CHARACTERIZATION AND PROFILING OF CELL WALL LIPIDS FROM Ganoderma boninense-INFECTED OIL PALM ROOTS

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2018

CHARACTERIZATION AND PROFILING OF CELL WALL LIPIDS FROM Ganoderma boninense-INFECTED OIL PALM ROOTS

ARNNYITTE ALEXANDER

THESIS SUBMITTED IN FULFILLMENT FOR PHILOSOPHY OF DOCTORATE

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2018

PUMS 99:1

UNIVERSITI MALAYSIA SABAH

BORANG PI	ENGESAHAN TESIS
JUDUL :	
IJAZAH :	
SAYA :	SESI PENGAJIAN :
(HURUF BESAR)	
Mengaku membenarkan tesis *(LPSM/Sarjana/Dokto Sabah dengan syarat-syarat kegunaan seperti berikut:	r Falsafah) ini disimpan di Perpustakaan Universiti Malaysia -
 Tesis adalah hak milik Universiti Malaysia Saba Perpustakaan Universiti Malaysia Sabah diben Perpustakaan dibenarkan membuat salinan t tinggi. 	ah. Jarkan membuat salinan untuk tujuan pengajian sahaja. esis ini sebagai bahan pertukaran antara institusi pengajian
4. Sila tandakan (/)	mat yang berdarjah keselamatan atau kepentingan Malaysia
seperti yang termaktu TERHAD (Mengandungi maklu mana penyelidikan di	ıb di AKTA RAHSIA RASMI 1972) mat TERHAD yang telah ditentukan oleh organisasi/badan di jalankan)
TIDAK TERHAD	Disahkan oleh:
 (TANDATANGAN PENULIS) Alamat Tetap:	(TANDATANGAN PUSTAKAWAN)
 	(NAMA PENYELIA) TARIKH:
Catatan: *Potong yang tidak berkenaan. *Jika tesis ini SULIT dan TERHAD, sila lampirkan sur menyatakan sekali sebab dan tempoh tesis ini perlu *Tesis dimaksudkan sebagai tesis bagi Ijazah Dokto bagi pengajian secara kerja kursus dan Laporan Pro	at daripada pihak berkuasa/organisasi berkenaan dengan u dikelaskan sebagai SULIT dan TERHAD. r Falsafah dan Sarjana Secara Penyelidikan atau disertai ıjek Sarjana Muda (LPSM).

DECLARATION

I hereby declare that this thesis is based on my original work except for citations, quotations, and equations which have been duly acknowledged. I also declare that no part of this thesis has been previously or concurrently submitted for a PhD at any other university.

30 June 2018

Arnnyitte Alexander DS 1411003T

CERTIFICATION

- NAME : **ARNNYITTE ALEXANDER**
- MATRIC NO : **DS 1411003T**
- TITLE OF :CHARACTERIZATION AND PROFILING OF CELLTHESISWALL LIPIDS FROM Ganoderma boninense-INFECTED
OIL PALM ROOTS
- DEGREE : PHILOSOPHY OF DOCTORATE (PhD) IN BIOTECHNOLOGY
- DATE OF VIVA: 06 JUNE 2018

CERTIFIED BY ;

SUPERVISORY COMMITTEE;

1. HEAD OF SUPERVISORY

Professor Dr. Chong Khim Phin PS The Adda AVS_____

2. **MEMBER**

Associate Professor Dr. Jedol Dayou

3. **MEMBER**

Associate Professor Dr. Coswald Stephen Sipaut @ Mohd. Nasri

ACKNOWLEDGEMENT

Firstly I thank the Heavenly Father for His Grace, for letting me through all the difficulties. I have experienced Your guidance day by day. Thank you, Lord.

I would like to express my special appreciation to my supervisor Professor Dr. Chong Khim Phin, whom has been a tremendous mentor for me. Thank you for encouraging my research, supporting my ideas and for allowing me to grow as an independent research scientist. I also would also like to thank Assoc. Professor Dr. Jedol Dayou, for his great encouragement in writing. His advices on both research as well as on my career have been invaluable. I also thank to Assoc. Professor Dr. Coswald for his brilliant comments and suggestions.

I am also indebted to Syahriel Abdullah for all the useful discussions and brainstorming sessions. Special thank to Nurul Ain Abu Husin for her support during the times when I was really down and stressed due to personal family problems.

I would especially like to thank my family for all their support and encouragement, especially my mother. To my beloved Lulu, thank you for being such a good girl and always cheering me up.

Last but not least this dissertation is dedicated to my late grandmother who has been my constant source of inspiration. This is for you.

Arnnyitte Alexander 30 June 2018

ABSTRACT

Basal stem rot disease (BSR) is the most devastating fungal disease in oil palm (OP) caused by *Ganoderma boninense*, and is one of the most commercially catastrophic diseases in Southeast Asia. This disease has resulted significant decreases in OP yield. On the basis of the importance of early detection for controlling the BSR disease, studies on the mechanism of interaction between OP and G. boninense through metabolomic approaches is currently still on-going. Information on response of OP to BSR is still scarce, particularly concerning changes in the plant membrane-cell wall continuum as the ultimate consequence of biological systems to pathogenesis responses. This interconnection borders most likely a reservoir in signal transduction, defense and antimicrobial metabolites, involving lipids and its derivatives released during the pathogen attack. Therefore this study focuses on lipid components in oil palm roots cell wall towards understanding the pathogenesis and defense response mechanism involved during the OP-G. boninense interaction. In this study, eight-months old OP seedlings were artificially inoculated with G. boninense using rubber wood blocks. Establishment of G. boninense infection was accessed after three and six-months post inoculation referred as first (T1) and second interval (T2), respectively. The cell wall preparation with the highest degree of cytosol component release was produced by lyophilization with homogenization for both OP roots and G. boninense mycelium. The optimum condition on extraction of lipid from cell wall components was investigated using Central Composite Design (CCD). A high lipid extraction yield (3.36%) was obtained under the following extraction conditions: 10 mL of solvent mixture (chloroform: methanol (2:1, v/v)) per gram tissue for 120 min with gentle agitation at 30°C of extraction temperature. The changes of cell wall-lipid profiles in infected OP (IN) against healthy root in healthy OP (H), at T1 and T2 were investigated via High Performance-Thin Laver Chromatography (HP-TLC) and Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Statistical analysis including Principal Components Analysis (PCA), Partial Least Square-Discriminant Analysis (PLS-DA) and metabolic pathway analysis were performed using Metaboanalyst. The study observed that glycerolipid, linoleic acid, pyruvate and glycerophospholipid metabolism and glycolysis or gluconeogenesis are the most perturbed pathways at T1. Meanwhile, pyruvate metabolism and glycolysis or gluconeogenesis pathways are the most perturbed at T2. Global metabolite pathways found steroid biosynthesis, pyruvate metabolism and glycolysis or gluconeogenesis are the most perturbed pathways in both T1 and T2. There are many lipid metabolites in the OP cell wall are significantly differentially regulated during G. boninense-infection. Using a statistical biomarker validation analysis, PC(6:0/0:0), PC(2:0/2:0), methyl (6E,9E,12E)-6,9,12-octadecatrienoate, PA(18:4(6Z,(Z,12Z,15Z)/0:0), methyl palmitoleate, PA(14:0/ 0:0), y-linolenic acid and stigmasterol were the metabolites found to be most useful in discriminating infected OP from healthy OP. The results distinguished metabolites present and

correspond with *G. boninense* infection are crossed-reference with the pathogen cell wall-lipid profiles to identify biomarker of the pathogen presence. Ergosterol, 5-lanost-8-en-3-ol, methyl tridecanoate and methyl 9-eicosenoate could be exploited as biomarkers for *G. boninense* presence. The identified biomarkers may serve as potential biomarkers for *G. boninense*-infection and assist in the early diagnosis and preventive treatment of BSR disease. The related pathways provide novel insights into developing strategies for better BSR management and resistant OP breed in the future.

Keywords: oil palm, *Ganoderma boninense,* basal stem rot, cell wall-lipids, biomarkers, pathway

ABSTRAK

PENCIRIAN DAN PEMPROFILAN LIPID DINDING SEL DARIPADA AKAR POKOK KELAPA SAWIT DIJANGKITI Ganoderma boninense

Penyakit Reput Pangkal Batang (BSR) merupakan penyakit pokok kelapa sawit (OP) memudaratkan. Penyakit ini disebabkan oleh yang paling kulat Ganoderma boninense, dan merupakan penyakit paling membinasakan di Asia Tenggara. Penyakit ini menyebabkan penurunan ketara ke atas hasil OP. Untuk mengawal penyakit RPB, pengesanan jangkitan pada peringkat awal amat penting, dan untuk tujuan ini kajian ke atas mekanisma interaksi di antara OP dan G. boninense melalui pendekatan metabolomik masih diteruskan. Informasi terhadap tindak balas OP terhadap BSR masih sedikit, khususnya merujuk kepada perubahan di dalam kontinum membran-dinding sel sebagai kesan sistem biologi terhadap tindak balas jangkitan. Sempadan perhubungan ini merupakan takungan pemindahan dan penghantaran isyarat, pertahanan dan metabolit antimikrob, yang melibatkan lipid dan derivatifnya yang mana di rembeskan semasa serangan patogen. Oleh itu kajian ini memfokuskan komponen lipid di dalam dinding sel akar OP dalam memahami patogenesis dan tindak balas pertahanan terlibat semasa interaksi OP-G. boninense. Dalam kajian ini, anak pokok OP yang berumur lapanbulan telah di dijangkitkan secara inokulasi tiruan dengan G. boninense menggunakan bongkah kayu getah. Pengenalpastian jangkitan G. boninense dinilai pada tiga dan enam bulan selepas inokulasi tiruan, masing-masing dirujuk sebagai selang pertama (T1) dan selang kedua (T2). Penyediaan dinding sel OP dan G. boninense yang mempunyai darjah pembebasan komponen sitosol tertinggi dihasilkan dengan liofilisasi dan homogenisasi. Keadaan optimum ke atas pengekstrakan lipid dari dinding sel dikaji menggunakan rekabentuk komposit central (RSM). Hasil pengekstrakan lipid tertinggi (3.36%) telah diperolehi menggunakan kaedah pengekstrakan berikut: 10 mL campuran pelarut (chlorofom: methanol (2:1, v/v)) per gram tisu dengan pengacauan lembut selama 120 min pada suhu 30°C. Perubahan profil dinding sel-lipid pada akar OP yang dijangkiti dan sihat pada T1 dan T2 disiasat menggunakan Kromatograpi lapisan nipis-berprestasi tinggi (HP-TLC) dan kromatograpi gas dan spetrometri jisim (GC-MS). Analisa statistik termasuk Analisa komponen berprinsip (PCA), Analisa diskriminan-kawasan paling kurang separa (PLS-DA) dan analisa laluan metabolik dibuat menggunakan Metaboanalyst. Kajian mendapati metabolisme gliserolipid, linolik asid, piruvat, gliserofosfolipid dan glikolisis atau glukoneogenesis adalah laluan metabolik paling terganggu semasa T1. Manakala, metabolisme piruvat dan glikolisis atau glukoneogenesis merupakan laluan metabolik paling terganggu semasa T2. Secara keseluruhan, laluan metabolik yang paling terganggu pada T1 dan T2 adalah biosintesis steroid, metabolik piruvate dan glikolisis atau glukoneogenesis. Terdapat banyak metabolit lipid di dalam dinding sel OP yang terubah dan berbeza secara

signifikan semasa jangkitan G. boninense. Dengan menggunakan analisa statistik pengesahan penanda-bio, PC(6:0/0:0), PC(2:0/2:0), metil (6E,9E,12E)-6,9,12oktadecatrienoate, PA(18:4(6Z,(Z,12Z,15Z)/0:0), metil palmitoleate, PA(14:0/0:0), γ - asid linolenik and stigmasterol merupakan metabolit yang paling berguna dalam mendiskriminasikan OP yang dijangkiti daripada OP sihat. Hasil keputusan ke atas kehadiran metabolit berbeza berkaitan dengan jangkitan G. boninense di rujuksilang dengan lipid pada dinding sel kulat tersebut untuk mengenalpasti penandabio kehadiran G. boninense. Ergosterol, 5-lanost-8-en-3-ol, metil tridekanoate and metil 9-eikosenoate boleh diekploitasi sebagai penanda-bio kehadiran G. boninense. Penanda-bio yang dikenalpasti boleh digunakan sebagai penanda-bio untuk jangkitan G. boninense dan membantu dalam pengenalpastian awal dan pencegahan jangkitan BSR. Laluan metabolik berkaitan memberikan pemerhatian nobel di dalam pembangunan strategi untuk menguruskan BSR dan baka OP yang tahan-rintang di masa hadapan.

Kata kunci: kelapa sawit, Ganoderma boninense, reput pangkal batang, lipiddinding sel, penanda-bio, laluan metabolik

TABLE OF CONTENTS

			Page
TITLE	E		i
DECL	ARATIO	N	ii
CERT	IFICATIO	ON	iii
ACKN	IOWLEDO	GEMENT	iv
ABST	RACT		vi
ABST	RAK		viii
TABL	E OF COM	NTENTS	xii
LIST	OF TABL	ES	xiii
LIST	OF FIGU	RES	xiv
LIST	OF SYMB	BOLS AND ABBREVIATIONS	XX
LIST	OF APPE	NDICES	xxii
СНАР	TER 1:	INTRODUCTION	1
1.2	Researc	ch objectives	2
a	A CO		
СНАР	TER 2:	LITERATURE REVIEW	3
2.1	Oil palr	n industry UNIVERSITI MALAYSIA SABAH	3
2.2	Commo	on associating oil palm disease	4
2.3	Basal s	tem rot (BSR) disease	4
	2.3.1	<i>Ganoderma boninense</i> Pat.	5
	2.3.2	Mode of invasion	6
	2.3.3	Disease symptoms	7
	2.3.4	Current detection methods	9
	2.3.5	Current management of basal stem rot	12
2.4	Oil palı	m-Ganoderma interaction	14
2.5	Cell wa	all-lipids in plant-pathogen interaction	17
	2.5.1	Lipids signaling and defenses in the response of plant	18
		pathogen	
	2.5.2	Structural alteration of lipids upon infection	20

CHAPT	ER 3:	METHODOLOGY	23
3.1	Preparat	tion of fungal isolate	23
3.2	Plant ma	aterial	23
3.3	Artificial inoculation of oil palm seedling		
	3.3.1	Preparation of Rubber Wood Block (RWB)	23
	3.3.2	Artificial inoculation (AI)	24
	3.3.3	Time-interval sampling	24
	3.3.4	Identification of G. boninense colonization using	24
		Ganoderma selective media (GSM)	
	3.3.5	Development of a standard curve for quantification of Ergosterol content	25
	3.3.6	Evaluation of <i>G. boninense</i> colonisation using ergosterol analysis	26
	3.3.7	Assesment of the disease development	26
67	3.3.8	Scanning Electron Microscopy (SEM) preparation and	28
E		observation	
3.4	Isolation	n of oil palm root cell walls (CW)	28
	3.4.1	Procedures for cell disruption using selected methods	29
	3.4.2	The influence of the disruption methods on solubilized	30
		material	
	3.4.3	Characteristics of produced CW material	32
3.5	Optimiza	ation of cell wall (CW)-lipids extraction	32
	3.5.1	Extraction of CW-lipids using the mixture of chloroform	33
		and methanol	
	3.5.2	Analytical method	33
	3.5.3	Optimization of lipid extraction using Response Surface	34
		Methodology (RSM)	
	3.5.4	Validation of CW-lipids extract using FTIR	36
3.6	Extraction of CW-lipids		36
3.7	Fraction method	ation of CW-lipids using Solid Phase Extraction (SPE)	36
3.8	Prelimin	ary comparison of CW-lipid profiles using High	37

	Perforr	nance- Thin Layer Chromatography (HP-TLC)	
	3.8.1	Sample preparation	37
	3.8.2	Solvent development for HP-TLC analysis	37
	3.8.3	HP-TLC analysis	38
3.9	Lipidon	nic profiling of CW-lipids using Gas Chromatography-Mass	39
	Spectro	ometry (GC-MS)	
	3.9.1	Glycolipid permethylation	39
	3.9.2	Fatty acid and phospholipid methylation	39
	3.9.3	GC-MS analysis of sterol and neutral lipids	40
	3.9.4	GC-MS analysis of glycolipids	40
	3.9.5	GC-MS analysis of fatty acid methyl esters (FAME)	40
3.10	Data p	rocessing and metabolites identification	41
3.11	Data re	eduction and metabolomics analysis	41
3.12	Identif	ication of related metabolite pathways	43
3.13	Discrim	ination performance of potential biomarkers	43
3.14	Statisti	cal analysis	44
Z			
CHAP	TER 4:	RESULTS AND DISCUSSION	45
4.1	Assess	ment of basal stem rot disease development	45
	4.1.1	Disease Incidence (DI) and Disease Severity Index (DSI)	45
	4.1.2	Anatomical observations of the oil palm roots during G.	52
		boninense colonization	
4.2	Isolatio	on and purification of cell wall (CW)-lipids	59
	4.2.1	The influence of the tested disruption methods on DNA	59
		and protein contents	
	4.2.2	Effectiveness of lyophilization with homogenization	62
		method in CW isolation	
	4.2.3	Optimization of CW-lipids extraction	65
4.3	Prelimi	nary comparison of CW-lipid profiles using High	77
	Performance - Thin Layer Chromatography (HP-TLC)		
	4.3.1	HP-TLC analysis of crude extract CW-lipids under	78
		fluorescence mode (254 nm and 366 nm)	

	4.3.2	HP-TLC analysis of CW-lipid fractions from Solid Phase	82		
		Extraction (SPE) under fluorescence mode (254 nm and			
		366 nm)			
	4.3.3	HP-TLC analysis of lipid fractions from SPE under	89		
		absorbance mode (280 nm)			
4.4	Lipidor	Lipidomic profiling of CW during G. boninense infection and			
	progre	ssion in OP seedlings using Gas Chromatography-Mass			
	Spectro	ometry (GC-MS)			
	4.4.1	Differential expression and profile of sterols composition	95		
		related to G. boninense infection			
	4.4.2	Differential expression and profile of glycolipids	101		
		composition related to G. boninense infection			
	4.4.3	Differential expression and profile of fatty acids (FA)	107		
		composition related to G. boninense infection			
4.5	Metabo	Metabolite pathways related to G. boninense-infection			
A	4.5.1	Stage-specific metabolite pathways	113		
Eľ	4.5.2	Global metabolite pathways	117		
4.6	Identif	ication of biomarkers specific to G. boninense pathogen	118		
4.7	Selection	on and validation of distinctive biomarkers	121		
СНАР	TER 5:	CONCLUSION IVERSITI MALAYSIA SABAH	124		
REFE	RENCES		127		
APPE	NDICES		148		

LIST OF SYMBOLS AND ABBREVIATIONS

±	-	plus-minus
+	-	plus
-	-	minus
=	-	equals to
≥	-	more or equal to
/	-	divide by
%	-	percentage
٥C	-	degree Celcius
α	-	alpha
β	-	beta
γ	-	gamma
μg	-	microgram
g 🔏	6	gram
kg 🤗	-	kilogram
LE	-	litre
m 🛃 🍐	-	meter
μl	2	microlitre
μM 📎	-1 B (micromolar UNIVERSITI MALAYSIA SABAH
рМ	-	picomolar
mg	-	milligram
ml	-	millilitre
mm	-	millimeter
µg/mL	-	microgram per millilitre
mg/mL	-	milligram per millilitre
µg/g	-	Microgram per gram
U	-	unit
pН	-	power of hydrogen
m/z	-	mass to charge ratio
g	-	g force
rpm	-	revolution per minute
h	-	hour

min	-	minute
e.g.	-	<i>exemplii gratia</i> (example)
UV	-	ultraviolet
OD	-	optical density
SD	-	standard deviation
PCA	-	principal component analysis
PLSDA	-	partial least square discriminant analysis
CPD	-	critical point dryer
SEM	-	scanning electron microscopy
FTIR	-	fourier infrared spectroscopy
IR	-	infrared
VIS	-	visible light
RSM	-	response surface methodology
GCMS	-	gas chromatography-mass spectrometry
HPTLC	-	high performance thin layer chromatography
HPLC	77-	high performance liquid chromatography
ESI	- 22	electron spray ionization
SPE	-	solid phase extraction
cw 🔨	Ľ	cell wall
FA 🔪		fatty acid LINIVERSITI MALAYSIA SARAH
FAME	-	fatty acid methyl ester
ROS	-	reactive oxygen species
BCA	-	biological control agent
RWB	-	rubber wood block
GSM	-	Ganoderma selective media
AI	-	artificial inoculation
CMR	-	chloroform methanol ratio
ROCCET	-	ROC curve explorer and tester

LIST OF FIGURES

Page

6

- Figure 2.1. Morphology of different stages of *G. boninense*. (A) Fruiting bodies. (B) Mycelial of *G. boninense* grown on potato dextrose agar (PDA).
- Figure 2.2. Progressive symptoms of BSR disease in oil palm. (A) 9
 Unopened spears of oil palm tree. (B) Emergence of *G. boninense* fruiting bodies on the basal stem of infected oil palm. (C) Wood decay on the basal stem region of infected oil palm. (D) Toppling of BSR infected oil palm.
- Figure 3.1. Integration of absorbance at 282 nm wavelength against 26 concentration of standard ergosterol.
- Figure 3.2 Standard curve of bovine serum albumin (BSA) measured at 31 595 nm wavelengths.
- Figure 4.1 Root excised from healthy (uninoculated) seedling at (A) 46 first and (B) second interval plated on Ganoderma selective media (GSM) after 7 days of incubation shows no growth of Ganoderma indicated of infected-free roots. Meanwhile, infected roots from Ganoderma-inoculated seedlings at (C) first interval (3 months post-artificial inoculation (AI)) and (D) second interval (6 months post-AI) shows the presence of *Ganoderma* growth on GSM indicated of infected roots. (E) The presence of clamp connection (arrowed) in Ganoderma mycelia isolated from GSM media. Clamp connection is a common characteristic of basidiomycetes observed under magnification power, 10x. (F)-(G) Ganoderma colonies grown on PDA after 14 days incubation shows white mycelium with slightly sculptured surface (S), and reverse colour (darkened) (B).
- Figure 4.2 (A) Healthy (uninoculated) oil palm seedling at first interval 49 and at (B) second interval shows no sign of infection. (C) Inoculated seedling at first interval ((3 months post-artificial inoculation (AI)) showed desiccation of lower leaves, meanwhile (D) inoculated seedling at second interval (6 months post-AI) showed extensive necrosis and wilting.
- Figure 4.3. Symptoms of *G. boninense* infection. (A) Small, white, 50 button-like structure produced on diseased roots at first interval (3 months post-artificial inoculation (AI)). (B) Necrotic and wilting leaves, (C) fungal mycelium occurs at the base of the bole and (D) appearance of mature fruiting body emerged from polybag of infected seedling at second

interval (6 months post-AI).

- Figure 4.4. Progressive development of BSR symptom in bole (stem) of oil palm seedlings. Healthy (uninoculated) seedling at (A) first and (B) second interval shows a healthy bole with no sign of infection. (C) Bole of oil palm seedling at first interval (3 months post-artificial inoculation (AI)) shows no invasion of *Ganoderma* into the bole. (D) *Ganoderma*inoculated sample at second interval (6 months post-AI) shows decaying tissue and invasion of *Ganoderma* by appearance of white fungal mycelium (arrowed in red) in the decayed tissue.
- Figure 4.5 Electron micrographs of oil palm seedlings root, free of *G. boninense.* (A) Cross section of the uninoculated roots revealed an intact and undamaged cell structure, where five zones 1-5 are generally distinguished; 1- epidermis; 2 cortex; 3 -endodermis; 4 vascular tissue; 5 pith. (B) Closed view of zone 1 and 2 of Figure (A) showed a healthy-looking cortical cell. (C) (D) Transversal section view of uninoculated cortex tissue showed a smooth and undamaged structure.
- Figure 4.6 Electron micrographs of oil palm root colonized by 54 G. boninense at first interval (3 months post-artificial inoculation (AI)). (A) Cross section of the inoculated root (five zones 1-5 are generally distinguished; 1 - epidermis; 2 - cortex; 3 - endodermis; 4 – vascular tissue; 5 – pith) with impaired cell structure and collapsed cortex (indicated as h). (B) Closed view of zone 1 - 5 of Figure (A) showed weakened morphology mainly at zone 1 and 2. (C) Severely disassociated cortical cells. (D) Mostly affected and colonized epidermis by G. boninense (indicated as GB).
- Figure 4.7 Electron micrographs of oil palm root colonized by 55 G. boninense at second interval (6 months post-artificial inoculation (AI)). (A) Cross section of the inoculated root (five zones 1-5 are generally distinguished; 1 - epidermis; 2 - cortex; 3 - endodermis; 4 - vascular tissue; 5 - pith), where root cortex collapsed and formed a hollow indicated as h in between the epidermis and endodermis cells due to cell death, however the vascular system remain intact but distorted. (B) A disintegrated and disorganized structure of the epidermal and cortical cells. (C) Detailed view of cortical cells of infected root showed intense damages and highly colonized with *G. boninense* mycelia indicated as GB. (D) Close view of epidermis which was mostly affected and colonized by GB.
- Figure 4.8 Electron micrographs show the evidence of *G. boninense*

xv

presence in oil palm roots. (A) First interval (3 months postartificial inoculation (AI)) and (C) second interval (6 months post-AI). Closer view on the adherence of fungal hyphae on oil palm cells at (B) first interval, (D) second interval. (E) Evidence of the formation of callose and penetration holes at first interval (circled in red), zoomed-in view was presented in (F) where formation of callose indicated with red arrow and penetration holes indicated with yellow arrow.

- Figure 4.9 Infra-red spectrum of disrupted cells and purified cell wall of 64 *G. boninense* via lyophilization with homogenization disruption method.
- Figure 4.10 Infra-red spectrum of oil palm roots cell wall preparation 65 after disruption with lyophilization with homogenization.
- Figure 4.11 Effect of process variables on the lipid extraction yield (A) 70 chloroform volume to 1 part of methanol (CMR). The experiments were performed under the following conditions: cell wall biomass, approximately 1 g; extraction temperature 28°C, extraction time 120 min and solvent to biomass ratio 10:1 (v/m). (B) Extraction temperature. The experiments were carried out in the following conditions: cell wall biomass, approximately 1 g; CMR at 0.67 (v/v), extraction time 120 min and solvent to biomass ratio 10:1 (v/m). (C) Extraction time. The experiments were performed under the following conditions, cell wall biomass, approximately 1 g; CMR at 0.67 (v/v), extraction temperature 28° C and solvent to biomass ratio 10:1 (v/m). (D) Solvent to biomass ratio. The experiments were carried out in the following conditions: cell wall biomass, approximately 1g; extraction temperature 28°C; CMR at 0.67 (v/v) and extraction time at 120 min.
- Figure 4.12 Response surface plots (3D) and contour plots (2D) showing 74 the mutual effect of (A) CMR and temperature; (B) CMR and time; (C) temperature and time on the lipid extraction yield percentage.
- Figure 4.13 Infra-red spectrum of lipid extracted from *G. boninense* cell 76 wall.
- Figure 4.14 Infra-red spectrum of lipid extracted from oil palm roots cell 77 wall.
- Figure 4.15 HP-TLC of lipids extracted from *Ganoderma* fungi cell wall, 81 root cell wall of healthy and *Ganoderma*-infected oil palm seedlings at first (3 months post-artificial inoculation (AI)) and second interval (6 months post-AI). (A) Observation

under 254 nm; (B) Observation under 366 nm; (C) Observation of TLC plate after stained with iodine.

- HP-TLC of chloroform fraction from cell wall lipid of Figure 4.16 Ganoderma, healthy and Ganoderma-infected oil palm seedlings at first interval (3 months post-artificial inoculation (AI)) and second interval (6 months post-AI). (A) Observation under 254 nm; (B) Observation under 366 nm; (C) Observation of TLC plate after stained with iodine.
- Figure 4.17 HP-TLC of acetone fraction from cell wall lipid of 86 Ganoderma, healthy and Ganoderma-infected oil palm seedlings at first interval (3 months post-artificial inoculation (AI)) and second interval (6 months post-AI). (A) Observation under 254 nm; (B) Observation under 366 nm; (C) Observation of TLC plate after stained with iodine.
- HP-TLC of methanol fraction from cell wall lipid of 88 Figure 4.18 Ganoderma, healthy and Ganoderma-infected oil palm seedlings at first interval (3 months post-artificial inoculation (AI)) and second interval (6 months post-AI). (A) Observation under 254 nm; (B) Observation under 366 nm; (C) Observation of TLC plate after stained with iodine.
- Figure 4.19 97 Partial least square-discriminant analysis (PLS-DA) of (A) IN-T1 vs. H-T1 and (B) IN-T2 vs. H-T2; Variable importance in projection (VIP) score plot selected from PLS-DA model with p > 0.05 and (VIP) scores > 1.2 of (C) IN-T1 vs. H-T1 and (D) IN-T2 vs. H-T2. VERSITI MALAYSIA SABAH
- Figure 4.20 Multivariate cluster analysis of sterol profiles of H-T1 vs. IN-100 T1 vs. H-T2 vs. IN-T2 at first and second intervals. (A) Principal component analysis (PCA) score-plot. (B) Partial least square-discriminant analysis (PLS-DA) score-plot. (C) Heatmap visualization analysis of metabolites (VIP score > 1.5; p > 0.05) identified from PLS-DA model with a potential identity to distinguish between infected and healthy groups.
- 103 Figure 4.21 Partial least square-discriminant analysis (PLS-DA) of (A) IN-T1 vs. H-T1 and (B) IN-T2 vs. H-T2; Variable importance in projection (VIP) score plot selected from PLS-DA model with p > 0.05 and (VIP) scores > 1.2 of (C) IN-T1 vs. H-T1 and (D) IN-T2 vs. H-T2.
- Figure 4.22 Multivariate cluster analysis of glycolipids profiles of H-T1 106 vs. IN-T1 vs. H-T2 vs. IN-T2 at first and second intervals. (A) Principal component analysis (PCA) score-plot. (B) Partial least square-discriminant analysis (PLS-DA) scoreplot. (C) Heatmap visualization analysis of metabolites (VIP

xvii

84

score > 1.5; p > 0.05) identified from PLS-DA model with a potential identity to distinguish between infected and healthy groups.

- Figure 4.23 Partial least square-discriminant analysis (PLS-DA) of (A) 109 IN-T1 *vs.* H-T1 and (B) IN-T2 *vs.* H-T2; Variable importance in projection (VIP) score plot selected from PLS-DA model with p > 0.05 and (VIP) scores > 1.2 of (C) IN-T1 *vs.* H-T1 and (D) IN-T2 *vs.* H-T2.
- Figure 4.24 Multivariate cluster analysis of fatty acid profiles of H-T1 *vs.* 112 IN-T1 *vs.* H-T2 *vs.* IN-T2 at first and second intervals. (A) Principal component analysis (PCA) score-plot. (B) Partial least square-discriminant analysis (PLS-DA) score-plot. (C) Heatmap visualization analysis of metabolites (VIP score > 1.5; p > 0.05) identified from PLS-DA model with a potential identity to distinguish between infected and healthy groups.
- Figure 4.25 The pathway impact analysis of cell-wall lipid metabolites 114 selected from univariate analysis at first interval using MetPA. Each circle represents a matched pathway. Metabolic pathways with impact values > 0.05 were considered to be perturbed.
- Figure 4.26 The pathway impact analysis of cell-wall lipid metabolites 116 selected from univariate analysis at second interval using MetPA. Each circle represents a matched pathway. Metabolic pathways with impact values > 0.05 were considered to be perturbed.
- Figure 4.27 The pathway impact analysis of cell-wall lipid metabolites 118 selected from multivariate analysis (from whole experiment) using MetPA. Each circle represents a matched pathway. Metabolic pathways with impact values > 0.05 were considered to be perturbed.
- Figure 4.28 Box-whisker plots of (A) ergosterol, (B) 5-lanost-8-en-3-ol, 120 (C) methyl tridecanoate and (D) methyl 9-eicosenoate in *G. boninense* (GB), healthy (HT) and infected (IN) samples. The relative abundance of each metabolite were analyzed using one-way ANOVA with Fisher's LSD (p < 0.05). Boxwhisker plots are calculated from normalized concentrations (y-axis).
- Figure 4.29 Biomarker analysis results (ROC view). Statistical method to evaluate infected and healthy discrimination using selected potential metabolites. (A) Probability view (B) Cross validation prediction and (C) accuracy of selected metabolites, PC(6:0/0:0), PC(2:0/2:0), methyl (6E,9E,12E)-

6,9,12-octadecatrienoate, PA(18:4(6Z,9Z,12Z,15Z)/0:0), methyl palmitoleate, PA(14:0/0:0), γ -linolenic acid and stigmasterol.

Figure 4.30 Box-and-whiskers plots representing relative abundance of: 123
(A) PC(6:0/0:0); (B) PC(2:0/2:0); (C) methyl (6E,9E,12E)-6,9,12-octadecatrienoate; (D) PA(18:4(6Z,9Z,12Z,15Z)/0:0); (E) methyl palmitoleate; (F) PA(14:0/0:0); (G) γ-linolenic acid; (H) stigmasterol in *Ganoderma*-infected and healthy oil paseedlings.

LIST OF TABLES

		Page
Table 3.1	The signs and symptoms of disease severity index scored based on disease scale 0-4.	27
Table 3.2	The signs and symptoms of bole index scored based on scale 0-4.	28
Table 3.3	Factors and levels for response surface methodology (RSM) for Central Composite Design (CCD) matrix (in actual and coded levels of three variables).	35
Figure 3.4	Experimental design for response surface methodology (RSM) using Central Composite Design (CCD).	35
Table 4.1	Disease assessment of two-time intervals of oil palm seedlings inoculated with <i>Ganoderma</i> .	47
Table 4.2	Effect of different disruption methods of cell disruption on the DNA and protein contents in oil palm and <i>Ganoderma</i> cell wall.	60
Table 4.3	Effect of lyophilization with homogenization method in cell wall isolation and purification.	62
Table 4.4	Experimental runs and corresponding results regarding Central Composite Design (CCD).	71
Table 4.5	ANOVA and Regression analysis for lipid yield percentage (%) (quadratic response surface model fitting).	72
Table 4.6	Suggested solution after optimization using response surface model (RSM).	72
Table 4.7	List of separated bands at 280 nm wavelength observed under absorbance mode. Each value represents band area in absorbance unit (AU).	90
Table 4.8	List of separated bands at 280 nm wavelength observed under absorbance mode. Each value represents band area in absorbance unit (AU).	92
Table 4.9	List of separated bands at 280 nm wavelength observed under absorbance mode. Each value represents band area in absorbance unit (AU).	94

LIST OF APPENDICES

Page

APPENDIX A:	List of bands from chloroform fraction observed under 254 nm, 366 nm and after stained with iodine.	148
APPENDIX B:	List of bands from acetone: methanol (9:1) fraction observed under 254 nm, 366 nm and after stained with iodine.	149
APPENDIX C:	List of bands from methanol fraction observed under 254 nm, 366 nm and after stained with iodine.	152
APPENDIX D:	Principal component analysis (PCA) of sterol, glycolipid and fatty acid.	153
APPENDIX E:	HP-TLC chromatogram of sterol observed under 280 nm.	154
APPENDIX F:	HP-TLC chromatogram of glycolipids observed under 280 nm.	155
APPENDIX G:	HP-TLC chromatogram of fatty acids observed under 280 nm.	156
APPENDIX H:	GC-MS chromatogram of <i>G. boninense</i> cell wall-lipid extracts.	157
APPENDIX I:	GC-MS chromatogram of H-T1 cell wall-lipid extracts.	158
APPENDIX J:	GC-MS chromatogram of IN-T1 cell wall-lipid extracts.	159
APPENDIX K:	GC-MS chromatogram of H-T2 cell wall-lipid extracts.	160
APPENDIX L:	GC-MS chromatogram of IN-T2 cell wall-lipid extracts.	161
APPENDIX M:	List of sterol metabolites in <i>G. boninense,</i> healthy (H) and infected (IN) samples detected using GC-MS.	162
APPENDIX N:	List of glycolipid metabolites in <i>G. boninense,</i> healthy (H) and infected (IN) samples detected using GC-MS.	164
APPENDIX O:	List of FAME metabolites in <i>G. boninense</i> , healthy (H) and infected (IN) samples detected using GC-MS.	166