STUDY OF HYBRID NATURAL VENTILATION USING A COMBINATION OF TURBINE VENTILATOR AND SOLAR CHIMNEY

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2020

STUDY OF HYBRID NATURAL VENTILATION USING A COMBINATION OF TURBINE VENTILATOR AND SOLAR CHIMNEY

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF ENGINEERING

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2020

PUMS 99:1

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN TESIS		
JUDUL :		
IJAZAH :		
SAYA :	SESI PENGAJIAN :	
(HURUF BESAR)		
Mengaku membenarkan tesis *(LPSM/Sarjana/Dokto Sabah dengan syarat-syarat kegunaan seperti berikut:	r Falsafah) ini disimpan di Perpustakaan Universiti Malaysia -	
 Tesis adalah hak milik Universiti Malaysia Saba Perpustakaan Universiti Malaysia Sabah diben Perpustakaan dibenarkan membuat salinan t tinggi. 	ah. Iarkan membuat salinan untuk tujuan pengajian sahaja. esis ini sebagai bahan pertukaran antara institusi pengajian	
4. Sila tandakan (/)	mat yang berdarjah keselamatan atau kepentingan Malaysia	
seperti yang termaktu TERHAD (Mengandungi maklu mana penyelidikan di	ıb di AKTA RAHSIA RASMI 1972) mat TERHAD yang telah ditentukan oleh organisasi/badan di jalankan)	
TIDAK TERHAD	Disahkan oleh:	
 (TANDATANGAN PENULIS) Alamat Tetap:	(TANDATANGAN PUSTAKAWAN)	
 	(NAMA PENYELIA) TARIKH:	
Catatan: *Potong yang tidak berkenaan. *Jika tesis ini SULIT dan TERHAD, sila lampirkan sur menyatakan sekali sebab dan tempoh tesis ini perlu *Tesis dimaksudkan sebagai tesis bagi Ijazah Dokto bagi pengajian secara kerja kursus dan Laporan Pro	at daripada pihak berkuasa/organisasi berkenaan dengan u dikelaskan sebagai SULIT dan TERHAD. r Falsafah dan Sarjana Secara Penyelidikan atau disertai ıjek Sarjana Muda (LPSM).	

DECLARATION

I hereby declare that this thesis, submitted to Universiti Malaysia Sabah as fulfillment of the requirements for the degree of Master of Engineering has not been submitted to any other university for any degree. I also certify that the work described herein is entirely my own, except for quotations and summaries sources of which have been duly acknowledged.

This thesis may be made available within the university library and may be photocopied or loaned to other libraries for the purposes of consultation.

CERTIFICATION

- NAME : LING LEH SUNG
- MATRIC NO. : **MK1311010T**
- TITLE : STUDY OF HYBRID NATURAL VENTILATION USING A COMBINATION OF TURBINE VENTILATOR AND SOLAR CHIMNEY

CERTIFIED BY

Signature

- DEGREE : MASTER OF ENGINEERING
- FIELD : MECHANICAL ENGINEERING
- VIVA DATE : **18 JULAI 2019**

1. MAIN SUPERVISOR Dr. Md. Mizanur Rahman NIVERSITI MALAYSIA SABAH

2. CO- SUPERVISOR

Dr. Mohd Suffian Bin Misaran @ Misran

ACKNOWLEDGEMENT

First of all, I wish to acknowledge Dr. Md Mizanur Rahman (main supervisor) and Dr. Mohd Suffian Bin Misran (co-supervisor) for providing aids and full support along the project. I also would like to express my gratitude to the Ministry of Higher Education of Malaysia and Universiti Malaysia Sabah (UMS) for their financial assistance and facilities support through Fundamental Research Grant (FGR0429-TK-1/2015). In addition, I would like to also express my sincere thanks to Faculty of Engineering, Faculty of Science and Natural Resources as well as Material and Mineral Research Unit (MMRU) for their facilities support throughout the project.

I wish to express my appreciation and gratitude to all the members of Thermal and Environmental Group for their continual support and guidelines along this project. Special thanks to the staffs in Mechanical workshop, Civil workshop, and Chemical labs for the useful advices and helps. I also would like to say thank you to supplier and distributor either directly or indirectly helps in getting the suitable material and equipment for the project.

As always, I remain indebted to all my friends for their continual support over the project. My dearest thanks to my wife, Ms. Michelle Ung Mee Ching for her love, understanding, support, and encouragement throughout this project. Last but not least, I would like to compliment my family members for their continual support.

ABSTRACT

Solar chimney is a common passive natural ventilation system. There is a small potential value when solar chimney is used independently. Therefore, solar chimneys are always applied in the form of integrating configurations. The aim of this study is to investigate the ventilation performance by integrating solar chimney and turbine ventilator. A small size solar chimney is proposed that ease its integration with turbine ventilator. The performance of solar chimney is studied experimentally by heating the solar chimney at constant heat flux. It is found that higher inclination angle and larger air gap depth is performing better. However, the performance start deteriorating after optimum value of inclination angle and air gap depth. Although no specific relationship can be found for inlet and outlet aperture area, but the inlet aperture area is recommended to be at least double the size of outlet aperture area. The integrated system is studied experimentally by heating the solar chimney under constant heat flux and/or by rotating the turbine ventilator at constant rotational speed. The results demonstrate that the ventilation performance of the solar chimney with rotating turbine ventilator is performing the best. The proposed solar chimney also shows the capability to encounter the flow reversal effect as the absence of wire mesh outperform the presence of wire mesh. All those results will be useful in the future solar chimney development either for designation or prediction to achieve the ventilation requirement.

ABSTRAK

PENGKAJIAN SISTEM HIBRID PENGUDARAAN SEMULA JADI DENGAN MENGGUNAKAN KOMBINASI VENTILATOR TURBIN DAN CEROBONG SURIA

Cerobong suria merupakan pasif sistem pengudaraan semula jadi yang biasa digunakan. Ia berpotensi rendah apabila cerobong suria digunakan bersendirian. Oleh itu, cerobong suria sentiasa digunakan dalam bentuk integrasi konfigurasi. Tujuan kajian ini adalah untuk menyiasat prestasi pengudaraan dengan mengintegrasikan cerobong suria dan ventilator turbin. Cerobong suria bersaiz kecil dicadangkan untuk memudahkan integrasi dengan ventilator turbin. Prestasi cerobong suria dipelajari secara eksperimen dengan memanaskan cerobong solar pada fluks haba seragam. Kajian mendapati sudut kecenderungan yang lebih tinggi dan kedalaman jurang udara yang lebih besar mempunyai prestasi yang lebih baik. Walau bagaimanapun, prestasi mula merosot selepas nilai optimum sudut kecederungan dan kedalaman jurang udara. Walaupun tiada hubungan khusus boleh didapati untuk bukaan masuk dan lubang keluar, tetapi bukaan masuk adalah disyorkan untuk sekurang-kurangnya dua kali ganda saiz lubang keluar. Sistem bersepadu ini dikaji dengan memanaskan cerobong suria di bawah fluks haba yang seragam dan / atau dengan memutar ventilator turbin pada kelajuan yang tetap. Keputusan menunjukan bahawa cerobong suria dengan ventilator turbin yang berputar menghasilkan prestasi pengudaraan yang terbaik. Cerobong suria yang dicadangkan juga menunjukkan keupayaan untuk menghadapi kesan pembalikan aliran kerana ketiadaan dawai jejaring menunjukkan prestasi yang lebih baik daripada kehadiran dawai jejaring. Hasil kajian ini akan berguna dalam pembangunan cerobong suria pada masa depan sama ada untuk reka bentuk atau kejangkaan untuk mencapai keperluaan pengudraan. AYSIA SABAH

TABLE OF CONTENTS

			5
DECI	ARAT	ION	ii
CERT	IFICA	TION	iii
ACKI	NOWLE	EDGEMENT	iv
ABSI	RACT		v
ABS	TRAK		vi
TABL	E OF C	CONTENTS	vii
LIST	OF TA	BLES	х
LIST	OF FI	GURES	xi
LIST	OF SY	MBOLS	xiv
LIST	OF AB	BREVIATIONS	xvi
СНА	PTER 1	: INTRODUCTION	1
1.1	Intr <mark>ode</mark>	uction	1
1.2	Proble	m Statement	3
1.3	Object		3
1.4	Scope	of Work	4
1.5	Resear	ch Activities UNIVERSITI MALAYSIA SABAH	4
1.6	Signific	cance of the Study	7
1.7	Thesis	Organization	7
CHAI	PTER 2	: LITERATURE REVIEW	8
2.1	Malays	ia	8
	2.1.1	Malaysia Climate	9
	2.1.2	Energy Consumption and Demand in Malaysia	10
	2.1.3	Potential of Renewable Energy Sources In Malaysia	11
		a. Biomass	12
		b. Biogas and Municipal Solid Waste	13
		c. Hydropower	13
		d. Geothermal Energy	14
		e. Solar Energy	14

		f. Wind Power	15	
	2.1.4	Malaysia towards Green Future	16	
2.2	Energy Sustainability 17			
	2.2.1 Natural Ventilation			
2.3	Solar (Chimney	20	
	2.3.1	Types of solar chimneys	21	
		a. Wall type solar chimney	21	
		b. Roof type solar chimney	26	
		c. Other type of solar chimnys	28	
	2.3.2	Estimated volumetric air flow rate from chimney	33	
	2.3.3	Improve the performance of solar chimney	35	
		a. Optimize solar chimney parameters	35	
		b. Optimization of flow reversal or cold inflow effect	42	
		c. Integrated solar chimney	45	
2.4	Wind d	riven ventilation	48	
2.5	Types of	of turbine ventilator	50	
	2.5.1	Types of turbine ventilator	50	
Ê	2.5.2	Mechanism of turbine ventilator	55	
2	2.5.3	Estimated air flow from Turbine Ventilator	56	
1	2. <mark>5.</mark> 4	Improve the performance of turbine ventilator	57	
	127	a. Integrated turbine ventilator	58	
		b. Optimize turbine ventilator parameters	62	
2.6	Summa	ary of literature review	64	
СНА	PTER 3	: METHODOLOGY	65	
3.1	Experir	nental Design	65	
	3.1.1	Experimental Configuration	65	
	3.1.2	Description of solar chimney	65	
3.2	Real Er	ivironment Conditions	68	
3.3	Experir	nental set up	71	
3.4	Integra	ited System	76	
3.5	Experir	nental procedure	77	
	3.5.1	Normal solar chimney model	77	
	3.5.2	Solar chimney with wire mesh screen	77	
	3.5.3	Solar chimney with turbine ventilator	79	

	3.5.4 Solar chimney with wire mesh screen and turbine ventilator	82	
3.6	3.6 Validation of Experimental Setup 83		
CHA	APTER 4: RESULT AND DISCUSSION	86	
4.1	CFD validation	86	
4.2	Solar chimney performance	88	
	4.2.1 Air flow rate for solar chimney	88	
	a. Effect of air gap depth	88	
	b. Effect of inclination angle	90	
	c. Effect of inlet and outlet apertures area	91	
4.3	4.3 Performance of integrated system		
CHA	APTER 5: CONCLUSION	99	
5.1	Conclusion	99	
5.2	Future Work	101	
REF	ERENCES	103	
Ê			
2			
	UNIVERSITI MALAYSIA SABAH		

LIST OF TABLES

	Pages
Table 2.1 : General Information about Malaysia in the year 2015	9
Table 2.2 : Summary of Malaysia Climate	10
Table 2.3 : Differences between Trombe wall and vertical solar wall	22
Table 2.4 : Differences between roof solar chimney and roof solar collector	26
Table 2.5 : Differences between multi-purpose bio-climatic roof and roof solar	
collector	31
Table 3.1 : Different configurations of the proposed solar chimney	68
Table 3.2 : Description of the equipment that collects real environmental data	70
Table 3.3 : Description of the equipment that collects experimental data	76
Table 3.4: Different combination between solar chimney, wire mesh and	
turbine ventilator	77
Table 3.5: Number of mesh cells for different configurations of the proposed	
solar chimney	85
Table 4.1: Experimental and CFD simulation volume flow rate for the	
proposed solar chimney	88
UNIVERSITI MALAYSIA SABAH	

LIST OF FIGURES

	Pages
Figure 1.1 : Details Research Activities to complete the project	6
Figure 2.1 : States of Malaysia	9
Figure 2.2 : Classification of Renewable Energy	11
Figure 2.3 : Biomass sources in Malaysia	12
Figure 2.4 : Wind speed map	16
Figure 2.5 : Concept of reducing building energy	18
Figure 2.6 : Item wise Energy consumption for household	19
Figure 2.7 : Classification of solar chimney	21
Figure 2.8 : Operation principle of Trombe wall Solar Chimney	23
Figure 2.9 : The structural feature of vertical solar wall	24
Figure 2.10 : Schematic operation of vertical solar wall	24
Figure 2.11 : The structural feature of roof solar chimney	26
Figure 2.12 : Schematic operation of roof solar collector	28
Figure 2. <mark>13 : Schem</mark> atic operation of metallic solar wall	29
Figure 2.14 : Schematic operation of roof top solar chimney	30
Figure 2.15 : Multi-purpose bio-climatic roof configuration	31
Figure 2.16 : The structural feature of solar chimney with heat storage	32
Figure 2.17 : The structural feature of inclined passive wall solar chimney	33
Figure 2.18 : Flow reversal experimental	43
Figure 2.19 : Flow reversal simulation	43
Figure 2.20 : Thermal flow structures for different inclination angle	44
Figure 2.21 : Smoke flow visualization tests for the application of wire mesh	45
Figure 2.22 : Turbine ventilator	51
Figure 2.23 : Hurricane vent	51
Figure 2.24 : Sure draft vent	52
Figure 2.25 : Whirlybird vent	52
Figure 2.26 : Twister vent	53
Figure 2.27 : Straight vane turbine with a curved side	53
Figure 2.28 : Polycarbonate straight vane turbine with a curved side	54
Figure 2.29 : GP vent	54

Figure 2.30 : Sewer vent	55
Figure 2.31 : Concepts and placements of renewable technologies for hybrid	
ventilation system	60
Figure 2.32 : Prototype hybrid turbine ventilator incorporating PV fan system	60
Figure 2.33 : Hybrid turbine ventilator with inner duct and solar powered	
extractor fan	61
Figure 2.34 : Hybrid turbine ventilator that integrating turbine ventilator and	
solar power ventilator	62
Figure 3.1 : Outer part of solar chimney	66
Figure 3.2 : Inner part of solar chimney	66
Figure 3.3 : Solar chimney and its section view	67
Figure 3.4 : Environmental data collection set up	69
Figure 3.5 : Solar power meter – SM206	69
Figure 3.6 : Kestrel 4000 series weather and environmental meters	70
Figure 3.7 : Digital photo/contact tachometer – DT2236B	70
Figure 3.8 : Measured Solar Radiation from 28th January 2016 to 27th	
January 2017	72
Figure 3.9 : Measured RPM of Turbine Ventilator from 28th January 2016 to	
27th January 2017	72
Figure 3.10 : Experimental set up to investigate solar chimney performance	73
Figure 3.11 : Voltage variable transformer (0 – 250V)	73
Figure 3.12 : Digital multimeter – VC830L	73
Figure 3.13 : UNI-T digital clamp multimeters – UT202A	74
Figure 3.14 : Location of thermocouples on absorbers	75
Figure 3.15 : Location of thermocouples on each air gaps	75
Figure 3.16 : USB based 8 channel thermocouple input module (18200-40)	76
Figure 3.17 : Air velocity meter – Alnor Model AVM410	76
Figure 3.18 : Front and top view of solar chimney integrated with wire mesh	
screen	78
Figure 3.19 : Experimental set up of Solar Chimney integrated with Wire	
Mesh Screen	78
Figure 3.20 : Solar Chimney with Turbine Ventilator	80

Figure 3.21 :	Experimental setup for solar chimney integrated with static	
	turbine ventilator.	80
Figure 3.22 :	Experimental setup for solar chimney integrated with rotating	
	turbine ventilator	81
Figure 3.23 :	ULTIMAX axial fan (BW-1750B)	81
Figure 3.24 :	Fan speed controller	82
Figure 3.25 :	Solar Chimney integrated with wire mesh screen and turbine	
	ventilator	83
Figure 3.26 :	Computational domain of the proposed solar chimney	84
Figure 4.1 :	Effect of air gap depth on volume flow rate of solar chimney	89
Figure 4.2 :	Effect of inclination angle on volume flow rate of solar chimney	91
Figure 4.3 :	Effect of inlet aperture area on volume flow rate of solar	
	chimney	92
Figure 4.4 :	Effect of outlet aperture area on volume flow rate of solar	
AT	chimney	93
Figure 4.5 :	Effect of the ratio of inlet aperture area over outlet aperture	
8	area on volume flow rate of solar chimney	94
Figure 4.6 :	Inlet volume flow rate of different integrated system	
	combination for 75° solar chimney with 16cm air gap depth	95
Figure 4.7 :	Inlet volume flow rate of different integrated system	
	combination for 85° solar chimney with 16cm air gap depth	95
Figure 4.8 :	Inlet volume flow rate of different integrated system	
	combination for 80° solar chimney with 16cm air gap depth	96
Figure 4.9 :	Air flow direction of 75° solar chimney with 16cm air gap depth	97
Figure 4.10:	Air flow direction of 80° solar chimney with 16cm air gap depth	98
Figure 4.11:	Air flow direction of 85° solar chimney with 16cm air gap depth	98

LIST OF SYMBOLS

T_{abs}	-	Absorber temperature
T_s	-	Sun temperature
C_d	-	Coefficient of discharge
Α	-	Opening area
η_{optica}	-	Optical efficiency
Eabs	-	Emissivity factor
m	-	Theoretical mass flow rate
Ŷ	-	Volumetric flow rate
r	-	Air velocity
ο	-	Outlet
r	-	Ration between outlet and inlet
L _s	-	Vertical distance between inlet and outlet of the solar chimney or stack height Temperature
ρ_{f1}	<u></u>	Density of air in the flow channel
$\exists g$		Acceleration due to gravity
0	- A	Angle of inclination with the horizontal surface
Fw		Drag force acting on the blade AVCIA SARAL
ρ	-	Density of air
U_w	-	Wind speed at turbine ventilator
Cp	-	Drag coefficient
U_{b}	-	Air speed in the blade surface
P_1	-	Stagnation and static pressure at the duct inlet
P_2	-	Stagnation and static pressure at the duct outlet
ΔP_T	-	Total pressure drop due to duct
ρ	-	Fluid density
น	-	Fluid velocity
Storous	-	Mass-distributed external force per unit mass due to a
а.	-	porous media resistance
81		coordinate direction
$S_i^{rotation}$	-	coordinate system's rotation

μ	-	dynamic viscosity coefficient
δ_{ij}	-	Kronecker delta function (it is equal to unity when $i = j$, and zero otherwise)
k	-	turbulent kinetic energy
ε	-	turbulent dissipation
h	-	thermal enthalpy
Q_H	-	heat source or sink per unit volume
q_i	-	diffusive heat flux

LIST OF ABBREVIATION

GHG	-	Greenhouse gas	
RE	-	Renewable energy	
EFB	-	Empty fruit bunches Carbon dioxide	
CO ₂	-	Carbon dioxide	
N ₂	-	Nitrogen	
CH ₄	-	Methane	
NH₃	-	Ammonia	
H ₂	-	Hydrogen	
O ₂	-	Oxygen	
S	-	Sulphur	
СО	-	Carbon Monoxide	
POME	-	Palm Oil Mill Effluent	
CDM	En	Clean Development Mechanism	
MJ	-16	MegaJoule	
m ²	- 1	Meter square	
°C 🔍 🔨 🔍	5/	Degree Celsius	
W/m ²		Watt per meter square	
km ²	Ser.	Kilometer square SITT MALAYSIA SABAH	
mm	-	Millimeter	
MW	-	Megawatt	
Wh/m ²	-	Watthour per meter square	
PV	-	Photovoltaic	
LEO	-	Low Energy Office	
GEO	-	Green Energy Office	
ZEO	-	Zero Energy Office	
DCEE	-	Demonstration, Cool, and Energy Efficient House	
SCH	-	Smart and Cool Home	
СТН	-	CoolTek House	
ACH	-	Air change per hour	
EAHE	-	Earth to air heat exchanger	

RSC	-	Roof solar collector
VAWTEX	-	Vertical axis wind extracto
DC	-	Direct current
EC	-	Electronic commutating
GI	-	Galvanized iron
CFD	-	Computational Fluid Dynamic

CHAPTER 1

INTRODUCTION

Chapter 1 is an introductory chapter, where the present study and problem/s are going to be discussed initially. After the problem/s are identified, the project objectives and scopes are highlighted. A guideline of the way and development of the study to be carried out is drafted. Besides, the significance of this study is also discussed in this chapter. Last but not least, the organization of the thesis is at the end of this chapter.

1.1 Introduction

The sun, being the center of the solar system, generates large amount of energy every day. The energy radiates and reaches the Earth is approximately a two billionth of the Sun's energy output. This huge energy can be a main source of Earth's energy which is more than enough to supply the world's energy demands (Robert, 2006).

Malaysia is located at the equatorial regions which receive very high solar radiation throughout the year. The average solar radiation is about 400-600 MJ/m² per month and the average sunshine duration is about 4-8 hours per day. This makes Malaysia a unique country that has favorable climatic conditions and promising potential to harvest solar energy. Solar energy has potential value and also has bright future as it is a promising reliable backup energy source (Mekhilef *et al.*, 2012). Few technologies that harvest solar energy are photovoltaic cell, solar

concentrator, solar chimney, solar air heater, and solar dryer (Fudholi *et al.*, 2010; Quesada *et al.*, 2012; Zhai *et al.*, 2011; Zhou *et al.*, 2010)

Unfortunately, Malaysia high solar radiation intensities are coupled with high relative humidity value. This hot and humid climates has posed difficulties to achieve thermal comfort for building indoor environment Ariffin *et al.*, 2002. Although some applied methods such as reflector aluminum foil, movable devices shading the windows, walls, and roof can be effective means of cooling, but most of those deteriorate quickly under hot and humid climates (Khedari *et al.*, 1996). In addition, houses have various modern styles considering only the beauty of the outside and neglecting the thermal comfort of the residents. Closed roof enclosures and simple brick walls are common structure of most residential houses lead to excessive heat accumulation and overheating. As a result, high cooling demand due to internal heat gain and heat transmission through the roof and wall (Khedari *et al.*, 1996; Khedari *et al.*, 2002; Macias *et al.*, 2009).

Despite of significant solar energy potential, commonly applied method to achieve thermal comfort is via mechanical systems. Although these systems are effective, but the economic (construction, operation, and maintenance cost) and environment penalties (greenhouse gas emission) are high (Belfuguais and Larbi, 2011; Hirunlabh *et al.*, 2001; Khanal and Lei, 2011; Maerefat and Haghighi, 2010a; Ziskind *et al.*, 2002). Furthermore, the energy consumption in building sector is expanding significantly due to the change of life standards and population. On top of that, most of the energy is generated from the non-renewable resources (Li *et al.*, 2014; Maerefat and Haghighi, 2010a; Pacheco *et al.*, 2012). Due to the increasing cost, security of energy supply, and environmental reason, tremendous interest and study has begun on solar and passive systems (Li *et al.*, 2014; Maerefat and Haghighi, 2010b).

One of the most effective method to cool a building is to avoid heating by solar radiation. According to the data collected by researchers, most of the heat supplied to the building comes from the roof (horizontal surface) than those receive by the vertical wall. Thus, method to keep the sun's energy out of the roof can reduce indoor air temperature and achieve thermal comfort (Amer, 2006; Maerefat and Haghighi, 2010b). By looking into the pros and cons of the available techniques, solar chimney seems to be a good potential energy conservation strategy and cost effective systems to assist natural ventilation system (Zamora and Kaiser, 2009; Zhai *et al.*, 2011).

1.2 Problem Statement

The efficiency of solar chimney depends on the availability of solar energy as well as the solar intensity. Thus, solar chimney is an unstable system as solar radiation fluctuate throughout the day. In addition, solar chimney is not able to perform during overcast condition and night time due to lacking of or unavailability of solar energy (Kaneko *et al.*, 2006).

Some studies show that solar chimney is inefficient in hot and humid climate. This is due to insufficient stack ventilation cause by small temperature difference between the interior and exterior environment (less than 5°C). Other than that, the presence of air speed or wind is also deteriorating the performance of solar chimney (Khanal and Lei, 2011; Tan and Wong, 2012, 2014; Yusoff *et al.*, 2010). As a result, there is little potential in inducing sufficient natural ventilation with solely solar chimney (Chan *et al.*, 2010; Chungloo and Limmeechokchai, 2007; Hirunlabh *et al.*, 2001; Khedari *et al.*, 2000b; Waewsak *et al.*, 2003; Zhai *et al.*, 2011).

Another problem face by solar chimney that has less attention on is the resistance. Most of the common solar chimney has air entering at the right angle. As a result, high flow resistance at the solar chimney inlet. These inlet losses decrease the allowing flow to be entrained into solar chimney and reduce its performance (Bassiouny and Korah, 2009; Harris and Helwig, 2007; H. Li *et al.*, 2014; Tan and Wong, 2012).

1.3 Objectives

In order to overcome most of the above problems, one of the suitable valid option is to integrate solar chimney with turbine ventilator. This is because the availability of solar and/or wind energy at a reasonable intensity can be expected during a large part of any day (Shun and Ahmed, 2008). Another reason is their limitation can be overcome by each other's advantages. Thus, this integration system is expecting to further enhance its performance compare to their individual system (Chan *et al.*, 2010).

So, this project is developed to prove the hypothesis. The main objective of this project is to study the ventilation performance by integrating solar chimney with turbine ventilator. In conjunction to achieve the objective, the following subobjectives are addressed:

- Modify a small size solar chimney that ease the integration of solar chimney and turbine ventilator.
- Investigate the performance of the modified small size solar chimney.
- Determine the performance improvement of the integrated system by comparing the integrated system to their own individual system.

1.4 Scope of Work

In order to achieve the objective of the research, the study is focused on the performance of modified solar chimney initially. The solar chimney models with inclination angle, air gap depth, as well as inlet and outlet apertures area ranging from 75° to 90°, 10cm to 16cm, as well as $0.02m^2$ to $0.6m^2$ and $0.1m^2$ to $0.14m^2$ respectively are studied under constant heat flux ($500W/m^2$). After that, the performance of integration of solar chimney with or without static or rotating turbine ventilator at constant heat flux and constant rotational speed is covered in this study. Other than that, the effect of wire mesh with pore size 0.64mm X 0.64mm is also evaluated in the study. The performance of solar chimney or the integrated system is evaluated based on volume flow rate.

1.5 Research Activities

According to the research activities flow chart show in Figure 1.1, the research start with intensive literature review on solar chimney and turbine ventilator assisted ventilation system. In designing and developing suitable models, the parameters and criteria need are set accordingly. Based on those, suitable models are developed and fabricated. After that, the experimental works are conducted with suitable procedures and measuring equipment under appropriate operating conditions.

All the data obtains from the experiment are carefully arranged, analyzed and discussed. Finally, all the outcomes and important findings are summarized and concluded with some suggestions and recommendation.

