## THE EFFECTS OF SONIFICATION ON INTERPRETATION OF GEO-VISUALIZATION OF COMPLEX DENGUE DATA



## FACULTY OF COMPUTING AND INFORMATICS UNIVERSITI MALAYSIA SABAH 2018

## THE EFFECTS OF SONIFICATION ON INTERPRETATION OF GEO-VISUALIZATION OF COMPLEX DENGUE DATA

## LILIAN LEE YEN WEI

# THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

## FACULTY OF COMPUTING AND INFORMATICS UNIVERSITI MALAYSIA SABAH 2018

#### PUMS 99:1

#### **UNIVERSITI MALAYSIA SABAH**

| BORANG PI                                                                                              | ENGESAHAN TESIS                                                                                                               |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| JUDUL :                                                                                                |                                                                                                                               |
| IJAZAH :                                                                                               |                                                                                                                               |
| SAYA :                                                                                                 | SESI PENGAJIAN :                                                                                                              |
| (HURUF BESAR)                                                                                          |                                                                                                                               |
| Mengaku membenarkan tesis *(LPSM/Sarjana/Dokto<br>Sabah dengan syarat-syarat kegunaan seperti berikut: | r Falsafah) ini disimpan di Perpustakaan Universiti Malaysia<br>-                                                             |
|                                                                                                        | ah.<br>narkan membuat salinan untuk tujuan pengajian sahaja.<br>resis ini sebagai bahan pertukaran antara institusi pengajian |
| 4. Sila tandakan (/)                                                                                   | mat yang berdarjah keselamatan atau kepentingan Malaysia                                                                      |
| Charles and Charles                                                                                    | ub di AKTA RAHSIA RASMI 1972)<br>mat TERHAD yang telah ditentukan oleh organisasi/badan di<br>jalankan)                       |
| TIDAK TERHAD                                                                                           | Disahkan oleh:                                                                                                                |
| <br>(TANDATANGAN PENULIS)<br>Alamat Tetap:                                                             | (TANDATANGAN PUSTAKAWAN)                                                                                                      |
| <br>                                                                                                   | (NAMA PENYELIA)<br>TARIKH:                                                                                                    |
| menyatakan sekali sebab dan tempoh tesis ini perlu                                                     | r Falsafah dan Sarjana Secara Penyelidikan atau disertai                                                                      |

#### DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, equations, summaries, and references, which have been duly acknowledged. Furthermore, I took reasonable care to ensure that the work is original, and, to the best of my knowledge, does not breach copyright law, and has not been taken from other sources except where such work has been cited and acknowledged within the text.



## CERTIFICATION

| NAME         | : | LILIAN LEE YEN WEI                                       |
|--------------|---|----------------------------------------------------------|
| MATRIC NO.   | : | MI 1511001 T                                             |
| TITLE        | : | THE EFFECTS OF SONIFICATION ON<br>INTERPRETATION OF GEO- |
|              |   | VISUALIZATION OF COMPLEX DENGUE                          |
|              |   | DATA                                                     |
| MASTER       | : | MASTER OF SCIENCE                                        |
|              |   | (INFOMATION TECHNOLOGY)                                  |
| DATE OF VIVA | : | 8 <sup>TH</sup> FEBRUARY 2018                            |
|              |   | 1IN/S                                                    |
| - Reve       |   | CERTIFIED BY,                                            |
|              |   | UNIVERSITI MALAYSIA SABAH                                |
| SUPERVISOR   |   | SIGNATURE                                                |

Assoc. Prof Dr. Ag Asri Hj Ag. Ibrahim

#### ACKNOWLEDGEMENT

Foremost, I thank God for letting me through all the trials and difficulties. I have experienced your guidance and love day by day. Without you I would have not able to finish my Master Degree. Thank you, Lord.

I would like to express my sincere gratitude to my advisor Prof. Madya Dr. Ag Asri Ag Ibrahim, you have been a great mentor to me. I would like to thank you for your continuous support and motivation in encouraging my Master research study. Your advice and enthusiasm have inspired me all the time of research and writing of this thesis. I would also like to thank my committee members, Prof. Madya Dr.Jumat Bin Sulaiman, Dr. Rosnafisah Sulaiman, Prof. Madya Dr. Rayner Alfred, Dr. Lau Hui Keng, Dr. Norazlina Binti Khamis and Puan Winnie Binti Edward Alau. I also want to thank you for letting my thesis defence become a pleasant moment, and for your constructive yet brilliant comments and suggestions, thanks to you.

My sincere thanks also go the doctors, nurses, environmental Health Officer and to all staff of the Ministry of Health Labuan F. T. and Ministry of Health Sabah. All of you have been there to support me when I did my task assessment and data collection for my Master Thesis.

A special thanks to my family. Words cannot express how grateful I am to my mother, father, sisters, and brother for all of the sacrifices that you've made on my behalf. I would also like to thank my beloved husband, Ray Dhirendra Alasa. Thank you for Compassion love and support. To my beloved son Michael Ryan Ray Alasa, my apology if I have not given enough attention on you, thanks for being such a good boy always cheering me up.

Lilian Lee Yen Wei

2<sup>nd</sup> Aug 2018

#### ABSTRACT

The effective way for analysing complex data sets, it's the ability to represent the overall pattern of data in a single presentation by providing alternative input options. While vast of work for data mapping focusing on visual presentations, the work of this thesis suggest that data sonification can be better aids towards complex data interpretation especially when comes to complement visual representation. In this project, an ambient sound framework was designed so it can be applied to display complex dengue data. Parameter mapping method was applied to filter data with temporal factor and represent it with sound parameters. Four sound parameters were used: onset, volume, pitch and tempo. A simulation prototype was developed using open source JavaScript library: leaflet map, leaflet timeline and audiosynth.js. Data collected from experiment through task assessment were analysed using PASW. Results from the tested framework shows that there is positive significance statistic difference in the level of data interpretation when sound was used for complex dengue data representation.



UNIVERSITI MALAYSIA SABAH

#### ABSTRAK

#### KESAN SONIFIKASI TERHADAP INTERPRETASI DATA DENGGI YANG KOMPLEKS DALAM GEO-VISUALISASI

Cara yang berkesan untuk menganalisis set data yang rumit adalah dengan menyediakan alternatif bagi input pilihan untuk mentafsir keseluruhan corak data dalam persembahan tunggal. Kebanyakkan kerja penyelidikan dalam pemetaan data hanya tertumpudalam persembahan visual, kerja-kerja tesis ini mencadangkan bahawa sonifikasi data boleh menjadi altrenatif yang baik ke arah penafsiran data yang rumit terutama dalam membantu serta melengkapi kaedah persembahan secara visual. Dalam projek ini, satu model kerja menggunakan bunyi ambien direka supaya dapat digunakan untuk membantu kaedah visual memaparkan data denggi yang kompleks. Kaedah pemetaan parameter digunakan untuk menapis data jenis temporal dan mewakilkannya dengan parameter bunyi. Empat parameter bunyi digunakan: permulaan, kelantangan, padang dan tempo. Prototaip simulasi telah dibangunkan menggunakan sumber terbuka JavaScript library: leaflet map library dan audiosynth.js. Data yang dikumpul dari eksperimen melalui penilaian tugasan dianalisa menggunakan PASW. Keputusan dari model kerja yang diuji menunjukkan terdapat perbezaan statistik positif dalam tahap tafsiran data apabila bunyi digunakan untuk perwakilan UNIVERSITI MALAYSIA SABAH data denggi yang kompleks.

## **TABLE OF CONTENTS**

|     |           |                                                  | Page   |
|-----|-----------|--------------------------------------------------|--------|
| тг  | TLE       |                                                  | i      |
| DE  | CLARATI   | ON                                               | ii     |
| CE  | RTIFICA   | TION                                             | iii    |
| AC  | KNOWLE    | GDEMENT                                          | iv     |
| AB  | STRACT    |                                                  | v      |
| AB  | STRAK     |                                                  | vi     |
| LIS | ST OF CO  | NTENTS                                           | vii    |
| LIS | ST OF TAI | BLES                                             | x      |
| LIS | ST OF FIG | GURES                                            | xii    |
| LIS | ST OF PH  | OTOS                                             | xiv    |
| LIS | ST OF AB  | BREVIATIONS                                      | xv     |
| LIS | ST OF API | PENDICES                                         | xvii   |
|     | 80        | SAUTI.                                           |        |
| 1   | 1.1       |                                                  | SARAH  |
|     | 1.2       | Problem Statement                                |        |
|     | 1.3       | Research Questions                               | 3<br>7 |
|     | 1.4       | Research Objectives                              | ,<br>7 |
|     | 1.5       | Hypotheses                                       | 7      |
|     | 1.6       | Scope of Study                                   | 8      |
|     | 1.7       | Definition of Terms                              | 8      |
|     | 1.8       | Significance of Study                            | 8      |
|     | 1.9       | Published Work                                   | 9      |
|     | 1.10      | Thesis Organization                              | 10     |
| 2   | LITE      | RATURE REVIEW                                    | 11     |
|     | 2.1.      | Overview                                         | 11     |
|     |           | 2.1.1 Introduction                               | 11     |
|     | 2.2       | Geographic Visual Display Technique Used in      |        |
|     |           | Epidemiology                                     | 12     |
|     |           | 2.2.1 Epidemiology Geographic Visual Display     |        |
|     |           | Requirements                                     | 13     |
|     |           | 2.2.2 Current Geographic Visualization Technique | 15     |

|    |          | 2.2.3 Dataset used in Geographic Visual Display         | 16  |
|----|----------|---------------------------------------------------------|-----|
|    | 2.3.     | Generation of Geographic Visual Display                 | 19  |
|    |          | 2.3.1 Interface Design, Metaphor, Schemata, Features an | nd  |
|    |          | Functionality                                           | 21  |
|    |          | 2.3.2 Data Exploration and Interpretation               | 23  |
|    |          | 2.3.3 Animation and Multiple Components                 |     |
|    |          | Dynamic Cartography Display                             | 24  |
|    |          | 2.3.4 Data Sonification                                 | 25  |
|    |          | 2.3.5 Web GIS and Geo-collaboration                     | 28  |
|    | 2.4.     | Taxonomy of Geo-Visualization Techniques                | 30  |
|    | 2.5.     | Comparison of Geographical Visualization Technique on   |     |
|    |          | Epidemiology Requirements                               | 31  |
|    |          | 2.5.1. Performance of Traditional Cartography (TC)      |     |
|    |          | Methods                                                 | 31  |
|    |          | 2.5.2. Performance of Geo-visualization (G) Methods     | 36  |
|    | 2.6      | Conclusion from Studies                                 | 46  |
|    |          |                                                         |     |
| 3  | метн     | ODOLOGY                                                 | 47  |
| 5  | 3.1      | Research Methodology                                    | 47  |
|    | 3.2      | Dataset                                                 | 48  |
|    | 3.3      | Proposed Model Design                                   | 51  |
| 14 | <i>2</i> | 3.3.1 Ambient Sound Framework                           | 54  |
| 18 |          | 3.3.2 Prototype Simulation                              | 57  |
| 74 |          | 3.3.2.1 Leaflet Timeline.js                             | 57  |
| 6  |          | 3.3.2.2 Audiosynth.js                                   | 58  |
|    |          | 3.3.3 Limitation                                        | 60  |
|    | 127      | LINIVERSITI MALAYSIA SAI                                | RA1 |
| 4  | EXPE     | RIMENTAL DESIGN                                         | 62  |
|    | 4.1      | Introduction                                            |     |
|    | 4.2      | Purpose                                                 | 62  |
|    | 4.3      | Research Setting                                        | 62  |
|    |          | 4.3.1 Experiment Setup for Hypothesis One               | 62  |
|    |          | 4.3.1.1 Experiment One                                  | 64  |
|    |          | 4.3.1.2 Experiment Two                                  | 66  |
|    |          | 4.3.1.3Experiment Three                                 | 67  |
|    |          | 4.3.2 Experiment Setup for Hypothesis Two               | 68  |
|    |          | 4.3.2.1 Experiment Four                                 | 68  |
|    |          | 4.3.2.2 Experiment Five                                 | 68  |
|    |          | 4.3.2.3Experiment Six                                   | 69  |
|    | 4.4      | Sample and Respondent Characteristic                    | 69  |
|    | 4.5      | Environmental Measures and Outcome Measures             | 72  |
|    |          | 4.5.1 Study Variables and Parameter Setting             | 72  |
|    | 4.0      | 4.5.2 Potential Threats                                 | 72  |
|    | 4.6      | Research Materials                                      | 73  |
|    | 4.7      | Evaluation                                              | 73  |
|    | 4.8      | Overview of Chapter                                     | 74  |

| 5     | RESU  | LTS AND ANALYSIS                                | 75      |
|-------|-------|-------------------------------------------------|---------|
|       | 5.1   | Introduction                                    | 75      |
|       | 5.2   | Descriptive Analysis                            | 75      |
|       |       | 5.2.1 DescriptiveAnalysis for Experiment One    | 75      |
|       |       | 5.2.2 Descriptive Analysis for Experiment Two   | 76      |
|       |       | 5.2.3 Descriptive Analysis for Experiment Three | 77      |
|       |       | 5.2.4 Descriptive Analysis for Experiment Four  | 78      |
|       |       | 5.2.5 Descriptive Analysis for Experiment Five  | 79      |
|       | 5.3   | Statistical Analysis                            | 81      |
|       |       | 5.3.1 Statistical Analysis for Experiment One   | 82      |
|       |       | 5.3.2 Statistical Analysis for Experiment Two   | 83      |
|       | - 4   | 5.3.3 Statistical Analysis for Experiment Three | 84      |
|       | 5.4   | Qualitative Analysis for Experiment Six         | 85      |
| 6     | DISC  | USSION AND CONCLUSION                           | 90      |
|       | 6.1   | Overview                                        | 90      |
|       | 6.2   | Summary                                         | 90      |
|       | 6.3   | Main Findings and Contribution                  | 91      |
|       | 6.4   | Future Work                                     | 93      |
| - A   |       |                                                 |         |
| DIDI  |       |                                                 | 04      |
| BIBLI | IOGRA |                                                 | 94      |
|       | NDICE |                                                 | 107     |
|       | NO7   | LINIVERSITI MALAYSIA SA                         | RAH     |
|       |       |                                                 | Dirit I |

#### LIST OF TABLES

| Table 2.1 | :  | Dataset used for Geographic Visual<br>Display Techniques in Application Domain<br>of Epidemiology and selected Relational Study                 | 17       |
|-----------|----|-------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Table 2.2 | :  | Previous study on auditory display in visualization and geo-visualization                                                                       | 27       |
| Table 2.3 | :  | Chronological order of Geographic Visual<br>Display (GVD)                                                                                       | 34       |
| Table 2.4 | :  | Summary of Performance between Traditional                                                                                                      |          |
| Table 2.5 | :  | Cartography (TC) and Geo-visualization (G)<br>Analysis of Geographic Visual Display Technique<br>for epidemiology and Selected Relational Study | 40<br>42 |
| Table 3.1 | :  | Dengue Data Variables                                                                                                                           | 48       |
| Table 3.2 | :  | Filtered Data with Temporal Factor                                                                                                              | 49       |
| Table 3.3 | -2 | Algorithm for Temporal Data Mapping                                                                                                             | 53       |
| Table 3.4 | 22 | Data Mapping                                                                                                                                    | 54       |
| Table 3.5 |    | Selected Default Mapping                                                                                                                        | 55       |
| Table 3.6 | ÷  | Data Index                                                                                                                                      | 58       |
| Table 3.7 | TA | Visual ParametersERSITI MALAYSIA SABAH                                                                                                          | 58       |
| Table 3.8 | :  | Audio Parameters                                                                                                                                | 58       |
| Table 4.1 | :  | Experiment Setting 1                                                                                                                            | 63       |
| Table 4.2 | :  | Scores                                                                                                                                          | 64       |
| Table 4.3 | :  | Experiment OneProcedure                                                                                                                         | 65       |
| Table 4.4 | :  | Experiment TwoProcedure                                                                                                                         | 66       |
| Table 4.5 | :  | Experiment ThreeProcedure                                                                                                                       | 67       |
| Table 4.6 | :  | Performance Scale                                                                                                                               | 68       |
| Table 4.7 | :  | Experiment Setting 2                                                                                                                            | 69       |
| Table 4.8 | :  | Randomized Block Designs                                                                                                                        | 71       |
| Table 5.1 | :  | Compare Means and General Linear Model in PASW                                                                                                  | 82       |

| Table 5.2 | : | Thematic Analysis Template                                            | 85         |
|-----------|---|-----------------------------------------------------------------------|------------|
| Table 5.3 | : | Summary of Thematic Template Analysis                                 | 88         |
| Table 6.1 | : | Summary of Tested Proposed Model                                      | 91         |
| Table B.1 | : | Elements in Current Geo-visualization                                 | 110        |
| Table B.2 | : | Comparison between Leaflet, Google Maps<br>and Openlayer              | 112        |
| Table E.1 | : | Result collected from Control Group 1 and<br>Experimental Group 1     | 162        |
| Table E.2 | : | Result collected from Experimental Group 1 & 2                        | -          |
| Table E.3 | : | (Block 2 & 3)<br>Result collected from Experimental Group 3 (Block 3) | 164<br>166 |
|           |   |                                                                       |            |



## **LIST OF FIGURES**

|                          |    |                                                                                                   | Page           |
|--------------------------|----|---------------------------------------------------------------------------------------------------|----------------|
| Figure 1.1               | :  | Dengue Statistic                                                                                  | 2              |
| Figure 1.2               | :  | Ishikawa Diagram                                                                                  | 3              |
| Figure 2.1               | :  | Map Use Cube                                                                                      | 13             |
| Figure 2.2               | :  | Geo-collaboration place-time matrix                                                               | 29             |
| Figure 2.3               | :  | Result of Competitive Analysis Study                                                              | 30             |
| Figure 2.4<br>Figure 2.5 | :  | Taxonomy of Geographic Visual Techniques<br>Chronological Order of Geographic Visual              | 33             |
| Figure 3.1<br>Figure 3.2 | :  | Techniques<br>Research Methodology<br>Dataset sample converted to GeoJson format                  | 41<br>48<br>51 |
| Figure 3.3               | :  | A modified visual cube                                                                            | 52             |
| Figure 3.4               |    | Initial Design of Visual and Auditory Representation for data Interpretation in Geo-visualization | 53             |
| Figure 3.5               |    | Model Design of Sonification of Geo-visualization<br>for spatial-temporal Dengue Outbreak Data    | 55             |
| Figure 3.6               | ÷. | Simulation of Auditory Geo-Vis for Complex<br>Dengue Data Representation                          | 60             |
| Figure 4.1               | BA | G*Power UNIVERSITI MALAYSIA SABAH                                                                 | 70             |
| Figure 5.1               | ÷  | Level of Data Interpretation Experiment One                                                       | 76             |
| Figure 5.2               | :  | Level of Data Interpretation Experiment Two                                                       | 76             |
| Figure 5.3               | :  | Level of Data Interpretation Experiment Three                                                     | 77             |
| Figure 5.4               | :  | Overall Performance Experiment Four (CG Vs EG1)                                                   | 78             |
| Figure 5.5               | :  | Overall Performance Experiment Four (EG1)                                                         | 78             |
| Figure 5.6               | :  | Overall Performance Experiment Four                                                               |                |
| Figuro E 7               |    | (EG2)<br>Percentage for question 4f) EG1                                                          | 79<br>80       |
| Figure 5.7<br>Figure 5.8 | :  | Percentage for question 4f) EG2                                                                   | 80<br>80       |
| Figure 5.9               | :  | Type of Analysis to Use                                                                           | 80<br>81       |
| Figure 5.10              | :  | Paired Sample T-Test to compare mean for T1-T2                                                    | 83             |
| Figure 5.11              |    | One-way Within-Subjects Anova (Treatment Level)                                                   | 83             |
| Figure 5.12              | :  | Between Subjects 2-way Anova (Sequence of Tasks)                                                  | 83<br>84       |
| Figure A.1               | :  | Research Milestone                                                                                | 108            |

| Figure C.1  | : | Manual Case Investigation Form              | 117 |
|-------------|---|---------------------------------------------|-----|
| Figure C.2  | : | Dataset Edengue Version 2 (csv format)      | 124 |
| Figure C.3  | : | Syntax for Leaflet Map (leafet timeline.js) | 125 |
| Figure C.4  | : | Syntax for Audiosynth.js                    | 126 |
| Figure C.5  | : | Syntax for Audiosynth in index.php          | 127 |
| Figure C.6  | : | Task Assessment Form (Google Form)          | 129 |
| Figure D. 1 | : | Assessment Form Test 2                      | 140 |
| Figure D.2  | : | Assessment Form Test 3                      | 149 |
| Figure D.3  | : | Observation Form 1                          | 159 |
| Figure D.4  | : | Observation Form 2                          | 160 |
| Figure F.1  | : | Certification as Presenter in ICCNA 2017    | 169 |





## LIST OF PHOTOS

| Photo C.1 | : | Pilot Study (Requirements Capture)                                                    | 122 |
|-----------|---|---------------------------------------------------------------------------------------|-----|
| Photo C.2 | : | Outbreak Action Room                                                                  | 123 |
| Photo D.1 | : | Center of Disease Control (CDC), State<br>Health Department, Labuan Federal Territory | 134 |
| Photo D.2 | : | Center of Disease Control (RPKBV),<br>State Health Department, Kota Kinabalu, Sabah.  | 135 |
| Photo D.3 | : | Assessment Session at Labuan New CDC Meeting and Action Room                          | 136 |
| Photo D.4 | : | Assessment Session at UMS and CDC Labuan                                              | 137 |
| Photo D.5 | : | Assessment Session at UMS and CDC Labuan                                              | 138 |
| Photo D.6 |   | Assessment Session at CDC, Kota Kinabalu, Sabah.                                      | 139 |

UNIVERSITI MALAYSIA SABAH

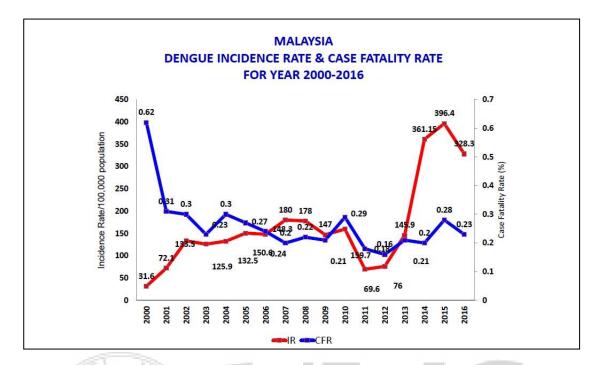
## LIST OF ABBREVIATIONS

| DF          | Dengue Fever                                   |
|-------------|------------------------------------------------|
| DHF         | Dengue Haemorrhagic Fever                      |
| GIS         | Geographic Information System                  |
| CDC         | Centre of Disease Control                      |
| GVD         | Geographical Visual Display                    |
| HCI         | Human Computer Interaction                     |
| 2-D         | Two Dimensional                                |
| 3-D         | Three Dimensional                              |
| EDA         | Exploratory Data Analysis                      |
| SMR         | Standard Mortality ratio                       |
| eDengue     | Dengue Surveillance and Information System     |
| eNotifikasi | Outbreak Management and Notification System    |
| SPWD        | Dengue Outbreak Management System              |
| SMS         | Short messaging System                         |
| MCDCD       | Multiple Component Dynamic Cartography Display |
| D3          | Data-driven Document VERSITI MALAYSIA SABAH    |
| ESTAT       | Exploratory Spatial-Temporal Analysis Toolkit  |
| STIS        | Space-time Information System                  |
| API         | Application Programming Interface              |
| ТС          | Traditional Cartographic                       |
| G           | Geo-visualization                              |
| GM          | General Map                                    |
| PGC         | Prior Geo-collaboration                        |
| GC          | Geo-collaboration                              |
| MU          | Mash-ups                                       |
| HMU         | Hybrid Mash-ups                                |
| ТМ          | Thematic Map                                   |
| СТ          | Clustering                                     |
| CL          | Colouring                                      |

| SB     | Symbolization                               |
|--------|---------------------------------------------|
| HL     | Highlighting                                |
| HSB    | Hybrid Symbolization                        |
| HLA    | Highlighting and Animation                  |
| SDLC   | Software Development Life Cycle             |
| MO     | Medical Officer                             |
| EHO    | Environmental Health Officer                |
| AEHO   | Assistant of Environmental Health Officer   |
| EO     | Entomologist Officer                        |
| IT     | Information Technology                      |
| ADMIN  | Administration                              |
| 4V     | Four visual elements                        |
| 4V2S   | Four visual elements and two sound elements |
| 2V2S   | Two visual elements and two sound elements  |
| 4S     | Four Sound elements                         |
| т1 👌 📁 | Task One                                    |
| т2 🛃 🔪 | Task Two                                    |
| тз     | Task Three                                  |
| T4 🛛 📿 | Task Four UNIVERSITI MALAYSIA SABAH         |
| Т5     | Task Five                                   |
| ANOVA  | Analysis of Variance                        |
| SOM    | Self-Organizing Map                         |

## LIST OF APPENDICES

|            |                                           | Page |
|------------|-------------------------------------------|------|
| Appendix A | Research Milestone                        | 107  |
| Appendix B | Current Geo-visualization                 | 109  |
| Appendix C | Manual Form, Datasets, Prototype          |      |
|            | Syntax and Questionnaire                  | 116  |
| Appendix D | Map, photo and samples collected from the |      |
|            | Research Site                             | 133  |
| Appendix E | Statistic PASW                            | 161  |
| Appendix F | Certification                             | 168  |



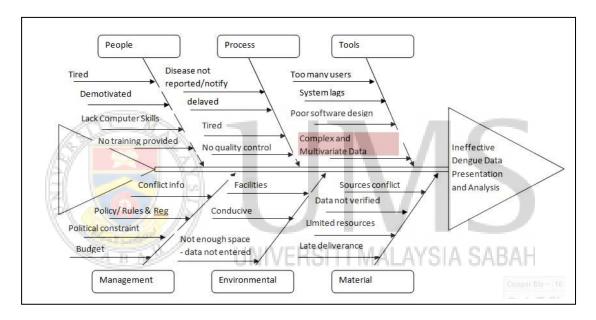

#### **CHAPTER 1**

#### INTRODUCTION

#### 1.1 Overview

Over the years, there are increasing numbers of dengue cases reported every day. In 2015, the number of cases reported in Malaysia was 120,836 cases with the number of death was 336 compared to year 2013 where only 43,346 dengue cases reported with only 92 death cases. In 2016, dengue outbreak stills a main concern to the society where 100,357 cases reported with 237 death cases (Idengue Remote Sensing, 1997-2016). Dengue fever (DF) and the potentially fatal dengue haemorrhagic fever (DHF) have been identified as main contributed to the number of death in Malaysia it has been an epidemic in Malaysia for long decade (Ghee, 1993). Malaysia was reported to have higher case fatality rates (4.67%) compared to neighbour countries like Thailand and Indonesia, with the fatality rates of 0.3% and 0.5% respectively (Nor Azura Husin, 2006). There are different types of Dengue cases which can be divided into five serosubstype: Den-1, Den-2, Den-3, Den-4 and the latest type of Dengue is named as Den-5 which categorized as unknown. Den-2 is the most common types as it appeared in major vector of dengue known as *aedesaegypti*. There are two type of dengue vector: aedesaegypti and aedesalbopictus. When a single case reported, it takes seven days' interval for it to become an outbreak when there are second case reported within 200 cubic metres at a local compound. Furthermore, when the third cases reported at the same locality within seven days from the second case, the category of cases will change into an uncontrolled outbreak. Worst happened when 4<sup>th</sup> cases were reported at the same locality within seven days from the 3<sup>rd</sup> cases, then the area will be declared as dengue hotspot. The numbers of cases will soar when rainy seasons start as it increases mosquito breeding grounds which lead to the need of full coverage from Dengue outbreak surveillance.




#### Figure 1.1 : Dengue Statistic

Source

#### : (MOH M. &., 1997-2016)

As the volume and complexity of infectious disease data increases, public health professionals must synthesize highly disparate data to facilitate communication with the public and inform decisions regarding measures to protect the public's health (Carroll, 2014). Geo-visualization has seen much interest nowadays in not only amongst computer science community, but also in areas where practical solutions are required through significant representation applications. However, Geo-visualization does not limit only to visual representation but also finding the possibility alternative approach that may assist towards multivariate data representation. Sonic representation approaches has arisen from many visualization tools in multiple domain– including voice over and redundant aural cues on cartographic communication (MacEachren A. M., 1991) (McGee, 2009), auditory graph (Bertin, 1981), audio cartography (McGranaghan, 1987), sound variables mapping (Krygier J. B., 1994), sound extension for data layers (Bearman, 2012), and synthesizing results in Geovisualization (Robinson A. C., 2004) for instance. This research has resulted in the development of several geovisualization tools that have seen as the practical success.

This practical visualization supports various principles such as Metaphor and Functionality (Kraak M.-J., 2003) (Slocum T. A., 2001), Support Data Exploration (Zhang, 2010), Multivariate and Big Data Handling [14], Web 2.0 and Geo-collaboration (Jern, 2006) (Roth, 2008).Extended design of these Geo-visualization tools has been applied and cited in many related researchers. With the target to provide the future researcher a better guideline on complex data representation designs.



#### 1.2 Problem Statement

#### Figure 1.2 : Ishikawa Diagram

Source : Adapted from Kaoru Ishikawa (1968)

From Figure 1.1, many problems can contribute to the ineffective Dengue Data Presentation and Analysis. In Ministry of Health Malaysia, *eDengue* version 2 (MOH, Dengue Surveillance and Information System, 2012) is used to monitor case notified within areas and states in the form of lists and tables presentation. *Dengue* (MOH M. &., 1997-2016), a website platform provided from Ministry of Science and Innovative, Remote Sensing which corporate with Ministry of Health are also used to provide annual statistics of dengue in Malaysia and current dengue hotspots in map presentations. While, *Dengue Outbreak Management System* (MOH, 2014)which integrated between *eDengue* and *eNotifikasi* are used for online real-time disease mapping purposes in peninsular Malaysia connecting *IDengue* for community, provides information dissemination (SMS) and allowed outbreak prediction within focal areas.

The issues and problem that found in the current system used are described as follows:

1. "Over 65 of data need to be displayed at one time."

From the dataset collected from *eDengue* Version2 system (MOH, 2012), given by Environmental Health Officer from Centre of Disease Control State Health Department of Sabah, there were more than 65 variables that need to be presented for the purpose of effective analysis. The current disease mapping used in *SPWD* (MOH, 2014)provides visualization of cluster disease with multivariate information which required user's attention to select only few data and focus towards presentation before can interpret what information was being presented.

2. "Adapted online tool required more actions to access information."

Like other CDC department in the world, local CDC also applied the use of online ArcGIS to trace and analysis more complex dengue data. Available online tool like ArcGIS, GeoVista, CartoDB, Google Map and other free mapping tool required user to click, toggle, zoom, pop-up and query before information can be accessed. Because of the limit amount of complex data can be shown visually in an effective way, reduction of screen size on portable devices, some data maybe overlapped and distorted over visualization presentation that may effect on how user analyse data.

3. "Information overload."

Too many information presented together in multi-screen may causes fatigue, missed of information or wrong interpretation. Thus, a real-time monitoring, adaptable and support input from multi-sensory is needed to solve complex data presentation. Because of the way the human brain processes information, it is faster for people to grasp the meaning of many data points when they are displayed in charts and graphs rather than poring over piles of spreadsheets or reading pages and pages of reports. Visualizations help people see things that were not obvious to them before. Even when data volumes are very large, patterns can be spotted quickly and easily. Visualizations convey information in a universal manner and make it simple to share ideas with others. Data are like soil and easily can be retrieved from multi-sources, when a suitable design of representation is created, data can be easily interpreted and remember by users.

Given the issues and problem stated above, the motivation for selecting data sonification as domains for the research described in this thesis are as follow:

- 1. With the increasing dengue cases throughout the years, many efforts have been made to establish an effective presentation tool. However, the current system used in local health department required multi-link views in few separated windows. But when more multivariate data need to be presented at one time at a single screen, information is overlapped with one another and caused visual distraction. If users are fatigue, some data might be left out or hidden from view. Besides, more actions might be needed, user will need to click, toggle or enlarge screen to access additional information. There is therefore potential for human error resulting in different interpretation being conveyed in different presentation reports. This will eventually decrease the effectiveness of analysis and data interpretation.
- 2. Little work has been conducted with respect to data sonification. Although the use of multiple visualization tools in extracting data from long dataset is undeniable effective, but there is lack of study shown these visualization tools are appropriately designed to overcome human cognitive issues for the ability to interpret multivariate and complex data at one time. Ironically, many researchers have been done to find a better approach that able to represent vast amount of data in single screen for better analysis and representation of complex data. The work here is to structure this data in ways that will improve the performance of data interpretation and analysis. As mentioned in (Yau, 2011), the effective way for analysing a complex data sets, it's the ability to represent the overall pattern of data in a single presentation.