STUDIES ON PRECAST REINFORCED CONCRETE FLOOR PANELS USING OIL PALM SHELL AGGREGATE

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2010

STUDIES ON PRECAST REINFORCED CONCRETE FLOOR PANELS USING OIL PALM SHELL AGGREGATE

NG CHEE HIONG

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2010

PUMS 99:1

UNIVERSITI MALAYSIA SABAH

BORANG PI	ENGESAHAN TESIS
JUDUL :	
IJAZAH :	
SAYA :	SESI PENGAJIAN :
(HURUF BESAR)	
Mengaku membenarkan tesis *(LPSM/Sarjana/Dokto Sabah dengan syarat-syarat kegunaan seperti berikut:	r Falsafah) ini disimpan di Perpustakaan Universiti Malaysia -
 Tesis adalah hak milik Universiti Malaysia Saba Perpustakaan Universiti Malaysia Sabah diben Perpustakaan dibenarkan membuat salinan t tinggi. 	ah. Jarkan membuat salinan untuk tujuan pengajian sahaja. esis ini sebagai bahan pertukaran antara institusi pengajian
4. Sila tandakan (/)	mat yang berdarjah keselamatan atau kepentingan Malaysia
seperti yang termaktu TERHAD (Mengandungi maklu mana penyelidikan di	ıb di AKTA RAHSIA RASMI 1972) mat TERHAD yang telah ditentukan oleh organisasi/badan di jalankan)
TIDAK TERHAD	Disahkan oleh:
 (TANDATANGAN PENULIS) Alamat Tetap:	(TANDATANGAN PUSTAKAWAN)
 TARIKH:	(NAMA PENYELIA) TARIKH:
Catatan: *Potong yang tidak berkenaan. *Jika tesis ini SULIT dan TERHAD, sila lampirkan sur menyatakan sekali sebab dan tempoh tesis ini perlu *Tesis dimaksudkan sebagai tesis bagi Ijazah Dokto bagi pengajian secara kerja kursus dan Laporan Pro	at daripada pihak berkuasa/organisasi berkenaan dengan u dikelaskan sebagai SULIT dan TERHAD. r Falsafah dan Sarjana Secara Penyelidikan atau disertai ıjek Sarjana Muda (LPSM).

CERTIFICATION

NAME	:	NG CHEE HIONG
MATRIC NO.	:	PS05-008-024
TITLE	:	STUDIES ON PRECAST REINFORCED CONCRETE FLOOR PANELS USING OIL PALM SHELL AGGREGATE
DEGREE	:	DOCTOR OF PHILISOPHY
VIVA DATE	:	27 JULY 2010

DECLARED BY

1. SUPERVISOR Assoc. Prof. Dr. Md. Abdul Mannan

Signature

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

24 August 2010

Ng Chee Hiong PS05-008-024

SYNOPSIS

Kajian telah dijalankan ke atas panel lantai konkrit bertetulang pratuang dengan menggunakan konkrit ringan. Bancuhan konkrit ringan ini telah dihasilkan dengan 70% tempurung kelapa sawit (OPS) dan 30% batu granit sebagai agregat kasar. Sejumlah 50 panel-panel lantai pratuang prototaip jenis pratuang separuh, pratuang sepenuh dan C-channel telah dihasilkan. C-channel yang mempunyai seksyen yang lebih kecil dan berat diri yang lebih kurang telah menunjukkan prestasi struktur yang terbaik. Kajian secara extensif telah dijalankan ke atas C-channel dengan rentang-rentang 3, 4, 5, 6, 7 dan 8 m. Kajian ini telah memberikan satu pengetahuan kritikal terhadap sifatsifat C-channel dan dengan demikian, mengesahkan bahawa C-channel sebagai panel konkrit bertetulang pratuang adalah alternatif yang lebih berkesan secara struktur, lebih dijaminkan dan praktikal berbanding kepada sistem lantai konvensional.

ACKNOWLEDGEMENTS

Praise to be God Almighty! This doctoral thesis would have not been possible without the hands of God working behind right from the beginning as He has opened the door for me to pursue my higher study in Universiti Malaysia Sabah (UMS). Many individuals have contributed to this dissertation. Firstly, I love to acknowledge the Construction Industry Development Board of Malaysia (CIDB) for their grant in this project entitled "Semi-Precast Lightweight Concrete Flooring Slab". Without abovementioned funding, this study would never come to pass.

I hereby would like to pen down a special note to thank both the former and current Vice Chancellor of UMS – Professor Datuk Dr. Mohd Noh Dalimin and Col. Professor Datuk Seri Panglima Dr. Kamaruzaman Hj. Ampon respectively, and the dean of School of Engineering and Information Technology (SKTM), Associate Professor Dr. Rosalam Sarbatly for providing me with the opportunity to commerce this Ph.D. research project in the first place. In return, I hope to serve the school and UMS with the knowledge I have gained.

My heartfelt appreciation also goes out to my supervisor and project leader, Associate Professor Dr. Md. Abdul Mannan for his unreserved guidance and detailed supervision given throughout this thesis. Never have I seen such an academician like him who has not just always made his hands dirty in the concrete and structural laboratories but also settled advance payments for the material supplies to actively engage in research and development. His passion in research innovation is truly inspirational. Through his leadership, our research product has been filed to MyIPO for patent.

I am very thankful to my associate supervisor, Professor Dr. N. S. V. Kameswara Rao for his confidence placed in me from the very beginning. His smiles given have always encouraged me to move on so as to make good progress in my research works. His insightful comments and remarks have added high value to the entire research project.

Also to all my former project leaders – Associate Professor Dr. Kurian V. John, Associate Professor Dr. Narayanan Sambu Potty and Associate Professor Dr. Ideris Zakaria for their guidance, supports and fundamental critique to me in the first to two years of my research. Especially to Associate Professor Dr. Kurian V. John, I have always received his constant prayers and assurance in me to complete my Ph.D. study.

Sincere thanks are also extended to a number of laboratory technicians – Mr. Hataf Yazed, Mr. Munap Salleh, Mr. Julius Sokodor, Mr. Jasmi Jaya, for their help and technical support that were essential throughout my research work. Thanks are given to student colleagues particularly Doh Shu Ing who has been cooperative in working hand in hand with me in my research. I wish to thank those who are not mentioned herein, for their assistance and friendship.

Certainly not to forget my deepest gratitude to my parents, Mr. Ng Kui Chong and Mdm. Tay Chung Kek, and my sister, Ms. Ng Guan Ee for their endless supports and sacrifice made to accommodate me while completing my study all these years. Their tolerances and understanding towards me are just beyond words. It is my sincere prayer that I would be soon able to appreciate and serve them in the capacities I have and I can.

I am greatly indebted to my wife whom I love, Mdm. Liew Sin Hiong for her countless sacrifices made to follow me throughout the whole duration of my PhD study. Having her simply by my side indeed reminded me to work hard for our future at all times. Of course to mention about my beautiful daughter, Abigail Ng Lie for her laughter and tears did sometimes de-stress and stress my mind a great deal!

Last but not least, I thank my spiritual mentors especially Pastor Albert Ngu and Pastor Denis Lu for their prayers covering me, and my church members for their love, care and fellowship.

To God be all the glory!

Ng Chee Hiong 24 August 2010

ABSTRACT

STUDIES ON PRECAST REINFORCED CONCETE FLOOR PANELS USING OIL PALM SHELL AGGREGATE

Experimental studies were performed on precast reinforced concrete floor panels using lightweight concrete. The mix design of lightweight concrete was developed using 70% Oil Palm Shell (OPS) and 30% granite as coarse aggregates. Its basic engineering properties using standard specimens were studied under water and steam curing conditions. A total of 50 prototype precast floor panels of solid section, semi-precast and C-channels were made. At initial stage, they were investigated using 3 m spans only. C-channel having smaller cross-section and reduced self-weight showed the best structural performance. Further extensive investigations were made using C-channels of 3, 4, 5, 6, 7 and 8 m spans. Two-line loads and uniform distributed load were applied for tests at ultimate failure and serviceability conditions. The flexural properties determined were (i) service load and moment capacity, (ii) deflection, (iii) crack width, (iv) ductility, (v) strains in concrete and steel, and (vi) end rotation. The deflection recovery and the flange load capacity of C-channels were studied. The lifting hooks, bearing width and the monolithic behaviour at panel joints using pull-down mechanism were also investigated. The experimental investigations were verified with British Standards (BS 8110), Eurocode (EC2), American Standard (ACI 318) and Indian Standard (IS). The experimental results obtained for C-channel have fulfilled the requirements as stipulated in the above standards. The study has provided the critical understanding on the behaviour of C-channel, thereby confirming that C-channel being fully precast reinforced concrete panel is structurally more efficient, promising and viable alternative to the conventional floor system. TIMALAYSIA SABAH

ABSTRAK

Kajian eskperimen telah dijalankan ke atas panel lantai konkrit bertetulang pratuang dengan menggunakan konkrit ringan. Bancuhan konkrit ringan ini telah dihasilkan dengan 70% tempurung kelapa sawit (OPS) dan 30% batu granit sebagai agregat kasar. Sifat-sifat kejuruteraan asas berdasarkan sampel-sampel piawaian telah dikaji di bawah keadaan-keadaan pengawetan air dan stim. Sejumlah 50 panel-panel lantai pratuang prototaip jenis pratuang separuh, pratuang sepenuh dan C-channel telah dihasilkan. Pada peringkat awal, panel-panel tersebut telah disiasat dengan menggunakan rentang 3 m sahaja. C-channel yang mempunyai seksyen yang lebih kecil dan berat diri yang lebih kurang telah menunjukkan prestasi struktur yang terbaik. Kajian secara extensif telah dilakukan dengan mengunakan C-channel dengan rentangrentang 3, 4, 5, 6, 7 dan 8 m. Beban dua garis dan beban taburan seragam telah dikenakan untuk ujian-ujian pada kegagalan muktamad and keadaan servis. Sifat-sifat lentur yang ditentukan termasuklah (i) kapasiti beban servis dan momen, (ii) pesongan, (iii) kelebaran keretakan, (iv) kemuluran, (v) terikan konkrit dan besi, dan (vi) peputaran hujung. Pemulihan pesongan dan kapasiti beban papak C-channel telah dikaji. Penyangkuk-penyangkuk, lebar bearing, dan sifat monolithic di sambungan panel dengan menggunakan mekanisma pull-down juga telah disiasat. Penyiasatan eskperimen telah disahkan berdasarkan Piawaian British (BS 8110), Kod Euro (EC), Piawaian Amerika (ACI 318) dan Piawaian Indian (IS). Keputusan eskperimen yang diperolehi dari kajian ini ke atas C-channel telah memenuhi syarat-syarat sepertimana yang dinyatakan dalam Piawaian-Piawaian tersebut. Kajian ini telah memberikan satu pengetahuan kritikal terhadap sifat-sifat C-channel dan dengan demikian, mengesahkan bahawa C-channel sebagai panel konkrit bertetulang pratuang adalah alternatif yang lebih berkesan secara struktur, lebih dijaminkan dan praktikal berbanding kepada sistem lantai konvensional.

TABLE OF CONTENTS

TITLE		i
DECLARATION		ii
CERTIFICATION		iii
ACKNOWLEDGEM	ENT	iv
ABSTRACT		vi
ABSTRAK		vii
LIST OF CONTENT	S	viii
LIST OF TABLES		XV
LIST OF FIGURES		xviii
LIST OF APPENDI	× III/IC	xxii
LIST OF <mark>ABBREV</mark> I	ATIONS	xxiii
LIST OF SYMBOLS		xxiv
CHAPTER 1: INTR	UNIVERSITI MALAYSIA SABAH	1
1.1	Background	1
1.2	Precast Concrete – An Advantage to Construction Industry	2
1.3	Depleted Natural Stone and Alternative Renewable Resources	3
1.4	Oil Palm Shell (OPS) – A Waste Product as Resource for Construction Industry	3
1.5	Durability of OPS and OPS Concrete	5
1.6	Precast Reinforced Concrete Floors	7
1.7	Research Potential for Building Floors	8
1.8	Objectives of the Investigation	10

	1.9	Scope	of Work	11
CHAPTER 2	: LITER	ATURE	REVIEW	15
	2.1	Introdu	uction	15
	2.2	Use of	Lightweight Concrete in Construction Industry	15
		2.2.1	Properties of Fresh Concrete	17
		2.2.2	Properties of Hardened Concrete	19
	2.3	Structu	Iral Lightweight Concrete	21
	2.4	Prospe	cts of Precast Construction	23
	2.5	Compa Precas	rison Between Conventional Cast In-Situ and t Concrete Floors	25
and the	2.6	Precas	t Concrete Floor Panels Made of NWC	30
		2.6.1	Solid Flat Slab	30
- El 🧧		2.6.2	Hollow Core Slab	31
219		2.6.3	Single Tee and Double Tees	32
1. C	BAS	2.6.4	Semi-precast or Half-Slab AYSIA SABAH	32
		2.6.5	Filler Slab	33
		2.6.6	Channel Slab	34
	2.7	Precas Concre	t Concrete Floors Made of Different Lightweight tes	34
	2.8	Structu	Iral Requirement For Precast Floor Panels	38
		2.8.1	Flexural Performance	39
		2.8.2	Shear	41
		2.8.3	Effects of Lifting and Handling	42
		2.8.4	Effects of Stacking	43
		2.8.5	Joint Designing and Integrity	44

	2.9	Concluding Remarks	44
CHAPTER	3: MATE	RIALS AND TEST METHODS	47
	3.1	Introduction	47
	3.2	Materials and Properties	47
		3.2.1 Cement	47
		3.2.2 River Sand	48
		3.2.3 OPS Aggregate	48
		3.2.4 Granite Aggregate	52
		3.2.5 Water	53
		3.2.6 Superplasticizer	53
15		3.2.7 Steel Reinforcement	56
EY.	3.3	Mixing and Compaction	56
2	3.4	Curing Regimes	58
	3.5	Properties of Fresh Concrete	60
	3.6	Properties of Hardened Concrete	61
	3.7	Consistency Test	61
	3.8	Prototype Floor Panel Test	62
		3.8.1 Panel Configuration and Reinforcement Details	63
		3.8.2 Mould Fabrication	72
		3.8.3 Lifting Hook	78
	3.9	Instrumentation	82
	3.10	Test Set-up	86
		3.10.1 Two Line Loads (TLL)	87
		3.10.2 Uniform Distributed Load (UDL)	87

3.11	Further Tests on I	Prototype Panels	88
	3.11.1 Flange Loa Single-Line	ad Capacity Determination Using e Load	88
	3.11.2 Full Heigh	t Brick Wall Construction	89
	3.11.3 Prolonged (UDL) Tes	l Sustained Uniform Distributed Load st	90
	3.11.4 Bearing W	Vidth Determination	91
	3.11.5 Deflection	Recovery	93
	3.11.6 Test on Jo Ponding	pinting Properties Using UDL and Water	93

96

CHAPTER 4: MIX DESIGN AND PROPERTIES OF OPS HYBRID CONCRETE

B	4.1	Introduction	96
er 🗖	4.2	Mix Design Requirements for Lightweight Concrete	96
a a	4.3	Mix Design for LWC using OPS	98
V	4.4	Acceptable Mix Design for LWC-1 and LWC-2	102
	4.5	Consistency Test for LWC-1 and LWC-2	116
	4.6	Control Concretes	109
	4.7	Properties of fresh Concrete	110
		4.7.1 Slump	110
		4.7.2 Fresh Density	111
	4.8	Properties of Hardened Concrete	111
		4.8.1 Air-dry Density	112
		4.8.2 Compressive Strength	112
		4.8.3 Split Tensile Strength	115
		4.8.4 Flexural Strength	115

	4.8.5 Modulus of Elasticity	116
4.9	Effect of Steam Curing	117
4.10	Concluding Remarks	119

CHAPTER 5: STRUCTURAL PERFORMANCE OF PRECAST DIFFERENT FLOOR PANELS 121

	5.1	Introduction	121
	5.2	Comparison of Physical Characteristics of Precast Floor Panels	121
	5.3	General Behaviour of Panels	124
		5.3.1 Solid Section Panels	124
		5.3.2 Semi-Precast Panels	126
500		5.3.3 C-channels	128
	5.4	Service Load Capacity	132
A	5.5	Bending Moment	133
¥4	5.6	Cracking Moment	137
	5.7	Deflection Behaviour	139
		5.7.1 Solid Section Panels	140
		5.7.2 Semi-Precast Panels	142
		5.7.3 C-channels	143
	5.8	Cracking Characteristics	146
	5.9	Ductility	149
	5.10	End Rotation	150
	5.11	Ultimate Load Capacity	152
	5.12	Concluding Remarks	155

CHAPTER 6:	FLEXU C-CH/	IRAL PERFORMANCE OF PRECAST ANNELS	159
	6 1	Introduction	159
	6.2	Properties of C-channel of Different Spans	159
	6.2	Types of Applied Load on Floor Papels	161
	0.5	Convice Lead Consister	101
	6.4	Service Load Capacity	164
	6.5	Moment Capacity	165
	6.6	Deflection At Service Moment	166
	6.7	Cracking Width	171
	6.8	Strains in Concrete and Steel	172
	6.9	Shear Strength	178
TI	6.10	Deflection Recovery	180
	6.11	Relationship of the Results Between UDL and TLL Tests	182
E S	6.12	Flange Load Determination	183
217	6.13	Sustained Brick Wall Load on C-channel	186
No.	6.14	Prolonged Sustained UDL on Spans YSIA SABAH	188
	6.15	Concluding Remarks	193

CHAPTER 7: PROTOTYPE FLOOR USING C-CHANNELS 196

7.1	Introduction	196			
7.2	C-channel Floor Structure				
7.3	Construction Tolerances	198			
7.4	Transporting and Erection				
	7.4.1 Lifting	201			
	7.4.2 Transporting and Erection	202			
	7.4.3 Forces in Anchors	204			

	7.5	Stacking	207
	7.6	Joint Design and Properties	209
		7.6.1 Diaphragm Action	210
		7.6.2 Joint for C-channels	211
		7.6.3 Pull Down Mechanism	213
	7.7	Testing on Jointing Properties	214
		7.7.1 Test with UDL	214
		7.7.2 Water Ponding	216
	7.8	Structural Concrete Topping	219
	7.9	Provision of Service Conduits	219
	7.10	Concluding Remarks	221
SP	-20		
CHAPTER 8		CLUSIONS AND RECOMMENDATIONS	224
24	8.1	General Remarks	224
	8.2	Conclusions	225
	8.3	Recommendations for Future Research	228

REFERENCES

230

LIST OF ABBREVIATIONS

- AAC Autoclaved Aerated concrete
- ACV Aggregate crushing value
- **AIV** Aggregate impact value
- CIDB Construction Industry Development Board
- **ESCSI** Expanded Shale, Clay & Slate Institute
- **FFB** Fresh Fruit Bunch
- **IBS** Industrialized Building System
- LVDT Linear Variable Displacement Transducer
- LWC Lightweight concrete
- **LWCs** Lightweight concretes
- **NWC** Normal weight concrete
- OPS Oil Palm Shell
- PVA Polyvinyl (alcohol)
- **RCPT** Rapid chloride penetrability test
- **SSD** Saturated surface dry
- TLL Two-line loading
- UDL Uniformly distributed loading
- VPVs Volume of permeable voids

LIST OF APPENDIX

Appendix A	Expressions Used for Analysis of Reinforced Floor Panels	Page 260
Appendix B	Design of C-channel	265
Appendix C	Calculation of Anchorage Length for Lifting Hooks	268
Appendix D	Bearing Length and Bearing Width Calculation	269
Appendix E	Design Calculation of Pull-Down Mechanism	271
Appendix F	Instruments Used for Prototype Floor Panel Testing	274
Appendix G	List of Achievements and Publications Derived from This Study	275

LIST OF FIGURES

		Page
Figure 1.1	Heaps of OPS solid waste being dumped at palm oil mill	5
Figure 2.1	Broad classification of lightweight aggregates	16
Figure 2.2	UMS low-cost show house made using OPS concrete in UMS	17
Figure 2.3	Precast composite slab made with structural lightweight concrete	36
Figure 2.4	Footbridge made with precast reinforced concrete panels using OPS concrete in May 2001 at UMS	38
Figure 3.1	Various shapes of OPS aggregates with shell thickness $3.1 - 3.5$ mm	49
Figure 3.2	Grading curves of coarse aggregates	50
Figure 3.3	Process of steam curing	59
Figure 3.4	Solid section panels of 3 m span	64
Figure 3.5	Semi-precast panels of 3 m span	64
Figure 3.6	C-channels: (a) 3, 4 and 5 m span, (b) 6, 7 and 8 m span, and (c) Typical cross-section	65
Figure 3.7	Fabrication of timber mould for solid section panels SABAH	74
Figure 3.8	Fabrication of timber mould for semi-precast panels	75
Figure 3.9	Fabrication of steel-timber mould for C-channels of various lengths	76
Figure 3.10	Fabrication of modified steel-timber mould for C-channels of 5.2 m long	77
Figure 3.11	A complete steel-timber mould set up with reinforcement made based on Figure 3.10	78
Figure 3.12	(a) Deha spherical-head plate lifting anchor, (b) Position of Deha spherical-head lifting anchors, and (c) Four nos. T10 installed above the anchor plate	80
Figure 3.13	Lifting method for solid section of 3100 mm long	80
Figure 3.14	Lifting hooks used for C-channels	81

Figure 3.15	Lifting type for C-channel of 3, 4 and 5 m span	82
Figure 3.16	Lifting type for C-channel of 6, 7 and 8 m span	82
Figure 3.17	Solid section and semi-precast panels testing setup	85
Figure 3.18	C-channel testing setup	85
Figure 3.19	A typical setup of electric strain gauge onto steel bar	86
Figure 3.20	Locations of concrete strain gauges and Demec points (as shown in "Detail X" in Figure 3.18 and Figure 3.21)	86
Figure 3.21	Testing setup subjected to UDL	88
Figure 3.22	Test setup for flange load determination	89
Figure 3.23	Full height brick wall construction setup	90
Figure 3.24	Bearing width and length of C-channel	92
Figure 3.25	Bearing width ranges	92
Figure 3.26	Four nos. C-channels forming a monolithic floor	94
Figure 3.27	Water ponding of 50 mm deep	95
Figure 4.1	Insight of OPS hybrid concrete (LWC-1) using 3.1 – 3.5 mm thick of OPS	103
Figure 4.2	Insight of OPS hybrid concrete (LWC-2) using $2.5 - 2.9 \text{ mm}$ thick of OPS	104
Figure 4.3	Insight of OPS concrete (LWC-3) using 3.1 – 3.5 mm thick of OPS	104
Figure 4.4	Insight of granite concrete (NWC)	105
Figure 4.5	Volumetric shape of different types of concretes	105
Figure 4.6	Crack paths within concrete made with OPS: (a) Up to the age of 28 days, and (b) Beyond the age of 28 days	114
Figure 5.1	Typical flexure failure of solid section panels	126
Figure 5.2	Failure pattern of semi-precast panels at ultimate load	128
Figure 5.3	Typical flexural failure of C-channels	130
Figure 5.4	Typical flexural cracks on the rib surface of C-channel	131
	· · · · · · · · · · · · · · · · · · ·	

Figure 5.5	Rib service hole positioned at the midspan below the neutral axis	131
Figure 5.6	Load-deflection curve for solid section panels reinforced with T10	141
Figure 5.7	Load-deflection curve for solid section panels reinforced With A10	141
Figure 5.8	Load-deflection curves for semi-precast panels	143
Figure 5.9	Load-deflection curves for C-channels	144
Figure 6.1	Load-deflection curves for C-channels made with LWC-2 tested under TLL	170
Figure 6.2	Load-deflection curves for C-channels tested under TLL to failure	170
Figure 6.3	Load-deflection curves for C-channels tested with UDL up to deflection limit	171
Figure 6.4	Concrete strain distribution of C-channel for 3 m span (CH-8) under TLL	174
Figure 6.5	Concrete strain distribution of C-channel for 3 m span (CH-10) under UDL	174
Figure 6.6	Concrete strain distribution of C-channel for 4 m span (CH-12) under TLL	175
Figure 6.7	Concrete strain distribution of C-channel for 5 m span (CH-15) under TLL	175
Figure 6.8	Concrete strain distribution of C-channel for 5 m span (CH-16) under UDL	176
Figure 6.9	Concrete strain distribution of C-channel for 8 m span (CH-24) under TLL	176
Figure 6.10	Schematic single-line load application	184
Figure 6.11	Tested C-channel for flange load determination	184
Figure 6.12	Load-deflection curve of C-channel flange	185
Figure 6.13	Load-crack width of C-channel flange	185
Figure 6.14	Full height brick wall built on C-channel	187

Figure 6.15	Deflection monitoring of C-channel under prototype brick wall loading	187
Figure 6.16	C-channel of 6 m span subjected to UDL of 14.61 kN/m ² for a duration of 95 days	189
Figure 6.17	C-channel of 7 m span tested under UDL loading of 13.74 kN/m ² for a duration of 135 days	190
Figure 6.18	C-channel of 8 m span subjected to UDL 12.88 kN/m ² for 220 days	190
Figure 6.19	Deflection monitoring of C-channels under sustained UDL	191
Figure 7.1	Four nos. of C-channels forming a full-scale floor structure	197
Figure 7.2	Support details of C-channels on load-bearing walls	198
Figure 7.3	Notation of construction tolerances for C-channel	199
Figure 7.4	C-channel was being lifted from the soffit formwork	202
Figure 7.5	Erecting of C-channel using lorry mounted crane	203
Figure 7.6	Completed C-channel floor structure with tile finishing	204
Figure 7.7	Angle of pull, β	207
Figure 7.8	Stacking of 4 nos. of C-channels	209
Figure 7.9	Four units of 5.2 m long C-channels in stacked	209
Figure 7.10	Rib depth permits horizontal shear transfer	211
Figure 7.11	Schematic joint using R5.2 as longitudinal and transverse bars	213
Figure 7.12	Reactions and forces induced through the bars	214
Figure 7.13	Setup of two nos. of LVDTs to adjacent rib soffits	216
Figure 7.14	Water ponding with approximate 50 mm deep of water	218
Figure 7.15	A total load of 10.15 kN/m ² being placed onto one panel of 5 m x 1 m area	218
Figure 7.16	Location for service conduits in C-channels	221

LIST OF SYMBOLS

A	Area of contact between the mould and the precast unit being lifted
b	Panel width
D	Total panel depth or total rib depth
d	Effective depth
E	Modulus of elasticity of concrete (kN/mm ²)
E _c (t ₀)	Modulus of elasticity at the age of loading, $t_{\rm 0},$ which is related to the compressive cube strength, f_{cu} ($t_{\rm 0})$
E _{sq}	Plan and elevation end squareness
F	Force per anchor
f	Method of craning
fr	Modulus of rupture of concrete (MPa)
f _s /f _y	Steel stress ratio
fy	Yield stress of steel (MPa)
f'c	28-day compressive strength of the concrete (MPa)
G	Deadweight of the precast unit
h	Flange thickness
H _a	Adhesion to the formwork
I	Second moment of inertia of section (mm ⁴)
Ig	Second moment of inertia of gross area ignoring reinforcement (mm^4)
I	Effective span
l _b	Bearing length
l _w	Bearing width
L	Total panel span