SYNTHESIS AND CHARACTERIZATION OF WATERBORNE POLYURETHANE DISPERSION FOR ANTIFOULING PAINT

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2019

SYNTHESIS AND CHARACTERIZATION OF WATERBORNE POLYURETHANE DISPERSION FOR ANTIFOULING PAINT

ANGEL KUOK MEI ERH

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF ENGINEERING

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2019

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL:SYNTHESIS AND CHARACTERIZATION OF WATERBORNE
POLYURETHANE DISPERSION FOR ANTIFOULING PAINT

IJAZAH: SARJANA KEJURUTERAAN (KEJURUTERAAN KIMIA)

Saya **ANGEL KUOK MEI ERH**, Sesi **2017-2019**, mengaku membenarkan tesis Doktoral ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan Oleh,

ANGEL KUOK MEI ERH MK1621039T (Tandatangan Pustakawan)

Tarikh: 18 September 2019

(Prof. Dr. Coswald Stephen Sipaut @ Mohd Nasri) Penyelia

DECLARATION

I hereby declare that this thesis, submitted to Universiti Malaysia Sabah as partial fulfillment of the requirements for the degree of Master of Engineering, has not been submitted to any other university for any degree. I also certify that the work described is entirely my own, except for quotations and summaries sources of which have been duly acknowledged.

This thesis may be made available within the university library and may be photocopied or loaned to other libraries for the purposes of consultation.

ii

CERTIFICATION

- NAME : ANGEL KUOK MEI ERH
- MATRIC NO. : **MK1621039T**
- TITLE : SYNTHESIS AND CHARACTERIZATION OF WATERBORNE POLYURETHANE DISPERSION FOR ANTIFOULING PAINT
- DEGREE : MASTER OF ENGINEERING (CHEMICAL ENGINEERING)
- DATE OF VIVA : 30th AUGUST 2019

ACKNOWLEDGEMENT

First of all, I would like to express my deepest gratitude to my research supervisor Prof. Dr. Coswald Stephen Sipaut @ Mohd Nasri for his continuous guidance, supervision, and motivation throughout this research. Without his continuous help and guidance in the experimental works, paper publication, and thesis writing, I would not be able to complete my study.

I would also like to express my gratitude to all laboratory assistants of Faculty of Engineering and Faculty of Natural Science and Resources, Universiti Malaysia Sabah, especially, Mdm. Noridah Abbas, Mr Raysius, Mr Abdullah Tarikim, and Mr Taipin Gadoit for their full cooperation in providing assistance during the operation of analytical instruments.

Next, I would like to acknowledge the Ministry of Higher Education Malaysia and Universiti Malaysia Sabah for the research funding under PRGS008-TK-2/2015 and GUG0162-2/2017.

Last but not least, I would like to express my deepest and warmest appreciation to my parents, family, and friends for their continuous support, motivation, and encouragement during my study. Without their encouragements and supports, I would not have the confidence in completing my study with an excellent performance.

UNIVERSITI MALAYSIA SABAH

ANGEL KUOK MEI ERH

18th September 2019

ABSTRACT

The continuous accumulation of marine fouling on the submerged marine structures has caused significant impacts to the maritime industries. This led to the development of more effective anti-fouling paints. To date, toxic to green biocides were still widely used in anti-fouling paints to remove fouling. Recent studies showed that polyurethane coatings can exhibit anti-fouling activity without using biocide. However, they had low anti-fouling efficiency. In this study, the biocide-free, and waterborne polyurethane dispersion (PUD) was synthesised using a prepolymer mixing process. The main ingredients were isophorone diisocyanate (IPDI), polyethylene glycol (PEG), dimethylolpropionic acid (DMPA), 1,4-butanediol (BD), and water. The effects of the molar ratio of diisocyanate to PEG (NCO/OH_{PEG}), and DMPA content were investigated on the particle size and distribution, zeta potential, thermal stability, adhesion strength, and solubility rate of PUD coating in seawater and distilled water. The stable PUD at NCO/OH_{PEG} (9 - 11) and DMPA content (7 - 11 wt%) exhibited small particle size (around 48 – 166 nm), high zeta potential (around -50 to -66 mV), and can form dry PUD coatings. The presence of urethane groups in the PUD was ascertained via Fourier Transform Infra-red (FT-IR) spectroscopy. The PUD coatings exhibited adhesion strength of more than 2 MPa on stainless steel substrates and did not detach in seawater. However, they detached in distilled water. (3-aminopropyl)triethoxysilane (APTES) was added to improve the coating stability in distilled water. APTES-modified (APUD) sample was produced using two methods either APTES addition at either (a) before, or (b) after the reaction with BD in the PUD synthesis. The APTES content of 10 mol% was just sufficient to form stable APUD and APUD coatings. APUD coatings produced from method (a) detached in distilled water but not for the APUD coating from method (b). APUD coating from method (b) exhibited the highest adhesion strength on stainless steel (3.303 MPa), followed by carbon steel (2.537 MPa), and the lowest on aluminium (2.280 MPa). This coating was found not suitable to be coated on carbon steel as heavy blisters, scratches, and white spots formed when immersed in seawater and distilled water. The solubility of this APUD coating on stainless steel and aluminium ranged from 0.161 to 0.237 %/day in seawater and 0.468 to 0.550 %/day in distilled water. In overall, this research showed that APUD coating had the potential to work as an anti-fouling paint in the maritime industries.

ABSTRAK

SINTESIS DAN PENCIRIAN DISPERSI POLIURETANA SEBAGAI CAT ANTI-TUMBUH

Pengotoran marin yang berterusan terhadap struktur-stuktur kapal marin yang separa tenggelam telah menjejaskan industri maritim. Ini membawa kepada pembangunan cat anti-tumbuh yang lebih efektif. Sehingga kini, biosida yang bersifat toksik dan biosida hijau digunakan secara meluas dalam cat anti-tumbuh. Kajian terkini menunjukkan bahan penyalut poliuretana dapat mempamerkan sifat sebagai cat antitumbuh tanpa penggunaan biosida. Walau bagaimanapun, kecekapannya masih di tahap yang rendah. Dalam kajian ini, dispersi poliuretana berbasis air (PUD) yang bebas biosida telah disintesis menggunakan proses "prepolymer mixing". Bahan-bahan utamanya terdiri daripada isophorone diisosianat, polietilen glikol (PEG), asid dimetilolpropionik (DMPA), 1,4-butanadiol (BD), dan air. Tujuan kajian ini dijalankan untuk menentukan kesan nisbah molar diisosianat kepada PEG (NCO/OH_{PEG}), dan kandungan DMPA ke atas saiz zarah dan taburannya, "zeta potential", kestabilan haba, kekuatan rekatan, dan kadar kelarutan bahan penyalut PUD dalam air laut dan air suling. Hasil kajian menunjukkan bahawa PUD yang stabil dengan nisbah NCO/OH_{PEG} (9 – 11), dan kandungan DMPA (7 – 11 wt%) mempamerkan saiz zarah yang kecil (sekitar 48 – 166 nm), "zeta potential" yang tinggi (sekitar -50 hingga -66 mV) dan boleh membentuk bahan penyalut yang kering setelah semua kandungan air di dalamnya telah disejatkan. Hasil analysis spektroskopi inframerah (FT-IR) menentukan kewujudan kumpulan berfungsi uretana di dalam PUD. Berdasarkan hasil kajian ini, didapati bahan penyalut PUD tersebut yang disalut atas substrat keluli tahan karat menunjukkan kekuatan rekatan yang tinggi iaitu melebihi 2 MPa dan tidak tertanggal apabila direndam di dalam air laut. Walau bagaimanapun, bahan penyalut ini tertanggal apabila direndam di dalam air suling. (3-aminopropil)triethoxysilane (APTES) telah ditambah untuk meningkatkan kestabilan bahan penyalut tersebut apabila direndam di dalam air suling. PUD yang diubahsuai dengan APTES (APUD) dihasilkan dengan dua cara, sama ada (a) penambahan APTES sebelum atau (b) selepas tindak balas kimia dengan BD dalam proses sintesis ini. Hasil kajian mendapati bahawa kandungan APTES sebanyak 10 mol% dapat membentuk APUD yang stabil dan bahan penyalut APUD yang kering. Walau bagaimanapun, bahan penyalut APUD yang dihasilkan daripada cara (a) tertanggal apabila direndam di dalam air suling tetapi bahan penyalut APUD yang dihasilkan daripada cara (b) tidak. Hasil kajian menunjukkan bahawa bahan penyalut APUD yang dihasilkan daripada cara (b) mempamerkan kekuatan rekatan yang tinggi atas substrat keluli tahan karat (3.303 MPa), diikuti oleh substrat keluli karbon (2.537 MPa), dan kekuatan rekatan yang terendah atas substrat aluminium (2.280 MPa). Hasil kajian juga mendapati bahawa bahan penyalut APUD ini tidak sesuai untuk disalut atas substrat keluli karbon kerana lepuh, calar, dan bintik putih boleh terbentuk apabila direndam di dalam air laut dan air suling. Kadar kelarutan bahan penyalut ini yang disalut atas substrat keluli tahan karat dan aluminium adalah dalam sekitar 0.161 hingga 0.237 %/hari dalam air laut dan 0.468 hingga 0.550 %/hari dalam air suling. Keseluruhannya, kajian ini menunjukkan bahawa bahan penyalut APUD ini mempunyai ciri-ciri yang baik dan boleh berfungsi sebagai cat anti-tumbuh dalam industri maritim.

TABLE OF CONTENTS

			Page
TITLE	E		i
DECL	ARATION		ii
CERT	IFICATIO	N	iii
ACKN	IOWLEDG	EMENT	iv
ABST	RACT		v
ABST	RAK		vi
TABL	E OF CON	TENTS	vii
LIST	OF TABLE	S	xiii
LIST	OF FIGUR	RES	xv
LIST	OF ABBRE	EVIATIONS	xxii
LIST		NTRODUCTION	xxiiii
	Decorre		1
1.1	Researc		1
1.2	Problem	n Statement	3
1.3	Objectiv	/es	5
1.4	Scope o	f Work	5
CHAP	TER 2 : L	ITERATURE REVIEW	
2.1	Overvie	w	6
2.2	Polyuret	thane (PU)	6
	2.2.1	Types and Applications of PU	7
	2.2.2	Chemistry of PU	8
	2.2.3	Hard Segment and Soft Segment in PU	11
2.3	Market ⁻	Trend of Aqueous Polyurethane Dispersion (PUD)	12

2.4	Aqueous	Polyurethane Dispersion (PUD)	13
	2.4.1	Types of PUD	14
	2.4.2	Synthesis Method of PUD	16
2.5	Compone	ents for Anionic PUD	20
	2.5.1	Isocyanate	20
	2.5.2	Polyol	22
	2.5.3	Anionic Internal Emulsifier and Neutraliser	23
	2.5.4	Catalyst	24
	2.5.5	Chain Extender	25
	2.5.6	Crosslinker	26
2.6	Physical F	Properties and Colloidal Stability of PUD	27
	2.6.1	Zeta Potential	27
ß	2.6.2	Solvent-Aided PUD	28
E	2.6.3	PUD Prepolymer Mixing	31
2.7	Backgrou	nd of Anti-fouling (AF) Paint	33
	2.7.1	Insoluble Matrix	33
	2.7.2	Soluble Matrix	38
2.8	Prospect	of PUD as a Biocide-Free AF Paint	41
2.9	Effect of	PUD coating on Adhesion Strength and Hydrophilicity	44
	2.9.1	Effect of Molecular Weight of Polyol	48
	2.9.2	Effect of NCO/OH	48
	2.9.3	Effect of DMPA Content	49
	2.9.4	Effect of Crosslinker Content	50
СНАРТ	'ER 3 : ME	THODOLOGY	
3.1	Overview		52
3.2	Chemical	s and Materials	52
3.3	Equipmer	nts	55

3.4	Synthesis	Process and Reaction of PUD	56
	3.4.1	Homogeneous Mixture of PEG 1000 g/mol and DMPA	57
	3.4.2	Preparation of PUD Prepolymer	57
	3.4.3	Neutralisation of PUD Prepolymer	58
	3.4.4	Reaction of PUD Prepolymer	59
		a. Chain Extension With BD	59
		b. Crosslinking of PUD with APTES (Pre-Modification Method)	60
		c. Crosslinking of PUD with APTES (Post-Modification Method)	63
	3.4.5	Dispersion of PUD Polymer in Water	65
3.5	Compositi	ion Variation of Reactants in PUD Synthesis	69
3.6	Film and	Coating Preparation	71
3.7	Isocyanat	e Content Determination	71
3.8	pH Measu	irement	72
3.9	Particle Si	ize and Distribution Measurement	73
3.10	Zeta Pote	ential Measurement	73
3.11	Electrolyt	ic Stability	74
3.12	Fourier T	ransform Infra-red (FT-IR) Spectroscopy	75
3.13	Thermog	ravimetric Analysis (TGA)	75
3.14	Atomic Fo	orce Microscopy (AFM)	76
3.15	Contact A	Angle Measurement	76
3.16	Adhesion	Strength Test	77
3.17	Solubility	Rate Rotor Test	77
СНАРТ	ER 4 : RE	SULTS AND DISCUSSION	
4.1	Overview		79
4.2	Synthesis	of PUD	79
4.3	Functiona	lity of PUD	83
4.4	Group I: I	PUD with Varying NCO/OH _{PEG} ratio	85

	4.4.1	Physical Properties and Colloidal Stability of PUD	85
		a. Particle Size Distribution of PUD	86
		b. Zeta Potential and Electrolytic Stability of PUD	88
	4.4.2	Physical Appearance and Coating Properties of PUD Coating	90
		a. Adhesion Strength of PUD Coating	90
		b. Solubility Rate of PUD Coating	91
4.5	Group II:	PUD with Varying DMPA Content	94
	4.5.1	Physical Properties and Colloidal Stability of PUD	95
		a. Particle Size Distribution of PUD	97
		b. Zeta Potential and Electrolytic Stability of PUD	98
	4.5.2	Physical Appearance and Coating Properties of PUD Coating	99
	<u></u>	a. Adhesion Strength of PUD Coating	100
ß		b. Solubility Rate of PUD Coating	101
4.6	Group III	: APUD with Varying APTES Modification and Content	104
R	4.6.1	Physical and Colloidal Stability of APUD	105
	1 martin	a. Particle Size Distribution of APUD	108
		b. Zeta Potential and Electrolytic Stability of APUD	111
	4.6.2	Coating Performance of APUD Coatings on Different	
		Substrates	114
		a. Adhesion Strength of APUD Coating	116
		b. Solubility Rate of APUD Coatings in Seawater	118
		c. Solubility Rate of APUD Coatings in Distilled Water	123
4.7	Thermal	property of PUD and APUD	127
СНАРТ	ER 5 : CO	NCLUSIONS	
5.1 Con	clusions		132
5.2 Fut	ure Recom	mendations	135

REFERENCES	
------------	--

137

APPENDICES

LIST OF TABLES

	Ĩ	Page
Table 2.1:	Comparison of different methods of synthesis process of PUD	18
Table 2.2:	Reactivity rate of aliphatic and aromatic diisocyanates	21
Table 2.3:	Examples of catalyst	24
Table 2.4:	Comparison on the colloidal properties of PUD from solvent-aided and prepolymer mixing processes	29
Table 2.5:	Advantages and disadvantages of insoluble AF coating	35
Table 2.6:	Performance of different types of AF paint	36
Table 2.7:	Advantages and disadvantages of soluble AF coating	40
Table 2.8:	Comparison of different types of PU-based AF paint	42
Table 2.9:	Comparison on adhesion strength and water resistance of PUD coating	45
Table 3.1:	Surface characteristics of metal substrates	54
Table 3.2:	Group I PUD at varying NCO/OH _{PEG}	69
Table 3.3:	Group II PUD at varying DMPA content	70
Table 3.4:	Group III PUD at varying APTES content and addition method of APTES	70
Table 4.1:	Effect of molecular weight of PEG on PUD	80

Table 4.2:	Characteristics of PUD at varying NCO/OH _{PEG}	86
Table 4.3:	PUD coating (at varying NCO/OH $_{\rm PEG}$) at 1 st day of immersion in seawater and distilled water	92
Table 4.4:	Characteristics of PUD at varying DMPA content (3 & 5 wt%)	95
Table 4.5:	Characteristics of PUD at varying DMPA content (5 – 11 wt\%)	96
Table 4.6:	PUD coating (at varying DMPA content) at 1^{st} day of immersion in seawater and distilled water	102
Table 4.7:	Characteristics of pre-modified APUD at varying DMPA content and APTES content	105
Table 4.8:	Characteristics of post-modified APUD at DMPA : 9 wt% and APTES : 10 mol%	107
Table 4.9:	Zeta potential and electrolytic stability of pre-modified APUD (DMPA 7 wt%; APTES : 0 & 10 mol%)	112
Table 4.10:	APUD coatings on stainless steel at 1^{st} day of immersion in seawater and distilled water	115
Table 4.11:	Adhesion strength of APUD coatings on substrates with different surface properties	117
Table 4.12:	APUD coatings (on varying substrates) in seawater	120
Table 4.13:	APUD coatings (on varying substrates) in distilled water	124
Table 4.14:	Thermal property of PUD and APUD	131

Table 5.1:	Summary of adhesion strength of APUD coatings on varying substrates	134
Table 5.2:	Summary of solubility rate (in seawater) of APUD coatings on varying substrates	134
Table B.1:	Composition of PUD(R9D9) at NCO/OH _{PEG} : 9 and DMPA content 9 wt%	154
Table B.2:	Hard segment content of PUD and APUD	155

LIST OF FIGURES

		Page
Figure 1.1:	Marine fouling on a submerged ship hull	1
Figure 2.1:	Global PU demand and an estimated forecast up to year 2020	7
Figure 2.2:	Types and applications of PU	7
Figure 2.3:	Primary reaction of isocyanate with (a) amine, (b) water, (c) hydroxyl, and (d) carboxylic acid	9
Figure 2.4:	Secondary reaction of isocyanate with (a) urethane, (b) urea, and (c) amide	10
Figure 2.5:	Hard segment and soft segment in PU	11
Figure 2.6:	Hydrogen bond formation in polyurethane	12
Figure 2.7:	Forecasted growth of global PUD market from 2014 to 2020	13
Figure 2.8:	Colloid stabilisation via (a) electrostatic repulsion (ionic) and (b) steric repulsion (non-ionic)	14
Figure 2.9:	Schematic process flowchart of types of PUD synthesis	17
Figure 2.10:	Examples of (a) aliphatic, (b) cycloaliphatic, and (c) aromatic diisocyanates	21
Figure 2.11:	Examples of (a) polyether polyol and (b) polyester polyol	22
Figure 2.12:	(a) Anionic internal emulsifier DMPA and (b) neutraliser TEA	23

Figure 2.13:	Chain extension of NCO-terminated PU prepolymer with,	
	(a) water and (b) diol	25
Figure 2.14:	Examples of crosslinker	26
Figure 2.15:	Electrical double layer and zeta potential of a charged particle	28
Figure 2.16:	Contact leaching insoluble matrix	34
Figure 2.17:	Foul release insoluble matrix	34
Figure 2.18:	Hydrophilic polymer insoluble matrix	34
Figure 2.19:	Timeline of fouling growth stages	35
Figure 2.20:	Controlled-depletion soluble matrix	39
Figure 2.21:	Self-polishing copolymer soluble matrix	39
Figure 3.1:	Experimental process flow chart MALAYSIA SABAH	53
Figure 3.2:	Surface energy of metal substrates and adhesive materials	55
Figure 3.3:	Apparatus set-up for PUD synthesis	56
Figure 3.4:	Anionic PUD	65
Figure 3.5:	Procedure for PUD synthesis	66
Figure 3.6:	Procedure for PUD synthesis with APTES crosslinking (pre-modification)	67

Figure 3.7:	Procedure for PUD synthesis with APTES crosslinking (post-modification)	68
Figure 3.8:	Stainless steel, (a) uncoated and (b) coated with PUD	71
Figure 3.9:	Bench top pH/ORP meter	72
Figure 3.10:	Malvern Zetasizer Nano-ZS	73
Figure 3.11:	Titration of PUD with 2M NaCl solution	74
Figure 3.12:	Condition of PUD, (a) before addition of 2 M NaCl, and (b) after addition of 2 M NaCl	74
Figure 3.13:	Perkin Elmer Spectrum 100 FT-IR spectrometer	75
Figure 3.14:	Mettler Toledo TGA analyser	75
Figure 3.15:	Park XE-100 AFM	76
Figure 3.16:	UNIVERSITI MALAYSIA SABAH AST Optima Contact Angle analyser	76
Figure 3.17:	(a) Biuged BGD 500 portable digital pull-off tester and	
	(b) dolly attached on the coating	77
Figure 3.18:	Solubility rate rotor device	78
Figure 4.1:	Residual NCO content vs reaction time of prepolymer	81
Figure 4.2:	PUD at NCO/OH _{PEG} : 5 and DMPA : 7 wt%, (a) dispersion and (b) coating on stainless steel	82

Figure 4.3:	FT-IR spectrum of PEG 1000 g/mol, IPDI, APTES, PUD, and APUD	84
Figure 4.4:	Particle size distribution of PUD at varying NCO/OH $_{\mbox{\scriptsize PEG}}$	87
Figure 4.5:	Zeta potential and electrolytic stability of PUD at varying NCO/OH $_{\rm PEG}$	89
Figure 4.6:	PUD coating on stainless steel at varying NCO/OH $_{\mbox{\scriptsize PEG}}$	90
Figure 4.7:	Adhesion strength of PUD coating at varying NCO/OH $_{\mbox{\scriptsize PEG}}$	91
Figure 4.8:	Weight loss and solubility rate of PUD coating (at varying NCO/OH _{PEG}) in seawater	93
Figure 4.9:	Proposed AF mechanism for PUD coating in seawater	94
Figure 4.10:	Particle size distribution of PUD at varying DMPA content	97
Figure 4.11:	Zeta potential and electrolytic stability of PUD at varying DMPA content	99
Figure 4.12:	PUD coating on stainless steel at varying DMPA content	100
Figure 4.13:	Adhesion strength of PUD coating at varying DMPA content	100
Figure 4.14:	Weight loss and solubility rate of PUD coating (at varying DMPA content) in seawater	103
Figure 4.15:	Sedimentation in pre-modified APUD (APTES : 20 mol%)	106
Figure 4.16:	Sedimentation and precipitation in pre-modified APUD (APTES : 30 mol%)	106

Figure 4.17:	Gelling in post-modified APUD (APTES : 20 & 30 mol%)	107
Figure 4.18:	Particle size distribution of pre-modified APUD	
	(DMPA : 7 wt%; APTES : 0 & 10 mol%)	109
Figure 4.19:	Particle size distribution of pre-modified APUD	4.0.0
	(DMPA : 9 wt%; APTES : 0 - 30 mol%)	109
Figure 4.20:	Particle size distribution of PUD (i.e. without APTES) and	111
	AFOD (I.e. WITH AFTES HOURICation)	111
Figure 4.21:	Zeta potential and electrolytic stability of pre-modified APUD	
	(DMPA : 9 wt%; APTES : 0 – 30 mol%)	112
Figure 4.22:	Zeta potential and electrolytic stability of PUD	
	(i.e. without APTES) and APUD (i.e. with APTES modification)	110
	at DMPA content 9 wt%	113
Figure 4.23:	Adhesion of APUD coating on a substrate	116
Figure 4 24	Adhesion strength of APLID coatings on varying substrates	116
Figure 4.25:	Solubility rate of APUD coatings (on varying substrates) in	
	seawater	121
Figure 4.26:	Solubility rate of post-modified APUD(R9D9poA10) coating	
	(on varying substrates) in seawater and distilled water	126
Figure 4.27:	TGA and DTG curves of PUD at NCO/OH $_{\rm PEG}$: 11 and	
	DMPA: 7 wt%	128
Figure 4.28:	TGA curves of PUD and APUD	129

Figure 4.29:	DTG curves of PUD and APUD		
Figure A.1:	Weight loss-time curve of APUD(R9D9poA10) in seawater and distilled water	153	
Figure C.1:	FT-IR spectrum of DMPA	156	
Figure C.2:	FT-IR spectrum of BD		
Figure D.1:	Weight loss-time curve of APUD coatings on varying substrates in seawater	157	
Figure E.1:	Weight loss-time curve of APUD(R9D9poA10) on varying substrates in distilled water	158	
Figure F.1:	Surface roughness of stainless steel	159	
Figure F.2:	Surface roughness of aluminium	160	
Figure F.3:	Surface roughness of carbon steel ALAYSIA SABAH	160	
Figure G.1:	Contact angle of substrates	161	

LIST OF ABBREVIATIONS

		Anti-fouling		
APTES -		(3-aminopropyl)triethoxysilane		
APUD -		PUD modified with APTES		
BD -		1,4-butanediol		
DABCO -		1,4-diazabicyclo[2.2.2]octane		
DBTDL -		Dibutyltin dilaurate		
DMPA -		Dimethylolpropionic acid		
DTG -		Derivative weight analysis		
FT-IR -		Fourier Transform Infra-red		
HCI -		Hydrochloric acid		
HDI -		Hexamethylene diisocyanate		
IPDI -		Isophorone diisocyanate		
MDI -		Diphenylmethane diisocyanate		
Mw -	B	Molecular weight		
NaCl		Sodium chloride		
NCO		Isocyanate		
NCO/OH -		Isocyanate to hydroxyl molar ratio SABA		
NCO/OH -		Isocyaliate to figuroxyl hiolar fatio		
NCO/OH - NCO/OH _{PEG} -		Isocyanate to hydroxyl (PEG) molar ratio		
NCO/OH NCO/OH _{PEG} - NH ₂ -		Isocyanate to hydroxyl (PEG) molar ratio Amine		
NCO/OH - NCO/OH _{PEG} - NH ₂ - NMDEA -		Isocyanate to hydroxyl (PEG) molar ratio Amine N-methyl-diethanolamine		
NCO/OH - NCO/OH _{PEG} - NH ₂ - NMDEA - NMP -		Isocyanate to hydroxyl (PEG) molar ratio Amine N-methyl-diethanolamine N-methyl-2-pyrrolidone		
NCO/OH - NCO/OH _{PEG} - NH ₂ - NMDEA - NMP - OH -		Isocyanate to hydroxyl (PEG) molar ratio Amine N-methyl-diethanolamine N-methyl-2-pyrrolidone Hydroxyl		
NCO/OH - NCO/OH _{PEG} - NH2 - NMDEA - NMP - OH - PdI -		Isocyanate to hydroxyl (PEG) molar ratio Amine N-methyl-diethanolamine N-methyl-2-pyrrolidone Hydroxyl Polydispersity		
NCO/OH - NCO/OH _{PEG} - NH2 - NMDEA - NMP - OH - PdI - PDMS -		Isocyanate to hydroxyl (PEG) molar ratio Amine N-methyl-diethanolamine N-methyl-2-pyrrolidone Hydroxyl Polydispersity Polydimethylsiloxane		
NCO/OH - NCO/OH _{PEG} - NH₂ - NMDEA - NMP - OH - PdI - PDMS - PEG -		Isocyanate to hydroxyl (PEG) molar ratio Amine N-methyl-diethanolamine N-methyl-2-pyrrolidone Hydroxyl Polydispersity Polydimethylsiloxane Polyethylene glycol		
NCO/OH - NCO/OHPEG - NH2 - NMDEA - NMP - OH - PdI - PDMS - PEG - PU -		Isocyanate to hydroxyl (PEG) molar ratio Amine N-methyl-diethanolamine N-methyl-2-pyrrolidone Hydroxyl Polydispersity Polydimethylsiloxane Polyethylene glycol Polyurethane		
NCO/OH - NCO/OHPEG - NH2 - NMDEA - NMP - OH - PdI - PDMS - PEG - PU - PUD -		Isocyanate to hydroxyl (PEG) molar ratio Amine N-methyl-diethanolamine N-methyl-2-pyrrolidone Hydroxyl Polydispersity Polydimethylsiloxane Polyethylene glycol Polyurethane Aqueous/ waterborne polyurethane dispersion		
NCO/OH - NCO/OH - NH2 - NMDEA - NMP - OH - PdI - PDMS - PEG - PU - PUD - Ra -		Isocyanate to hydroxyl (PEG) molar ratio Amine N-methyl-diethanolamine N-methyl-2-pyrrolidone Hydroxyl Polydispersity Polydimethylsiloxane Polyethylene glycol Polyurethane Aqueous/ waterborne polyurethane dispersion Surface roughness		
NCO/OH - NCO/OHPEG - NH2 - NMDEA - NMP - OH - PdI - PDMS - PEG - PUD - Ra - T_d,1/2 -		Isocyanate to hydroxyl (PEG) molar ratio Amine N-methyl-diethanolamine N-methyl-2-pyrrolidone Hydroxyl Polydispersity Polydimethylsiloxane Polyethylene glycol Polyurethane Aqueous/ waterborne polyurethane dispersion Surface roughness Temperature at 50 % weight loss during degradation		

T _{d,onset}	-	Onset of degradation
TDI	-	2,4-Toulene diisocyanate
TGA	-	Thermogravimetric Analysis
ТМР	-	Trimethylolpropane

