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Abstract

DESIGN AND SIMULATION OF VERTICAL STRAINED SiGe IMPACT
IONIZATION MOSFET (VESIMOS)

Miniaturization of semiconductor devices beyond sub-100nm has commenced
several problems for further scaling. Low subthreshold voltage, reduced carrier
mobility, and increased leakage currents were identified to be the paramount issues
that leads to high power consumption and heating. The Impact Ionization MOSFET
(IMOS) device has evolved to attract increasing attention for its ability to overcome
these problems. The IMOS device works on the principle of avalanche breakdown
mechanism that gives very good subthreshold slopes of 20mV/decade, but at high
supply voltage. Hence, to bring down the supply voltage as well as to obtain low
threshold voltage and subthreshold voltage, the Vertical Strained Silicon
Germanium (SiGe) Impact Ionization MOSFET (VESIMOS) has been successfully
developed in this study. VESIMOS device integrates vertical structure concept of
IMOS and strained SiGe technology. The VESIMOS has been designed and
simulated using Silvaco Technology Computer Aided Design (TCAD) tools for both
device process (ATHENA) and characterization (ATLAS) respectively. The transfer
characteristics of VESIMOS showed an inverse proportionality of supply voltage and
subthreshold voltage due to lower breakdown strength of Ge content. However, the
subthreshold voltage is in direct proportion to the leakage current. The
subthreshold voltage, S=10mV/dec was obtained at threshold voltage, Vr=0.9V,
with supply voltage, Vos=1.75V. This V4 was found to be 40% lower than the Si-
vertical IMOS device’s Vru. The output characteristics of VESIMOS found that the
device goes into saturation for supply voltage more than 2.5V, attributed to the
presence of Germanium (Ge) that has high and symmetric impact ionization rates.
In addition, VESIMOS electron mobility was found to be improved by 40%
compared to Si-vertical IMOS, due to the presence of the compressive strain.
Consequently, it is also revealed that an increase in strain will also increase mobility
and reduce further the threshold voltage. However, the increase in strain layer
thickness (Tsige), resulted in an increase of threshold voltage and lowered the

mobility. This is due to the strain relaxation in the SiGe layer. In addition, it is also
\



found that at high source-drain doping concentration (S/D=2x10%8/cm?3), the
threshold voltage dropped to 0.88V, with supply voltage of 1.75V. This is due to
high electric field effect in the channel at high doping concentration, which is
contrary to the doping effects of conventional MOSFET.
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Abstrak
Pengecilan saiz peranti-peranti semikonduktor melebihi sub-100nm telah
mewujudkan beberapa masalah bagi meneruskan pengskalaan. Sub-ambang
rendah, penyusutan mobiliti pembawa dan peningkatan arus bocoran adalah yang
dikenalpasti sebagai penyebab utama berlakunya penggunaan kuasa yang tinggi
dan pemanasan. Peranti Impact Ionization MOSFET (IMOS) telah dibangunkan dan
mendapat perhatian disebabkan keupayaannya bagi menghadapi permasalahan
tersebut. Peranti IMOS beroperasi dengan berasaskan prinsip mekanisma kejatuhan
avalanche’ yang membolehkannya mempunyai kecerunan sum-ambang yang
sangat baik iaitu 20mV/decade tetapi pada sumber voltan yang tinggl. Maka, bagi
menurunkan sumber voltan dan juga mendapatkan voltan ambang dan kecerunan
sub-ambang yang rendah, Vertical Strained Silicon-Germanium (SiGe) Impact
Ionization MOSFET (VESIMOS) telah berjaya di bangunkan dalam kajian ini. Peranti
VESIMOS menggabungkan konsep stuktur menegak IMOS dan teknologi terikan
SiGe. VESIMOS telah direkabentuk dan disimulasikan menggunakan peralatan
Rekabentuk Berasaskan Teknologi Komputer (TCAD) Silvaco untuk kedua-dua
proses (ATHENA) dan pencirian peranti (ATLAS). Ciri pemindahan VESIMOS
menunjukkan perkadaran songsang antara sumber voltan dan voltan sub-ambang
disebabkan oleh kekuatan kejatuhan yang rendah bagi kandungan Germanium
(Ge). Akan tetapi, voltan sub-ambang adalah berkadar terus dengan arus bocoran.
Voltan sub-ambang, S=10mV/dec telah dijperolehi pada voltan ambang, Vm=0.9V
dengan sumber voltan, Vps=1.75V. Nilai Vm ini didapati 40% lebih rendah
berbanding Vi bagi peranti Si-vertical IMOS. Ciri keluaran VESIMOS mendapati
bahawa peranti akan berada di tahap tepu bagi sumber voltan melebihi 2.5V
disebabkan oleh kewujudan Ge yang mempunyai kadar kesan ionisasi tinggi dan
simetri. Tambahan lagi, mobiliti elektron VESIMOS telah dapat ditingkatkan
sebanyak 40% berbanding Si-vertical IMOS disebabkan oleh kehadiran terikan
mampatan. Seterusnya, dapat juga didedahkan bahawa peningkatan terikan akan
juga meningkatan mobiliti dan menurunkan voltan ambang. Akan tetapi,
peningkatan ketebalan lapisan terikan (Tsice) akan menghasilkan peningkatan
voltan ambang dan menyusutkan mobiliti. Ini adalah disebabkan oleh kelonggaran
terikan di lapisan SiGe. Sebagai tambahan, adalah juga didapati bahawa pada
kepekatan doping punca-salir (S/D=2x10"/cn?’) voltan ambang akan menyusut ke
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Vin=0.88V dengan sumber voltan, Vps=1.75V. Ini adalah kerana kesan medan
elektrik yang tinggi dalam saluran pada kepekatan doping yang tinggi dimana
kesan ini adalah bertentangan dengan kesan doping bagi MOSFET konvensional.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Semiconductor device based electronic industry has revolutionized the world with
the invention of silicon transistors by William Shockley in 1950’s. Since then, silicon
has been the heart of semiconductor industry for decades, until now. The reason
behind the semiconductor industry thriving for decades can be attributed to the
concept of transistor scaling. With scaling or miniaturization, silicon devices have
become smaller, faster and better in performance with every new device that has

been invented, since its inception.

Due to the realization of Moore’s law (Moore G., 1965), today, the
miniaturization of silicon devices have provided a path towards denser and faster
integration. The transistors manufactured today are 20 times faster and occupy less
than 1% of the chip space of those built 20 years ago. It was due to this
miniaturization, that it was possible to develop various kinds of miniature devices
such as- laptops, mobile phones and hand held Ultrasound devices, which are now

a necessity for every human being.

But to what extent can this downsizing of silicon devices can be carried out,
is the question posing the semiconductor industry now. As a result of continued
miniaturization of silicon devices, beyond sub-100nm, the industry is posing several
problems such as- high subthreshold slopes, reduced carrier mobility, increased
leakage currents and hence high power consumption and heating, thus questioning
the reliability of smaller devices. Therefore, the researchers in this industry are
looking for alternative ways to continue producing miniature devices that can
perform efficiently. As a result, the semiconductor industry has been successful in
scaling the devices up to 45nm till date, and is striving to go beyond 45nm limit.



Impact Ionization MOSFET (I-MOS), is one such attempt to produce better
performing devices at a nano-scale level. It uses impact ionization mechanism of
carrier injection. Impact Ionization (II) occurs when a carrier is placed in a high
electric field, thus acquiring energy. This carrier becomes a hot carrier and when it
collides with the lattice, loses its kinetic energy to generate electron-hole pairs
(EHP). II leads to avalanche multiplication and eventually avalanche breakdown
(Kwok K. Ng, 1995).

I-MOS works on the principle of avalanche breakdown mechanism of p-i-n
diodes, induced by impact ionization. The carrier transport mechanism in this
device is due to drift, rather than diffusion mechanism. This mechanism provides
excellent subthreshold slopes of less than 10-20mV/decade (K. Gopalakrishnan
et.al,, 2002). But, as I-MOS works on the concept of impact ionization, it requires
high operating voltages, which results in hot carrier degradation effects. This leads
to poor reliability of the planar I-MOS device, as it results in hot-carrier degradation
effects such as, shifts in threshold voltage and subthreshold slopes. Therefore, a
novel vertical concept of I-MOS device was developed (Abelein U., et a/., 2006).
The device structure of vertical I-MOS offers an arbitrary choice of doping between
the source and the drain regions. It also works on the principle of impact ionization
mechanism of carrier injection. The holes generated due to the impact ionization
charge the floating p-body, which results in dynamic reduction of threshold voltage
and a fast rising drain current. Moreover, the channel is formed in the bulk- Si
region and is not confined to the Si/SiO2 region. As a result, the device does not
suffer from either the threshold voltage shifts or the subthreshold slope shifts. It
also provides good subthreshold slopes of <20 mV/decade. To achieve desired
device characteristics, relatively high supply voltages are to be provided and hence,

high threshold voltages.

The best alternative to reduce the supply voltages is to incorporate strain in
the vertical I-MOS device (Dinh T.V., et al., 2009).The VESIMOS (vertical strained
SiGe IMOS) device concept was developed with this idea. A thin strained SiGe layer
was placed in the channel region towards the drain-side intrinsic region of the

vertical I-MOS. A compressive biaxial strain is developed when the SiGe layer is
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