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ABSTRACT 
 

A numerical solution involving two-point boundary value problems has vast contributions 

especially to formulate problems mathematically in fields such as science, engineering, 

and economics. In response to that, this study was conducted to solve for the second- 

and fourth-order two-point boundary value problems (BVPs) by using cubic and quartic 

non-polynomial spline discretization schemes for full-, half- and quarter-sweep cases. 

The derivation process based on the cubic and quartic non-polynomial spline functions 

were implemented to generate the full-, half- and quarter-sweep cases non-polynomial 

spline approximation equations. After that, the non-polynomial spline approximation 

equations were used to generate the corresponding systems of linear equations in a 

matrix form. Since the systems of linear equations have large and sparse coefficient 

matrices, therefore the linear systems were solved by using the family of Conjugate 

Gradient (CG) iterative method. In order to conduct the performances comparative 

analysis of the CG iterative method, there are two other iterative methods were 

considered which are Gauss-Seidel (GS) and Successive-Over-Relaxation (SOR) along 

with the full-, half- and quarter-sweep concepts. Furthermore, the numerical 

experiments were demonstrated by solving three examples of second- and fourth-order 

two-point BVPs in order to investigate the performance analysis in terms of the number 

of iterations, execution time and maximum absolute error. Based on the numerical 

results obtained from the implementation of the three iteration families together with 

the cubic and quartic non-polynomial spline schemes, the performance analysis of the 

CG iterative method was found to be superior to the GS and SOR iteration families in 

terms of the number of iteration, execution time and maximum absolute error when 

solving the two-point BVPs. Hence, it can be stated that the CG iteration family is more 

efficient and accurate than the GS and SOR iteration families when solving the second-

order two-point BVPs based on the cubic and quartic non-polynomial spline schemes. 

However, for the fourth-order two-point BVPs, the numerical results have shown that 

the implementation of the CG iteration family over the reduced system of second-order 

two-point BVPs failed to satisfy the convergence iteration criteria. As a result, the SOR 

iteration family is superior to GS iteration family in terms of the number of iteration, 

execution time and maximum absolute error.  
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ABSTRAK 
 

ANALISIS PRESTASI FAMILI KAEDAH LELARAN KECERUNAN KONJUGAT 

DENGAN SKEMA SPLIN TAK POLINOMIAL TERHADAP MASALAH NILAI 

SEMPADAN DUA-TITIK PADA PERINGKAT KEDUA DAN KEEMPAT 

 

Penyelesaian berangka yang melibatkan masalah nilai sempadan dua-titik mempunyai 

kepentingan yang meluas untuk merumuskan permasalahan tersebut secara matematik 

dalam pelbagai bidang seperti sains, kejuruteraan dan ekonomi. Sehubungan dengan 

itu, kajian ini dijalankan untuk menyelesaikan masalah nilai sempadan dua-titik dengan 

menggunakan skema pendiskretan splin tak polinomial kubik dan kuartik yang 

merangkumi kes sapuan penuh, separuh dan suku. Proses pendiskretan terhadap fungsi 

splin tak polinomial kubik dan kuartik telah dilaksanakan untuk menerbitkan persamaan 

penghampiran splin bagi ketiga-tiga kes sapuan penuh, separuh dan suku. Seterusnya, 

persamaan penghampiran splin tersebut digunakan untuk menjana sistem persamaan 

linear yang sepadanan dalam bentuk matrik. Memandangkan sistem persamaan linear 

tersebut mempunyai pekali matriks yang berskala besar, maka sistem persamaan linear 

tersebut diselesaikan dengan menggunakan famili kaedah lelaran Kecerunan Konjugat 

(KK). Bagi menjalankan analisis perbandingan prestasi terhadap famili kaedah lelaran 

KK, terdapat dua famili kaedah lelaran lain yang turut dijalankan iaitu famili kaedah 

lelaran Gauss-Seidel (GS) dan Pengenduran Berlebihan Berturut-turut (PBB) bersama 

dengan konsep sapuan penuh, separuh dan suku. Selanjutnya, ujian berangka telah 

didemonstrasikan dengan menyelesaikan tiga permasalahan nilai sempadan dua-titik 

bagi setiap peringkat kedua dan keempat untuk mengkaji analisis prestasi dari aspek 

bilangan lelaran, masa lelaran dan ralat mutlak maksimum. Berdasarkan keputusan 

ujian berangka ke atas permasalahan tersebut dengan menggunakan famili kaedah 

lelaran GS, PBB dan KK, famili kaedah lelaran KK telah menunjukkan prestasi yang lebih 

baik dari aspek bilangan lelaran, masa lelaran dan ralat mutlak maksimum berbanding 

dengan prestasi famili kaedah lelaran GS dan PBB. Justeru itu, dapat dinyatakan bahawa 

famili kaedah lelaran KK adalah lebih efisien dan jitu berbanding dengan famili kaedah 

lelaran GS dan SOR dalam menyelesaikan masalah nilai sempadan dua-titik pada 

peringkat kedua berdasarkan persamaan penghampiran splin tak polinomial kubik dan 

kuartik. Walaubagaimanapun, dalam kes masalah nilai sempadan dua-titik peringkat 

keempat, keputusan uji berangka menunjukkan bahawa famili kaedah lelaran KK 

bersama dengan pendekatan splin tak polinomial kubik dan kuartik telah gagal 

memenuhi kriteria penumpuan lelaran dalam menyelesaikan masalah nilai sempadan 

dua-titik peringkat kedua terturun. Sehubungan dengan itu, didapati bahawa famili 

kaedah lelaran PBB adalah lebih baik berbanding dengan famili kaedah lelaran GS dari 

aspek bilangan lelaran, masa lelaran dan ralat mutlak maksimum dalam menyelesaikan 

masalah nilai sempadan dua-titik peringkat kedua terturun. 
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