87
Figure 4.24	Schematic representation of cation exchange between functional group and heavy metal ions	90
Figure 4.25	Schematic reaction mechanism for complexation between functional group and heavy metal in marine algae biomass	90
Figure 4.26	FTIR spectrum of <i>Sargassum</i> sp. biomass after reaction with Cu	91
Figure 4.27	FTIR spectrum of <i>Sargassum</i> sp. biomass after reaction with Zn	91
Figure 4.28	FTIR spectum of <i>Sargassum</i> sp. biomass after reaction with Cd	92
Figure 4.29	FTIR spectrum of Sargassum sp. biomass after reaction with Pb	92
Figure 4.30	Breakthrough curves of Cu, Zn, Cd and Pb at different flow rate (Bed height = 2 cm; initial concentration = 50 µg/mL, amount of biomass = 2g)	94
Figure 4.31	Breakthrough curves of Cu, Zn, Cd and Pb at different bed height (Flow rate = 10 mL/min; initial concentration = 50 μ g/mL)	97

LIST OF SYMBOLS AND ABBREVIATIONS

~	about
±	plus/minus
°C	degree Celsius
%	percent
<u>→</u>	reversible
=	equal to
Co	initial concentration
AAS	atomic absorption spectroscopy
cm	centimeter
e.g	example
FTIR	fourier transform infrared spectroscopy
g	gram
h	hour
Μ	molar
mg	miligram
mg/g	miligram per gram
mg/L	miligram per liter
min	minute
mL	mililiter
mL/min	mililiter per min
mm	milimeter
mmol/g	milimol per gram
mol/L	mol per liter
ppm	parts per million
rpm 🛛 🔁 🔼 🍟	round per minute
s	second
sp.	species
t 😪 🖁	time UNIVERSITI WALATSIA SADAR
μg	microgram
µg/g	microgram per gram
µg/mL	microgram per mililiter

LIST OF APPENDICES

APPENDIX A	Figure A-1: Calibration curve for Cu standard solution	117
	Figure A-2: Calibration curve for Cd standard solution	117
APPENDIX B	Figure B-3: Calibration curve for Pb standard solution	118
	Figure B-4: Calibration curve for Zn standard solution	118
APPENDIX C	Table C-5: Data for Cu, Cd, Pb and Zn percentage adsorption at different concentration and contact time	119
APPENDIX D	Table D-6: Data for determination potentiometric titration	120
APPENDIX E	Table E-7 : Data for isotherm graph	122
	Table E-8: Data for percentage removal of heavy metal at different pH	122
R	Table E-9: Data for uptake of heavy metal at different pH	122
APPENDIX F	Table F-10: Data for intraparticle diffusion	123
	Table F-11: Pseudo-first order kinetic data for heavy metal	SABA
	Table F-12: Pseudo-second order kinetic data for heavy metal	123
APPENDIX G	Table G-13: Data for Cu Langmuir Isotherm	124
	Table G-14: Data for Cd Langmuir Isotherm	124
	Table G-15: Data for Pb Langmuir Isotherm	124
	Table G-16: Data for Zn Langmuir Isotherm	124
APPENDIX H	Table H-17: Data for Freundlich Isotherm	125
	Table H-18: Data for Pre-treatment of Cu	125
	Table H-19: Data for Pre-treatment of Cd	125
APPENDIX I	Table I-20: Data for Pre-treatment of Pb	126
	Table I-21: Data for Pre-treatment of Zn	126

	Table I-22: Data for single solution adsorption versus mixed solution adsorption	126
APPENDIX J	Table J-23: Data for heavy metal adsorption at different adsorbent dosage	127
	Table J-24: Data for desorption of heavy metal	127
APPENDIX K	Table K-25: Column Experiment for Cu on Flow Rate	128
	Table K-26: Column Experiment for Cd on Flow Rate	128
APPENDIX L	Table L-27: Column Experiment for Pb on Flow Rate	129
	Table L-28: Column Experiment for Zn on Flow Rate	129
APPENDIX M	Table M-29: Column Experiment for Cu on Bed Height	130
	Table M-30: Column Experiment for Cd on Bed Height	130
APPENDIX N	Table N-31: Column Experiment for Pb on Bed Height	131
- B	Table N-32: Column Experiment for Zn on Bed Height	131
APPENDIX O	Calculation 1: Example calculation of retention time, R _t	132
EL X	Calculation 2: Example calculation of Cu removal	133
	State /	

UNIVERSITI MALAYSIA SABAH

CHAPTER 1

INTRODUCTION

1.1. Heavy Metals Pollution

Heavy metals are generally defined as metallic elements with a specific gravity greater than five gcm⁻³ and atomic number greater than 20 (Mason, 1996). Examples include copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), nickel (Ni), chromium (Cr), arsenic (As) and mercury (Hg).

Heavy metals can exist in the environment as a result of natural biogeochemical processes as well as due to anthropogenic activities (Laws, 1993). The types and concentrations of heavy metals discharged anthropogenically, however, are dependent on the type of source (Table 1.1). The natural geochemical cycle of heavy metals can be greatly modified by such anthropogenic activities, and the resultant presence of above normal concentration of heavy metals in the environment can cause adverse effects on animals, plants and humans. This condition is generally termed as heavy metal pollution (Novotny, 1995).

UNIVERSITI MALAYSIA SABAH

The presence of heavy metals can lead to undesirable effects on water quality and impede a variety of potential water uses. Unlike toxic organics, which in many cases can be degraded, heavy metals that are released into the environment tend to persist indefinitely, accumulating in living tissues upward the food chain (Laws, 1981). These toxicants, for example, can be picked up by fish or shellfish and concentrated until the organisms are no longer fit for human consumption.

Type of	Heavy	Heavy Metal	References
industry	Metal	Concentration (mg/L)	
Automotive	Pb	23	Thomas, 1995
machining	Zn	24	
industry			
Boatyard	As	0.07	Thomas, 1995
	Cd	0.004	
	Cr	0.16	
	Cu	190.00	
	Ni	0.09	
	Pb	3.40	
	Zn	6.90	
Food industry	Cd	0.006	Scragg, 1999
-	Cr	0.150	
	Cu	0.29	
	Zn	1.08	
Integrated	Cu	0.23	Eckenfelder, 2000
circuit			
manufacturing			
Meat industry	Cd	0.01	Scragg, 1999
100-20	Cr	0.15	
	Cu	0.09	
	Zn	0.43	
Plating	Cr	41.6	Eckenfelder, 2000
	Cu	11.4	
21 15	Zn	18.4	
Petroleum	Cu	0.5	Eckenfelder, 2000
refinery	/ Cr	LINIVER 2.2TI MALA	VSIA SARAH
The Party of the P	Zn	0.7 MALA	I UIA UADALI
Sugar	Pb	0.1	Silvalingam <i>et al</i> .,
manufacturing	Cd	0.1	1978
Textiles	Cd	0.03	Scragg, 1999
	Cr	0.80	
	Cu	0.03	
	Zn	0.47	

 Table 1.1: Heavy metal discharges from various industries

Majority of heavy metals are toxic to humans and the effects range from hypertension to carcinogenic (Table 1.2). Two well known examples of the consequences of heavy metal pollution are Minamata and Itai-itai diseases. In 1953, a large number of inhabitants near Minamata, Japan was found to be suffering from nervous disorders such as speech disturbances, delirium and difficulties in walking. Subsequently this was associated with consumption of seafood contaminated with mercury (Mason, 1996). The illness was termed as Minamata disease.

Meanwhile, in 1955, residence in Jintsu River Valley, Japan were found to be suffering from a disease which was called Itai-itai or ouch-ouch, characterized by severe back and joints pains and a decalcification of the bones, leading sometimes to multiple fractures. This problem was associated with the consumption of rice containing high concentration of cadmium (Friberg & Elinder, 1985). Apparently, the high Cd was due to nearby mining activities (Mason, 1996).

The above examples, although far from conclusive, nevertheless serve to illustrate the point that heavy metals pollution can be a serious problem on a local and global scale. In economic term, when a certain area is contaminated by heavy metals, a massive cleanup is required and the cost can run into literally billions of dollars (Laws, 1981). In addition, it will take a very long time for the degraded environment to be restored to it's original condition.

Heavy metal	Adverse Effects / Symptoms		
CuBA	Various acute and chronic disorders such as haemochromatosis and gastrointestinal catarrh.		
Zn	Damage to upper alimentary tract, nausea, emesis, pneumonitis, fever, diarrhea.		
Pb	Diseases such as anaemia, encephalopathy, hepatitis and nephritic syndrome; Long term – plumbism, brain and kidney damage and birth defects.		
Cd	Acute and chronic disorders such as 'itai-itai' disease, renal damage, emphysema, hypertension and testicular atrophy.		
Cr	Corrosive to tissue, develop nose ulcers and maybe lost sense of smell; Long term – skin sensitization, kidney and liver damage, convulsions and cramps.		
Hg	Corrosive to intestinal tract, damage to kidney and liver, loss of fertility, interfere with the development of reproductive, endocrine, immune and nervous systems both male and female, Minamata disease.		

Table 1.2: Effects of heavy metals

Source: Manahan (1996)

1.2. Controls of Heavy Metal Discharges

Due to the potentially adverse impacts of heavy metals to the environment, many countries have stringent environmental regulations with respect to wastewater discharges. Typically, these regulations specified that wastewaters need to be treated effectively prior to discharge to remove pollutants such as heavy metals. In Malaysia, wastewater discharges from industries, including metal-based industries, are required to comply with the limits set by the Environmental Quality Act 1974, specified under Sewage and Industrial Effluents Regulations, 1978. The discharge standards are shown in Table 1.3. In general, the more toxic is the heavy metal, the lower is the discharge limit, while the limits for Standard A is more stringent compared with Standard B.

Conventional treatment technologies for removal of heavy metals from wastewaters include flocculation (Johnson *et al.*, 2008), coagulation (Johnson *et al.*, 2008), crystallization (Minato *et al.*, 2001), chemical precipitation (López *et al.*, 2004), chemical oxidation or reduction (Sundstrom *et al.*, 1996), electrochemical treatment (Kurniawan *et al.*, 2006), ion exchange (Kurniawan *et al.*, 2006), membrane separation (Kurniawan *et al.*, 2006), biological methods (Mantis *et al.*, 2005) and adsorption (Volesky, 2001). Some of these methods have drawbacks in terms of efficiency, operational cost, selectivity and by-products (Wong & Tam, 1998; Wase & Forster, 1997). For example, chemical treatment methods can prove costly to the users as the active agent cannot be recovered for reuse in successive treatment cycles (Kurniawan *et al.*, 2006). Also, the end products are metal-bearing sludges which need further disposal. Application of biological methods involving live organisms is difficult for industries because of some special precautions on conditions such as temperature, nutrients and light.

Parameter	Industrial Efflue	ent (mg/L)
	Standard A	Standard B
As	0.05	0.10
Cd	0.01	0.02
CN	0.05	0.10.
Cr (VI)	0.05	0.05
Cu	0.20	1.00
Fe	1.00	5.00
Hg	0.005	0.05
Mn	0.20	1.00
Ni	0.20	1.00
Pb	0.10	0.50
Sn	0.20	1.00
Zn	1.00	1.00

Table 1.3:Discharged standards for industrial effluent in Malaysia
according to Environmental Quality Act 1974 (Sewage and
Industrial Effluents Regulation 1978)

Adsorption is by far the most versatile and widely used technique for the removal of toxic pollutants including heavy metals from aqueous solutions (Selatnia *et al.*, 2004; Gupta *et al.*, 2000; Vegliò *et al.*, 1997). Generally, this technique involves the interaction between an adsorbent with the heavy metal ion in solution. Until recently, the adsorbents used for this purpose are inorganic materials such as activated carbon (Chen *et al.*, 2003) and zeolite (Hui *et al.*, 2005).

1.3. Biosorption

1.3.1. Definition

A recent development in adsorption technology involves the use of biological materials or biomass as adsorbent to accumulate adsorbates (such as heavy metals) from aqueous solutions or wastewaters. This adsorption method is termed as biosorption while the adsorbent is known as biosorbent (Nuhoglu *et al.*, 2002; Volesky & Holan, 1995).