PERFORMANCE ANALYSIS OF THE FAMILY OF CONJUGATE GRADIENT ITERATIVE METHODS WITH NON-POLYNOMIAL SPLINE SCHEME FOR SOLVING SECOND- AND FOURTH-ORDER TWO-POINT BOUNDARY VALUE PROBLEMS

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2018

PERFORMANCE ANALYSIS OF THE FAMILY OF CONJUGATE GRADIENT ITERATIVE METHODS WITH NON-POLYNOMIAL SPLINE SCHEME FOR SOLVING SECOND- AND FOURTH-ORDER TWO-POINT BOUNDARY VALUE PROBLEMS

HYNICHEARRY JUSTINE

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2018

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL: PERFORMANCE ANALYSIS OF THE FAMILY OF CONJUGATE GRADIENT ITERATIVE METHODS WITH NON-POLYNOMIAL SPLINE SCHEME FOR SOLVING SECOND- AND FOURTH-ORDER TWO-POINT BOUNDARY VALUE PROBLEMS

IJAZAH: IJAZAH SARJANA SAINS (MATEMATIK)

Saya **<u>HYNICHEARRY JUSTINE</u>**, Sesi **<u>2016-2018</u>**, mengaku membenarkan tesis <u>Ijazah Sarjana</u> ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

TERHAD

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan Oleh,

HYNICHEARRY JUSTINE MS1521009T

(

Pustakawan

Tarikh: 17 April 2018

(Prof. Madya Dr. Jumat Sulaiman) Penyelia

DECLARATION

I hereby declare that the material in this thesis is my own, except for the quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

30 August 2017

Hynichearry Justine MS1521009T

CERTIFICATION

NAME : **HYNICHEARRY JUSTINE**

MATRIC NO. : **MS1521009T**

TITLE : PERFORMANCE ANALYSIS OF THE FAMILY OF CONJUGATE GRADIENT ITERATIVE METHODS WITH NON-POLYNOMIAL SPLINE SCHEME FOR SOLVING SECOND- AND FOURTH-ORDER TWO-POINT BOUNDARY VALUE PROBLEMS

FIELD : MASTER OF SCIENCE (MATHEMATICS)

DATE OF VIVA : 17th January 2018

Assoc. Prof. Dr. Jumat Sulaiman

ACKNOWLEDGEMENT

I thank the almighty Lord for giving me assurance and perishing me through thick and thin. I could not thank for more for the strength and guidance He has showered unto me throughout my endeavor upon the completion of this thesis.

I respectfully express my deepest gratitude to my supervisor, Assoc. Prof. Dr. Jumat Sulaiman, whose expertise, understanding, and patience, added considerably to my postgraduate experience. I appreciate his vast knowledge and skill in many areas and his assistance in writing this thesis.

A very special thanks goes to my family and relatives especially my father Justine Gosbin for the unendingly financial support. I would also like to use this opportunity to express my gratitude to all my beloved friends for their motivational supports through my entire life. Without their love, motivation and encouragement I would not be able to finish this thesis and reach this stage. It was under their supports that I developed a focus and became interested in this field.

UNIVERSITI MALAYSIA SABAH

I would also like to extend my sincere thanks to my closest friend Clestus Philip who had supported me thoroughly. I am thankful for his aspiring guidance, invaluably constructive criticism and friendly advice. I am sincerely grateful to him for sharing his truthful and illuminating views on a number of issues related to this thesis. He also provided me with direction, technical support and became more of a mentor and friend, than a professor.

It was though their understanding and kindness that I completed my thesis. I doubt that I will ever be able to convey my appreciation fully, but I owe them my eternal gratitude.

Hynichearry Justine 30 August 2017

ABSTRACT

A numerical solution involving two-point boundary value problems has vast contributions especially to formulate problems mathematically in fields such as science, engineering, and economics. In response to that, this study was conducted to solve for the secondand fourth-order two-point boundary value problems (BVPs) by using cubic and quartic non-polynomial spline discretization schemes for full-, half- and quarter-sweep cases. The derivation process based on the cubic and quartic non-polynomial spline functions were implemented to generate the full-, half- and guarter-sweep cases non-polynomial spline approximation equations. After that, the non-polynomial spline approximation equations were used to generate the corresponding systems of linear equations in a matrix form. Since the systems of linear equations have large and sparse coefficient matrices, therefore the linear systems were solved by using the family of Conjugate Gradient (CG) iterative method. In order to conduct the performances comparative analysis of the CG iterative method, there are two other iterative methods were considered which are Gauss-Seidel (GS) and Successive-Over-Relaxation (SOR) along with the full-, half- and guarter-sweep concepts. Furthermore, the numerical experiments were demonstrated by solving three examples of second- and fourth-order two-point BVPs in order to investigate the performance analysis in terms of the number of iterations, execution time and maximum absolute error. Based on the numerical results obtained from the implementation of the three iteration families together with the cubic and quartic non-polynomial spline schemes, the performance analysis of the CG iterative method was found to be superior to the GS and SOR iteration families in terms of the number of iteration, execution time and maximum absolute error when solving the two-point BVPs. Hence, it can be stated that the CG iteration family is more efficient and accurate than the GS and SOR iteration families when solving the secondorder two-point BVPs based on the cubic and quartic non-polynomial spline schemes. However, for the fourth-order two-point BVPs, the numerical results have shown that the implementation of the CG iteration family over the reduced system of second-order two-point BVPs failed to satisfy the convergence iteration criteria. As a result, the SOR iteration family is superior to GS iteration family in terms of the number of iteration, execution time and maximum absolute error.

ABSTRAK

ANALISIS PRESTASI FAMILI KAEDAH LELARAN KECERUNAN KONJUGAT DENGAN SKEMA SPLIN TAK POLINOMIAL TERHADAP MASALAH NILAI SEMPADAN DUA-TITIK PADA PERINGKAT KEDUA DAN KEEMPAT

Penyelesaian berangka yang melibatkan masalah nilai sempadan dua-titik mempunyai kepentingan yang meluas untuk merumuskan permasalahan tersebut secara matematik dalam pelbagai bidang seperti sains, kejuruteraan dan ekonomi. Sehubungan dengan itu, kajian ini dijalankan untuk menyelesaikan masalah nilai sempadan dua-titik dengan menggunakan skema pendiskretan splin tak polinomial kubik dan kuartik yang merangkumi kes sapuan penuh, separuh dan suku. Proses pendiskretan terhadap fungsi splin tak polinomial kubik dan kuartik telah dilaksanakan untuk menerbitkan persamaan penghampiran splin bagi ketiga-tiga kes sapuan penuh, separuh dan suku. Seterusnya, persamaan penghampiran splin tersebut digunakan untuk menjana sistem persamaan linear yang sepadanan dalam bentuk matrik. Memandangkan sistem persamaan linear tersebut mempunyai pekali matriks yang berskala besar, maka sistem persamaan linear tersebut diselesaikan dengan menggunakan famili kaedah lelaran Kecerunan Konjugat (KK). Bagi menjalankan analisis perbandingan prestasi terhadap famili kaedah lelaran KK, terdapat dua famili kaedah lelaran lain yang turut dijalankan iaitu famili kaedah lelaran Gauss-Seidel (GS) dan Pengenduran Berlebihan Berturut-turut (PBB) bersama dengan konsep sapuan penuh, separuh dan suku. Selanjutnya, ujian berangka telah didemon<mark>strasikan de</mark>ngan menyelesaikan tiga permasalahan nilai sempadan dua-titik bagi setiap peringkat kedua dan keempat untuk mengkaji analisis prestasi dari aspek bilangan lelaran, masa lelaran dan ralat mutlak maksimum. Berdasarkan keputusan ujian berangka ke atas permasalahan tersebut dengan menggunakan famili kaedah lelaran GS, PBB dan KK, famili kaedah lelaran KK telah menunjukkan prestasi yang lebih baik dari aspek bilangan lelaran, masa lelaran dan ralat mutlak maksimum berbanding dengan prestasi famili kaedah lelaran GS dan PBB. Justeru itu, dapat dinyatakan bahawa famili kaedah lelaran KK adalah lebih efisien dan jitu berbanding dengan famili kaedah lelaran GS dan SOR dalam menyelesaikan masalah nilai sempadan dua-titik pada peringkat kedua berdasarkan persamaan penghampiran splin tak polinomial kubik dan kuartik. Walaubagaimanapun, dalam kes masalah nilai sempadan dua-titik peringkat keempat, keputusan uji berangka menunjukkan bahawa famili kaedah lelaran KK bersama dengan pendekatan splin tak polinomial kubik dan kuartik telah gagal memenuhi kriteria penumpuan lelaran dalam menyelesaikan masalah nilai sempadan dua-titik peringkat kedua terturun. Sehubungan dengan itu, didapati bahawa famili kaedah lelaran PBB adalah lebih baik berbanding dengan famili kaedah lelaran GS dari aspek bilangan lelaran, masa lelaran dan ralat mutlak maksimum dalam menyelesaikan masalah nilai sempadan dua-titik peringkat kedua terturun.

TABLE OF CONTENTS

		Page
TITL	E	i
DEC	LARATION	ii
CER	TIFICATION	iii
ACK	NOWLEDGEMENT	iv
ABS [.]	TRACT	v
ABS	TRAK	vi
CON	TENT	vii
LIST	OF TABLES	xiii
LIST	OF FIGURES	xvi
LIST	OF ALGORITHMS	xx
LIST	OF ABBREVIATIONS	xxi
LIST	OF SYMBOLS	xxiii
СНА	PTER 1: INTRODUCTION	1
1.1	Introduction	1
1.2	Two-Point Boundary Value Problems	4
1.3	Basic Concept of the Spline Discretization Scheme	7
	1.3.1 Polynomial Spline	9
	1.3.2 Non-Polynomial Spline	10
1.4	System of Linear Equations	11
	1.4.1 Direct Method	13
	1.4.2 Iterative Method	14
1.5	Problem Statement	14
1.6	Objectives	17
1.7	Scope of Study	17
1.8	Chapter Outline	19

CHA	APTER 2: LITERATURE REVIEW	21
2.1	Introduction	21
2.2	History of Numerical Analysis	21
2.3	Overview of Computation	25
2.4	Development of Discretization Scheme for Two-Point BVPs	27
	2.4.1 Development of Approximation Equation Derivation Withou Discretization Scheme	t Spline 28
	2.4.2 Development of Approximation Equation Derivation With Discretization Scheme	Spline 31
	A. The Polynomial Spline Discretization Scheme	31
	B. The Non- Polynomial Spline Discretization Scheme	31
2.5	Development of Iterative Methods	37
	2.5.1 One-Step Iteration Families	38
	2.5.2 Two-Step Iteration Families	40
2.6	Development of Non-Polynomial Spline Approach	42
2.7	Development of CG Iteration Family	45
B	2.6.1 Variation of CG Iterative Method	45
	2.6.2 Application of CG Iterative Method	47
2.8	Concluding Remark UNIVERSITI MALAYSIA SAB	AH 49
СНА	APTER 3: FORMULATION OF NON-POLYNOMIAL SPLINE SO	CHEME 51
	FOR TWO-POINT BOUNDARY VALUE PROBLEMS	
3.1	Introduction	51
3.2	Polynomial Spline Interpolation	51
	3.2.1 Concept Formulation of Linear Spline Interpolation	52
	3.2.2 Concept of Quadratic Spline Interpolation	53
	3.2.3 Concept of Cubic Spline Interpolation	54
	3.2.4 Concept of Quartic Spline Interpolation	55
3.3	Non-Polynomial Spline Interpolation	56
3.4	Construction of Grid Network for the Solution Domain	57
	3.4.1 Concept of Full-Sweep Iteration	57

	3.4.2	Concept of Half-Sweep Iteration	58
	3.4.3	Concept of Quarter-Sweep Iteration	59
3.5	Formulation of Non-Polynomial Spline Function		
	3.5.1	Derivation of Cubic Non-Polynomial Spline Function	63
		A. Derivation of Full-Sweep Cubic Non-Polynomial Spline Scheme	64
		B. Derivation of Half-Sweep Cubic Non-Polynomial Spline Scheme	65
		C. Derivation of Quarter-Sweep Cubic Non-Polynomial Spline Scheme	66
	3.5.2	Derivation of Quartic Non-Polynomial Spline Function	67
		A. Derivation of Full-Sweep Quartic Non-Polynomial Spline Scheme	68
		B. Derivation of Half-Sweep Quartic Non-Polynomial Spline Scheme	69
	AL	C. Derivation of Quarter-Sweep Quartic Non-Polynomial Spline	69
	1	Scheme	
3.6	Discre	tization of Second-Order Two-Point BVPs Based on Non-Polynomial	70
B	Spline	Schemes	
	3.6.1	Cubic Spline Approximation Equation Over the Second-Order Two-	71
	VII.	Point BVPs UNIVERSITI MALAYSIA SABAH	
		A. Derivation of Full-Sweep Cubic Approximation Equation	71
		B. Derivation of Half-Sweep Cubic Approximation Equation	73
		C. Derivation of Quarter-Sweep Cubic Approximation Equation	75
	3.6.2	Quartic Spline Approximation Equation Over the Second-Order	76
		Two-Point BVPs	
		A. Derivation of Full-Sweep Quartic Approximation Equation	76
		B. Derivation of Half-Sweep Quartic Approximation Equation	77
		C. Derivation of Quarter-Sweep Quartic Approximation Equation	78
3.7	Discre	tization of Fourth-Order Two-Point BVPs Based on Non-Polynomial	79
	Spline	Schemes	
	3.7.1	Cubic Spline Approximation Equation Over the Fourth-Order Two- Point BVPs	81

		A. Derivation of Full-Sweep Cubic Approximation Equation	81
		B. Derivation of Half-Sweep Cubic Approximation Equation	84
		C. Derivation of Quarter-Sweep Cubic Approximation Equation	88
	3.7.2	Quartic Spline Approximation Equation Over the Fourth-Order	91
		Two-Point BVPs	
		A. Derivation of Full-Sweep Quartic Approximation Equation	92
		B. Derivation of Half-Sweep Quartic Approximation Equation	94
		C. Derivation of Quarter-Sweep Quartic Approximation Equation	95
3.8	Formu	ulation of the GS, SOR and CG Iteration Families	97
	3.8.1	Formulation of the GS Iteration Family	101
	3.8.2	Formulation of the SOR Iteration Family	107
	3.8.3	Formulation of the CG Iteration Family	112
3.9	Impro	evement of the Performance in Percentage of Decrease	121
	ATT		
CHA	PTER 4	NON-POLYNOMIAL SPLINE SOLUTION FOR SECOND-	122
B		ORDER TWO-POINT BOUNDARY VALUE PROBLEMS	
4.1	Introd	luction	122
4.2	Nume	rical Examples for Second-Order Two-Point BVPs	122
4.3	Implementation of the Iterative Methods Based on the Cubic Non-		123
	Polyno	omial Spline Scheme	
	4.3.1	Cubic Non-Polynomial Spline Discretization Scheme with GS, SOR	123
		and CG Iteration Families	
	4.3.2	Results of Numerical Experiments	124
	4.3.3	Discussion for the Approximate Solutions Based on the Cubic Non-	135
		Polynomial Spline Scheme	
4.4	Imple	mentation of the Iterative Methods Based on the Quartic Non-	136
	Polyno	omial Spline Scheme	
	4.4.1	Quartic Non-Polynomial Spline Discretization Scheme with GS,	136
		SOR and CG Iteration Families	
	4.4.2	Results of Numerical Experiments	137

	4.4.3 Discussion for the Approximate Solutions Based on the Quartic	148
	Non-Polynomial Spline Scheme	
4.5	Complexity Analysis of the Generated Linear Systems	148
4.6	Summarization for the Performances of the Cubic and Quartic Non-	150
	Polynomial Spline Schemes	
СНАР	TER 5: NON-POLYNOMIAL SPLINE SOLUTION FOR FOURTH-	152
	ORDER TWO-POINT BOUNDARY VALUE PROBLEMS	
5.1	Introduction	152
5.2	Numerical Examples for Fourth-Order Two-Point BVPs	152
5.3	Implementation of the Iterative Methods Based on the Cubic Non-	153
	Polynomial Spline Scheme	
	5.3.1 Cubic Non-Polynomial Spline Discretization Scheme with GS, SOR,	153
	and CG Iteration Families	
15	5.3.2 Results of Numerical Experiments	155
R	5.3.3 Discussion for the Approximate Solutions Based on the Cubic Non-	164
B	Polynomial Spline Scheme	
5.4	Implementation of the Iterative Methods Based on the Quartic Non-	165
	Polynomial Spline Scheme IVERSITI MALAYSIA SABAH	
	5.4.1 Quartic Non-Polynomial Spline Discretization Scheme with GS,	165
	SOR, and CG Iteration Families	
	5.4.2 Results of Numerical Experiments	166
	5.4.3 Discussion for the Approximate Solutions Based on the Quartic	175
	Non-Polynomial Spline Scheme	
5.5	Complexity Analysis of the Generated Linear Systems	175
5.6	Summarization for the Performances of the Cubic and Quartic Non-	177
	polynomial Spline Schemes	
CHAP	TER 6: CONCLUSION AND RECOMMENDATION	179
6.1	Summarization of Findings	179

6.2 Contributions of Research 181

6.3	Recommendation for Future Study	181
REFEF	RENCES	183
APPE	NDIX	201

LIST OF TABLES

		Page
Table 1.1	The past studies for the cases of full-, half- and quarter-	15
	sweep iterative methods	
Table 4.1	Comparison of the number of iterations, execution time	131
	and maximum absolute error for Problem 4.1 based on	
	the cubic non-polynomial spline scheme and the family	
	of GS, SOR, and CG methods	
Table 4.2	Comparison of the number of iterations, execution time	132
	and maximum absolute error for Problem 4.2 based on	
	the cubic non-polynomial spline scheme and the family	
A	of GS, SOR, and CG methods	
Table 4.3	Comparison of the number of iterations, execution time	133
BY L	and maximum absolute error for Problem 4.3 based on	
6	the cubic non-polynomial spline scheme and the family	
MA	of GS, SOR, and CG methods	
Table 4.4	Percentage of decrease in the number of iterations and	134
	execution time based on the cubic non-polynomial spline	АП
	scheme for the family of SOR and CG methods as	
	compared to the FSGS method	
Table 4.5	Comparison of the number of iterations, execution time	144
	and maximum absolute error for Problem 4.1 based on	
	the quartic non-polynomial spline scheme and the family	
	of GS, SOR, and CG methods	
Table 4.6	Comparison of the number of iterations, execution time	145
	and maximum absolute error for Problem 4.2 based on	
	the quartic non-polynomial spline scheme and the family	
	of GS, SOR, and CG methods	

Table 4.7	Comparison of the number of iterations, execution time	146
	and maximum absolute error for Problem 4.3 based on	
	the quartic non-polynomial spline scheme and the family	
	of GS, SOR, and CG methods	

- Table 4.8Percentage of decrease in the number of iterations and147execution time based on the quartic non-polynomialspline scheme for the family of SOR and CG methods ascompared to the GS method
- Table 4.9The number of arithmetic operations per iteration at solid149interiornodepointsfornon-polynomialsplinediscretizationschemesovertheProblems(4.1), (4.2),and (4.3)
- Table 5.1Comparison of the number of iterations, execution time160and maximum absolute error for Problem 5.1 based on
the cubic non-polynomial spline scheme and the family
of GS, SOR, and CG methods160
- Table 5.2
 Comparison of the number of iterations, execution time
 161

 and maximum absolute error for Problem 5.2 based on
 161

 the cubic non-polynomial spline scheme and the family
 161

 of GS, SOR, and CG methods
 161
- Table 5.4Percentage of decrease in the number of iterations and163execution time based on the quartic non-polynomial
spline scheme for the family of SOR and CG methods as
compared to the GS method163

- Table 5.5Comparison of the number of iterations, execution time171and maximum absolute error for Problem 5.1 based on
the cubic non-polynomial spline scheme and the family
of GS, SOR, and CG methods
- Table 5.6Comparison of the number of iterations, execution time172and maximum absolute error for Problem 5.2 based on
the cubic non-polynomial spline scheme and the families
of GS, SOR, and CG methods172
- Table 5.7Comparison of the number of iterations, execution time173and maximum absolute error for Problem 5.3 based on
the cubic non-polynomial spline scheme and the families
of GS, SOR, and CG methods6
- Table 5.8
 Percentage of decrease in the number of iterations and
 174

 execution time based on the quartic non-polynomial
 spline scheme for the family of SOR and CG methods as compared to the GS method
- Table 5.9
 The number of arithmetic operations per iteration at solid
 176

 interior
 node
 points
 for
 non-polynomial
 spline

 discretization
 schemes
 over the
 Problems
 (5.1), (5.2

and (5.3)

LIST OF FIGURES

		Page
Figure 1.1	The proposed family of iterative methods	18
Figure 1.2	Research design for solving two-point BVPs by using non-	19
	polynomial spline discretization scheme	
Figure 2.1	Illustration of grade-school algorithm for multiplication	27
Figure 3.1	Distribution of uniform solid node points of type $ullet$ for	57
	one-dimensional full-sweep iteration case	
Figure 3.2	Distribution of uniform solid node points of type $ullet$ for	58
	two-dimensional full-sweep iteration case	
Figure 3.3	Distribution of uniform solid node points of type $ullet$ for	59
	one-dimensional full-sweep iteration case	
Figure 3.4	Distribution of uniform solid node points of type for	59
ST E	two-dimensional half-sweep iteration case	
Figure 3. <mark>5</mark>	Distribution of uniform solid node points of type●for	60
RA	one-dimensional case quarter-sweep iteration case	
Figure 3.6	Distribution of uniform solid node points of type●for	60
A.	two-dimensional case quarter-sweep iteration case	IT.
Figure 3.7	Illustration of non-polynomial spline interpolation function	61
Figure 3.8	Implementation of the GS iterative method over the	105
	second-order two-point BVPs	
Figure 3.9	Implementation of the GS iterative method over the	106
	reduced fourth-order two-point BVPs	
Figure 3.10	Implementation of the SOR iterative method over the	110
	second-order two-point BVPs	
Figure 3.11	Implementation of the SOR iterative method over the	111
	reduced fourth-order two-point BVPs	
Figure 3.12	Implementation of the CG iterative method over the	119
	second-order two-point BVPs	

- Figure 3.13 Implementation of the CG iterative method over the 120 reduced fourth-order two-point BVPs Figure 4.1 (a), (b) and (c) shows the comparison of the GS iteration 125 family for Problems (4.1), (4.2) and (4.3), respectively in terms of the number of iterations based on the cubic nonpolynomial spline scheme Figure 4.2 (a), (b) and (c) shows the comparison of the GS iteration 126 family for Problems (4.1), (4.2), and (4.3), respectively in terms of the execution time (seconds) based on the cubic non-polynomial spline scheme Figure 4.3 127 (a), (b) and (c) shows the comparison of the SOR iteration family for Problems (4.1), (4.2) and (4.3), respectively in terms of the number of iterations based on the cubic nonpolynomial spline scheme Figure 4.4 (a), (b) and (c) shows the comparison of the SOR iteration 128 family for Problems (4.1), (4.2), and (4.3), respectively in terms of the execution time (seconds) based on the cubic non-polynomial spline scheme Figure 4.5 (a), (b) and (c) shows the comparison of the CG iteration 129 family for Problems (4.1), (4.2) and (4.3), respectively in terms of the number of iterations based on the cubic nonpolynomial spline scheme Figure 4.6 (a), (b) and (c) shows the comparison of the CG iteration 130 family for Problems (4.1), (4.2), and (4.3), respectively in terms of the execution time (seconds) based on the cubic non-polynomial spline scheme Figure 4.7 (a), (b) and (c) shows the comparison of the GS iteration 138
- Figure 4.7 (a), (b) and (c) shows the comparison of the GS iteration 138 family for Problems (4.1), (4.2) and (4.3), respectively in terms of the number of iterations based on the quartic non-polynomial spline scheme

- Figure 4.8 (a), (b) and (c) shows the comparison of the GS iteration 139 family for Problems (4.1), (4.2), and (4.3), respectively in terms of the execution time (seconds) based on the quartic non-polynomial spline scheme
- Figure 4.9 (a), (b) and (c) shows the comparison of the SOR iteration 140 family for Problems (4.1), (4.2) and (4.3), respectively in terms of the number of iterations based on the quartic non-polynomial spline scheme
- Figure 4.10 (a), (b) and (c) shows the comparison of the SOR iteration 141 family for Problems (4.1), (4.2), and (4.3), respectively in terms of the execution time (seconds) based on the quartic non-polynomial spline scheme
- Figure 4.11 (a), (b) and (c) shows the comparison of the CG iteration 142 family for Problems (4.1), (4.2) and (4.3), respectively in terms of the number of iterations based on the quartic non-polynomial spline scheme
- Figure 4.12 (a), (b) and (c) shows the comparison of the CG iteration 143 family for Problems (4.1), (4.2), and (4.3), respectively in terms of the execution time (seconds) based on the quartic non-polynomial spline scheme
- Figure 5.1 (a), (b) and (c) shows the comparison of the GS iteration 156 family for Problems (5.1), (5.2) and (5.3), respectively in terms of the number of iterations based on the cubic non-polynomial spline scheme
- Figure 5.2 (a), (b) and (c) shows the comparison of the GS iteration 157 family for Problems (5.1), (5.2), and (5.3), respectively in terms of the execution time (seconds) based on the cubic non-polynomial spline scheme
- Figure 5.3 (a), (b) and (c) shows the comparison of the SOR iteration 158 family for Problems (5.1), (5.2) and (5.3), respectively in

terms of the number of iterations based on the cubic nonpolynomial spline scheme

- Figure 5.4 (a), (b) and (c) shows the comparison of the SOR iteration 159 family for Problems (5.1), (5.2), and (5.3), respectively in terms of the execution time (seconds) based on the cubic non-polynomial spline scheme
- Figure 5.5 (a), (b) and (c) shows the comparison of the GS iteration 167 family for Problems (5.1), (5.2) and (5.3), respectively in terms of the number of iterations based on the cubic nonpolynomial spline scheme
- Figure 5.6 (a), (b) and (c) shows the comparison of the GS iteration 168 family for Problems (5.1), (5.2), and (5.3), respectively in terms of the execution time (seconds) based on the cubic non-polynomial spline scheme
- Figure 5.7 (a), (b) and (c) shows the comparison of the SOR iteration 169 family for Problems (5.1), (5.2) and (5.3), respectively in terms of the number of iterations based on the cubic non-polynomial spline scheme
- Figure 5.8 (a), (b) and (c) shows the comparison of the SOR iteration 170 family for Problems (5.1), (5.2), and (5.3), respectively in terms of the execution time (seconds) based on the cubic non-polynomial spline scheme

LIST OF ALGORITHMS

Page Algorithm 3.1 FSGS, HSGS, and QSGS schemes for Second-Order 103 **BVPs** Algorithm 3.2 FSGS, HSGS, and QSGS schemes for Fourth-Order 104 **BVPs** Algorithm 3.3 FSSOR, HSSOR, and QSSOR schemes for second-108 order BVPs Algorithm 3.4 FSSOR, HSSOR, and QSSOR schemes for fourth-order 109 **BVPs** Algorithm 3.5 FSCG, HSCG and QSCG schemes for second-order 116 **BVPs** FSCG, HSCG and QSCG schemes for fourth-order Algorithm 3.6 117 **BVPs**

UNIVERSITI MALAYSIA SABAH

LIST OF ABBREVIATIONS

ADM	Adomian Decomposition Method
AGE	Alternating Group Explicit
AM	Arithmetic Mean
AOR	Accelerated Over-Relaxation
BGS	Backward Gauss-Seidel
BVPS	Boundary Value Problems
CG	Conjugate Gradient
CGNR	Conjugate Gradient Normal Residual
EDG	Explicit Decoupled Group
EG	Explicit Group
EGSOR	Explicit Group Successive Over-Relaxation
EGMSOR	Explicit Group Modified Successive Over-Relaxation
FCGNR	Full-Sweep Conjugate Gradient Normal Residual
FGS	Forward Gauss-Seidel
FSAOR	Full-Sweep Accelerated Over-Relaxation
FSAM	Full-Sweep Arithmetic Mean
FSGM	Full-Sweep Geometric Mean
FSGS	Full-Sweep Gauss-Seidel
FSSOR	Full-Sweep Successive Over-Relaxation
GMRES	Generalized Minimal Residual
GS	Gauss-Seidel
HCGNR	Half-Sweep Conjugate Gradient Normal Residual
HSAGE	Half-Sweep Alternating Group Explicit
HSAM	Half-Sweep Arithmetic Mean
HSAOR	Half-Sweep Accelerated Over-Relaxation
HSCG	Half-Sweep Conjugate Gradient
HSGM	Half-Sweep Geometric Mean
HSGS	Half-Sweep Gauss-Seidel
HSIADE	Half-Sweep Iterative Alternating Decomposition Explicit

HSSOR	Half-Sweep Successive Over-Relaxation
HSSOR9L	Half-Sweep Successive Over-Relaxation via Nine-Point Laplacian
HSMSOR	Half-Sweep Modified Successive Over-Relaxation
IDE	Integro-Differential Equation
IVP	Initial Value Problem
MEDG	Modified Explicit Decoupled Group
MEG	Modified Explicit Group
MINERS	Minimal Residual method
MSOR	Modified Successive Over-Relaxation
Newton-AGE	Newton Alternating Group Explicit
Newton-SOR	Newton Successive Over-Relaxation
ODES	Ordinary Differential Equations
PTI	Precise Time Integration
QSAGE	Quarter Sweep Alternating Group Explicit
QSAOR	Quarter-Sweep Accelerated Over-Relaxation
QSAM	Quarter-Sweep Arithmetic Mean
QSCG	Quarter-Sweep Conjugate Gradient
QSCGNR	Quarter-Sweep Conjugate Gradient Normal Residual
QSCN A B A	Quarter-Sweep Crank-Nicolson ALAYSIA SABAH
QSGM	Quarter-Sweep Geometric Mean
QSGS	Quarter-Sweep Gauss-Seidel
QSSOR	Quarter Sweep Successive Over-Relaxation
RKM	Reproducing Kernel Method
SOR	Successive Over-Relaxation