SURFACE OZONE VARIATIONS AT THE GREAT WALL STATION, ANTARCTICA DURING AUSTRAL SUMMMER

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2020

SURFACE OZONE VARIATIONS AT THE GREAT WALL STATION, ANTARCTICA DURING AUSTRAL SUMMER

FRANKY HERMAN

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITY MALAYSIA SABAH 2020

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL : SURFACE OZONE VARIATION AT THE GREAT WALL STATION, ANTARCTICA DURING AUSTRAL SUMMER

IJAZAH : SARJANA SAINS

BIDANG : SAINS SEKITARAN

Saya **FRANKY HERMAN**, Sesi **2018-2020**, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan Oleh,

FRANKY HERMAN MS1811018T

(Tandatangan Pustakawan)

Tarikh : 10 November 2020

(Prof. Madya Dr. Justin Sentian) Penyelia

DECLARATION

I declare that this thesis has been composed solely by myself and that it has not been submitted, in whole or in part, in any previous application for a master's degree in science. Except where states otherwise by reference or acknowledgment, the work presented is entirely my own.

09 OCTOBER 2020

FRANKY HERMAN MS1811018T

CERTIFICATION

NAME	:	FRANKY HERMAN
NO. MATRIX	:	MS1811018T
TITLE	:	SURFACE OZONE VARIATION AT THE GREAT WALL
		STATION, ANTARCTICA DURING AUSTRAL SUMMER
DEGREE	:	MASTER OF SCIENCE
PROGRAMME	:	ENVIRONMENTAL SCIENCE PROGRAMME
DATE OF VIVA	:	09 OCTOBER 2020

CERTIFIED BY;

ACKNOWLEDGEMENT

I would like to gratefully acknowledge the funder of this study, Sultan Mizan Antarctic Research Foundation (YPASM, 2017-UMS,GLS0017) as supported by the Chinese Arctic and Antarctic Administration (CAA) especially for the staff at the Great Wall Station, Antarctica for their cooperation and support. I would like to thank University Malaysia Sabah (UMS) for partially funding this research via Skim Bantuan Pascasiswazah and UMSGreat (GUG0341-1/2019) respectively.

I would like to express my sincere and greatest gratitude to my only supervisor, Assoc. Professor Dr. Justin Sentian for his dedicated support and guidance. He continuously provided encouragement and was willing and enthusiastic to assist in any way he could throughout the research project. I would also like to thank Dr. Mohd Sharul Mohd Nadzir from Faculty of Science and Technology, University Kebangsaan Malaysia (UKM) for providing advice regarding analysis. Many thanks to Vivian Kong Wan Yee that her support and motivation, who made me feel confident in my abilities thus enabling this research to be possible.

UNIVERSITI MALAYSIA SABAH

Franky Herman 09 October 2020

ABSTRACT

Surface Ozone (O_3) is a secondary pollutant which toxic to human health, and a greenhouse gas which is one of the prime climate forcers. Due to the clean atmospheric environment of the Antarctic region and given the complexity of O₃ chemistry, the observation of surface O₃ variability in this region is necessary in the quest to better understand the potential sources and sink of polar surface O_3 . This study highlights the observation on surface O₃ variability at the Great Wall Station (GWS) during austral summer in December 2018 and January 2019. The continuous in-situ surface O₃ measurement at the GWS, Antarctica was carried out using the EcoTech Ozone analyzer while meteorological data was obtained from the conventional auto-observational station operated at the GWS. To have a better understanding of surface O_3 latitudinal distribution, the spatial and temporal of surface O_3 data obtained online from the World Meteorology Organization of World Data Centre for greenhouse gases (WMO WDCGG) were then compared to give an indications of its spatial and temporal characteristic. The HYSPLIT model (Hybrid Single-Particle Lagrangian back-trajectory) was employed to have a better picture on the overall impact of air mass transport toward the surface O₃ formation over the region. Lastly, to have a better discernment on the potential impact of meteorology to the surface O_3 formation, statistical principal analysis (PCA) was employed to give a confidence measure over which meteorological parameter play more pivotal role on affecting surface O₃ background level. The results show that despite being characterised as stable surface O₃ concentration with standard deviation value of 0.24 ppbv throughout the entire period of observation, though the hourly summer surface O_3 distribution at GWS varies from 4.45 ppbv to 7.81 ppbv. The online dataset from WDCGG showed that the summer characteristic of surface O₃ at GWS are oneto-three times lower than what been observed at other research station. The unique characteristic of surface O₃ of GWS can temporarily emphasized by its synoptic marine air mass characteristic with coefficient correlation value of 0.17, significant at value of 0.1. The statistical result of PCA shows that three principal components factors with eigenvalues cut-off unity value of 70%, and only atmospheric pressure as well surface temperature in factor 1 shows significant positive correlation with surface O₃ with coefficient value of 0.667 and 0.563, respectively. While wind speed and wind direction in factor 3 which significant at 0.701 and 0.748 respectively, have more pivotal role to cause residual change in diurnal surface O_3 concentration. To

put something into perspective, the surface O_3 variability at the GWS suggesting that the marine air mass could be important source of low surface O_3 level, and the temporal characteristic controlled by combined local photochemical process and air mass transport subjected to the availability of its precursor, or halogen species and its weather condition.

Keywords: surface Ozone, meteorological conditions, Great Wall, austral summer, HYSPLIT

ABSTRAK

VARIASI OZONE PERMUKAAN DI STESEN GREAT WALL, ANTARTIKA PADA MUSIM PANAS AUSTRAL

Ozone (O₃) permukaan adalah bahan pencemar sekunder yang berbahaya bagi kesihatan manusia, dan gas rumah hijau yang merupakan salah satu punca utama perubahan iklim. Oleh kerana persekitaran atmosfera yang bersih di wilayah Antartika dan kerumitan tindakbalas kimia O3, pemerhatian terhadap variasi O3 di rantau ini diperlukan dalam usaha untuk lebih memahami proses dan sumber-sumber yang berpotensi dalam penghasilankan atau pemusnahan O₃. Fokus kajian ini adalah pemerhatian terhadap variasi O₃ di Stesen Great Wall pada musim panas Austral iaitu sekitar bulan Disember 2018 sehingga Januari 2019. Persampelan gas permukaan O₃ secara in-situ dilakukan secara berterusan di stesen ini dengan menggunakan EcoTech Ozone Analyzer sementara data meteorologi diperolehi daripada stesen pemerhatian automatik konvensional yang dikendalikan di GWS. Untuk lebih memahami variasi berkaitan taburan variasi permukaan O3 di kawasan-kawasan sekitar wilayah Antartika, data dalam talian daripada World Meteorology Organization of World Data Centre for greenhouse gases (WMO WDCGG) diproses dan kemudianya dibandingkan untuk memberikan perbandingan secara spasial dan temporal terhadap variasi permukaan O3. Model HYSPLIT (Hybrid Single-Particle Lagrangian back-trajectory) pula digunakan untuk memberikan gambaran keseluruhan terhadap kesan daripada peredaran jisim udara keatas penghasilan permukaan O₃ dikawasan ini. Untuk mengunjurkan analisa yang lebih baik berkaitan dengan potensi kesan perubahan meteorologi terhadap penghasilan permukaan O₃, statistikal analisis melalui kaedah Principal Component Analysis (PCA) digunapakai dalam menilai tiap-tiap parameter meteorologi dan pengaruhnya terhadap paras penghasilan permukaan O₃. Hasil kajian mendapati bahawa permukaan O₃ selama masa persampelan dilakukan di kawasan ini adalah bersifat stabil dengan nilai sisihan piawai 0.24 ppbv walaupun paras kepekatanya berbeza dari 4.45 ppbv sehingga 7.81 ppbv. Analisa perbandingan data yang diperolehi secara dalam talian dari WDCGG menunjukkan bahawa permukaan O₃ disepanjang musim panas Austral adalah satu sehingga tiga kali lebih rendah daripada stesen-stesen penyelidikan lain di rantau Antartika ini. Keunikan variasi permukaan O3 dikawasan ini ada kalanya dikesankan oleh peredaran jisim udara marin dengan korelasi 0.17 pada nilai unjuran 0.1. Hasil analisa PCA menunjukkan bahawa terdapat 3 kelas faktor dengan total nilai varians yang diterangkan sebanyak 70%, akan tetapi hanya tekanan udara dan suhu sahaja dalam faktor 1 menunjukkan korelasi positif bersama permukaan O₃ dengan nilai korelasi 0.667 dan 0.563. Manakala kelajuan dan arah mata angin dalam faktor 3 dengan nilai unjuran korelasi 0.701 dan 0.748 dilihat memainkan peranan yang lebih penting dalam pembentukan permukaan O₃. Dapat disimpulkan bahawa sumber utama variasi permukaan O₃ yang rendah di GWS adalah bersumberkan daripada export peredaran jisim udara daripada kawasan marin, dan ciri-ciri temporalnya dipengaruhi oleh gabungan proses fotokimia dan pergerakan jisim udara, tertakluk pada ketersediaan prekursor atau halogen spesis dan keadaan cuaca.

Kata kunci: Ozon permukaan, keadaan meteorologi, Tembok Besar, musim panas austral, HYSPLIT

TABLE OF CONTENTS

Page

TITLE		i
DECLA	RATION	ii
CERTI	FICATION	iii
ACKN	OWLEDGEMENT	iv
ABSTR	RACT	v
ABSTI	RAK	vii
TABLE	OF CONTENTS	ix
LIST	OF TABLES	xii
LIST	OF FIGURES	xiii
LIST	OF SYMBOLS	xv
LIST	OF UNITS	xvi
LIST	OF EQUATIONS	xvii
LIST	OF ABBREVIATIONS	xviii
LIST (OF APPENDICES	xxii
CHAP		1
11	The Atmosphere and Ozone (O_2) Gas	1
1.2	Problem Statement	- 3
1.3	Research Question	4
1.4	Objectives and Scope of the Study	5
1.5	Research Significant	5
		_
		/
2.1	Overview of Tropospheric O_3 In Mainland	/
2.2	Overview on Surface O ₃ Study at Polar Region	10
	Region	11
2.3	The General Oxidation Chemistry of O_3 in The Troposphere	14
2.4	Associated Factors Affecting Surface O ₃ Variability at Antarctica	16
	2.4.1 Surface O_3 Enhancement and Transport from the	18
	Stratosphere	
	2.4.2 Long-range Air Mass Transport from Lower Latitude	20
	2.4.3 Air Mass Transport from Antarctic's Plateau and Interior	22
	іх	

	2.4.4	Air Mass Transport from Ocean	23
	2.4.5	O ₃ Hole and Photodenitrification of Snowpack	26
2.5	Surfac	e O3 Characterisation and Meteorological Parameter	29
	2.5.1	Impact of Surface Local Winds	31
	2.5.2	Impact of Thermal Atmospheric Conditions	32
	2.5.3	Potential Impact of Radiation Exposure	34
CHAF	PTER 3:	METHODOLOGY	36
3.1	Study	Area	36
	3.1.1	Research Framework	37
3.2	Surfac	e O₃ Observation Campaign	38
3.3	Surfac	e Meteorological Dataset Measurement	42
	3.3.1	Surface Temperature	43
	3.3.2	Atmospheric Pressure	44
	3.3.3	Relative Humidity	44
	3.3.4	Total Radiation Exposure	45
B	3.3.5	Surface Wind	46
3.4	Surfac	e O ₃ and Meteorological Interpretation	47
14	<mark>3.4.1</mark>	Temporal Characteristic of Surface O ₃	47
	3.4.2	Secondary Data of Surface O ₃	47
	3.4.3	Secondary Dataset Pre-Processing	49
	3.4.4	Background Air Mass Trajectory Analysis	50
	3.4.5	Synoptic Air Mass Analysis and 6-hr O ₃ Concentration	52
	3.4.6	Diurnal Surface O ₃ and Meteorological Analysis	52
CHAF	PTER 4:	RESULT AND DISCUSSION	54
4.1	Backgi	round Meteorological Condition	54
	4.1.1	Surface Temperature	54
	4.1.2	Atmospheric Pressure	55
	4.1.3	Atmospheric Humidity	56
	4.1.4	Total Radiation Exposure	58
	4.1.5	Surface Wind Profile	59
4.2	Tempo	oral Characteristic of Surface O ₃ at GWS	60
	4.2.1	Inter-sequential Chane of Surface O ₃	61

	4.2.2 Day-to-day Characteristic of Surface O ₃	64	
4.3	Comparison of GWS With Other Antarctic Stations	66	
4.4	Backward Trajectories Analysis	71	
4.5	Diurnal characteristic of Surface O ₃ With Meteorological Condition	77	
		02	
СПАР	TER 5: CONCLUSION AND RECOMMENDATION	65	
5.1	Summary of Research Finding	83	
5.2	Research Limitation	84	
5.3	Recommendation for Future Research	85	
REFE	REFERENCES 8		

APPENDICES

119

LIST OF TABLES

Table 2.1	Summertime average of surface O_3 during daytime from 2000 – 2014	8
Table 2.2	Summertime surface O_3 mean of daytime for 8-hr average from 2000 – 2014	9
Table 3.1	The major components of the Serinus 10 Model	41
Table 4.1	Inter-annual comparison of surface O_3 during austral summer at GWS, Ushuaia, Neumayer and Trollhaugen Station from 20 December 2018 until 15 January 2019	68
Table 4.2	PCA result for O_3 and the meteorological parameter at GWS	80

LIST OF FIGURES

		Page
Figure 2.1	Estimated O_3 and OH production relationship based on NO taken after Crawford <i>et al.</i> (2001)	28
Figure 3.1	Location of the austral summer O_3 measurement campaign at Great Wall Station (GWS) on the western side of Antarctica peninsula	36
Figure 3.2	Research framework for Austral summer O_3 measurement campaign at GWS	37
Figure 3.3	Ecotech O ₃ analyser multipoint calibration plot	39
Figure 3.4	Internal components diagram of Serinus 10 model O_3 analyser	40
Figure 3.5	Automatic weather station operated at GWS, Antarctica	42
Figure 3.6	Schematic of data logger and thermocouples. $J_1 - J_3$ indicate wire junction where Seebeck-effect voltage offsets occur (Cathles & Albert, 2007)	43
Figure 3.7	Map of Antarctica (inner circle) showing the coastal sites of Neumayer, Syowa and Trollhaugen. The blue line refers to Argentinean station of Ushuaia located at Argentina and adjacent to GWS	49
Figure 3.8	Steps used to run the HYSPLIT backward trajectory model	51
Figure 4.1	The hourly (black line) and daily (blue dot) mean state of temperature at GWS from 20 December 2018 until 15 January 2019	55
Figure 4.2	The hourly (black line) and daily (blue dot) mean state of atmospheric pressure at GWS from 20 December 2018 until 15 January 2019	56
Figure 4.3	The hourly (black line) and daily (blue dot) mean state of humidity at GWS from 20 December 2018 until 15 January 2019	57
Figure 4.4	The hourly (black line) and daily (blue dot) mean state of radiation exposure at GWS from 20 December 2018 until 15 January 2019	58

- Figure 4.5 Surface wind profile at GWS from 20 December 2018 until 59 15 January 2019
- Figure 4.6 Hourly averaged (blackline) and daily averaged (blue dot) 61 of surface O₃ at GWS from 20 December 2018 until 15 January 2019
- Figure 4.7 Inter sequential of surface O₃ hourly change on successive 62 day at GWS
- Figure 4.8 Surface O₃ diurnal characteristic at GWS during night-time 65 (red line) and day-time (blue line)
- Figure 4.9 Hourly averaged of surface O₃ concentration at Ushuaia 67 (blue), Syowa (orange), Neumayer (red) and Trollhaugen (green) coastal site
- Figure 4.10 Frequency distribution of hourly averaged O₃ from 20 70 December 208 until 15 January 2019 in the coastal sites of GWS (a), Ushuaia (b), Syowa (c), Neumayer (d) and Trollhaugen (e)
- Figure 4.11 The 5-days backward trajectories and relative 6hr-O3 72 concentration starting from: (a) 20-24 December 2018; (b) 25-29 December 2019; (c) 30 December 2018-03 January 2019; (d) 09-13 January 2019
- Figure 4.12 The 6-hr average O₃ and the corresponding 5-day backward trajectories analysis at GWS. The black line represents the 6-hr average O₃. The blue line in (a) shows the trajectory length, the while the purple and green line in (b) represents the average altitude in pressure of air masses at 5-days and 3-days prior its arrival, the red line in (c) shows the residence time fraction of air masses prior to their arrival at GWS
- Figure 4.13 Hourly averaged surface O₃ concentration together with 79 weather conditions during the most variant surface O₃ concentration (a-d), and the most stable O₃ concentration (e-h). The black line represents O₃ concentration, the red line represent temperature, the purple line represents atmospheric pressure, the blue line represents humidity level, the yellow line represent radiation, while the green and brown lines represent wind speed and its direction

LIST OF UNITS

0	-	Degree
°C	-	Degree Celsius
cm	-	Centimetre
hPa	-	hectopascals
kPa	-	kilopascal
km	-	Kilometre
ppbv	-	part per billion by volume
pptv	-	part per thousand by volume
m grad		meter
m mg ⁻¹	- 74	meter per milligram
mb	5-A	millibar
mg m ⁻³	S.	milligram per meter cube AYSIA SABAH
MJ m ²	-	Megajoule per meter square
ms ⁻¹	-	meter per second
mW m ⁻²	-	milliwatt per meter square
nm	-	nanometre
μm	-	micrometre
V	-	Volt

LIST OF SYMBOLS

- + Plus, positive
- - Minus, Negative
- ± Plus, minus
- % Percentage
- > Greater than
- < Lower than
- *hv* Sun light
- x Times with

Power of two, square
Power of three, cube
UNIVERSITI MALAYSIA SABAH

LIST OF EQUATIONS

Equation 3.1	Beer–Lambert equation	40
Equation 3.2	Relative humidity equation	45
Equation 3.3	Coefficient of relative variation equation	47

LIST OF ABBREVIATIONS

ACC	-	Antarctic Circumpolar Current
a.g.l	-	Above ground level
a.s.l	-	Above sea level
ARL	-	Air Resource Laboratory
AWS	-	Automatic weather station
Br ₂	-	Bromine
BrCl	-	Bromine monochloride
BrO	-	Bromine oxide
CCGG 💭	-3	Carbon cycle and greenhouse gases
CHBr ₃	*	Bromoform
СН4	9	Methane
ci 🔪	BA	Chloride UNIVERSITI MALAYSIA SABAH
СО	-	Carbon monoxide
CRV	-	Coefficient of relative variation
E	-	East
ECMWF	-	European Centre for Medium-Range Weather Forecasting
GAW	-	Global Atmospheric Watch
GCM	-	Global Circulation Model
GDAS	-	Global Dataset Assimilation Process
GHGs	-	Greenhouse gases
GMD	-	Global Monitoring Division

G-RAD	-	Global radiation
GWS	-	Great Wall Station
Н	-	Hydrogen
HATS	-	Halocarbons and other atmospheric trace gases
HC	-	Hydrocarbon
HNO₃	-	Nitric acid
HO ₂	-	Water vapour
HYSPLIT	-	Hybrid Single-Particle Lagrangian Integrated Trajectory Model
hr	-	Hour
I IR LT		Iodine Infrared radiation Local Time
MBL	BA	Marine boundary layerSITI MALAYSIA SABAH
N_2	-	Nitrogen
NetCDF	-	Network Common Data Form
NMHC	-	Non-Methane Hydrocarbon
NO _x	-	Nitrogen oxides
NO ₂	-	Nitrogen dioxide
NOAA	-	National Oceanographic and Atmosphere Administration
O ₂	-	Oxygen
O ₃	-	Ozone
O (1D)	-	Excite Oxygen

- ODEs Ozone depletion events
- OEEs Ozone enhance events
- OH Hydroxyl
- OZWV Ozone and water vapour
- PBL Planetary boundary layer
- PCA Principal component analysis
- PC Principal Component
- PRT Platinum resistance thermometer
- RH Relative humidity
 - South

S

- SD Standard deviation
- SLGHGs Short-lived greenhouse gases
- SPO South Pacific Ocean RSITI MALAYSIA SABAH
- SO Southern Ocean
- SOA Secondary organic aerosol
- SO₂ Sulphur dioxide
- STT Stratosphere-to-troposphere transport
- SZA Solar Zenith Angle
- TCO Total column ozone
- UV Ultraviolet
- VOCs Volatile organic compounds
- W West

- WDCGG World Data Centre for Greenhouse Gases
- WMO World Meteorological Organisation

LIST OF APPENDICES

Page

Appendix ASpatial and Temporal Analysis of Bro Zonal Total Column119(Mol/Mol)Retrieve from MIs-Aura SatelliteOverAntarctic Peninsula and Its Surrounding from January2018 To January 2019Appendix BRaw Data for O3 And Meteorological Dataset at GWS120

During Austral Summer Campaign

