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ABSTRACT 
 

A COMPARATIVE STUDY FOR PARAMETER SELECTION IN ONLINE 
AUCTIONS 

 
In this information-rich age, online auctions have become an important 
procurement tool in either commercial or personal use. As the number of auctions 
increases, the process of monitoring, tracking bid and bidding in multiple auctions 
become a problem. The user needs to monitor many auctions sites, picks the right 
auction to participate, and makes the right bid in making sure that the desired item 
satisfies the user’s preference. All these tasks are somewhat complex and time 
consuming. The task even gets more complicated when there are different start 
and end times and when the auctions employ different protocols. Due to the 
complex and dynamic nature of the online auction, one of the strategies employed 
is using genetic algorithm to discover the best strategy. Hence, this work attempts 
to improve an existing bidding strategy by taking into accounts the evolution of 
various model of genetic algorithm in optimizing the parameter of the bidding 
strategies. In this work, three different models of genetic algorithms are 
considered. In the first model, the crossover and the mutation rate of the genetic 
algorithms are varied in order to create different combination of crossover and 
mutation rate. The new combination of genetic probabilities from this investigation 
will eventually perform better than the recommended genetic probabilities adopted 
in the previous work. The second model is the dynamic adaptation model namely 
the dynamic deterministic adaptive model. The bidding strategy from the 
experimental result of this experiment will eventually perform better than the 
bidding strategy that applied fixed static genetic operator’s probabilities. Self-
adaptation genetic algorithm is the last model that will be used to evolve the 
bidding strategy. The bidding strategies applying self-adaptation model are 
expected to perform better than the deterministic dynamic adaptation because of 
the nature of the algorithm itself. The evaluations are conducted in a simulated 
online auction framework with multiple auctions running concurrently. The 
effectiveness of the bidding strategies is measured based on the average fitness of 
the individuals, the success rate and average payoff in obtaining the item in the 
auctions. The performance of these bidding strategies will be empirically 
demonstrated in this thesis. 
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ABSTRAK 
 

Dalam era teknologi maklumat maju kini, lelong dalam talian telah menjadi yang 
satu cara pembelian yang penting sama ada untuk komersial atau kegunaan 
peribadi. Disebabkan jumlah transaksi lelong yang kian meningkat, proses 
pengawasan, penjejakan bida dan proses pembidaan dalam pelbagai lelong 
menjadi satu masalah. Pengguna perlu memantau banyak laman-laman lelong, 
memilih lelong yang berpotensi untuk disertai, dan membida dalam lelong yang 
dapat memenuhi permintaan pengguna. Semua tugas-tugas tersebut adalah agak 
kompleks dan memakan masa. Tugas ini akan menjadi lebih kompleks apabila 
pelbagai lelong mempunyai perbezaan dalam masa permulaan dan masa tamat 
serta mengamalkan protokol berlainan. Oleh sebab sifat dinamik dan kompleks 
lelong talian, salah satu strategi adalah menggunakan algoritma genetik untuk 
memperolehi strategi terbaik. Justeru, projek ini adalah untuk meningkatkan 
strategi pembidaan yang sedia ada dengan mengambil kira kepelbagaian model 
evolusi algoritma genetik. Dalam projek ini, tiga model algoritma genetik diambil 
kira. Dalam model pertama, berbagai-bagai kadar penyilangan dan mutasi 
algoritma genetik dieksperimentasikan untuk memperolehi pelbagai gabungan 
kadar penyilangan dan mutasi serta bagi memilih gabungan terbaik yang boleh 
menjana keputusan terbaik. Combinasi baru bagi kadar penyilangan dan mutasi 
dijangka yang diperolehi daripada eksperiment ini dijangka akan menjana 
keputusan yang lebih daripada combinasi kadar penyilangan and mutasi yang lama. 
Model kedua adalah model adaptasi dinamik iaitu model penentuan adaptasi 
dinamik. Strategi pembidaan daripada keputusan eksperiment ini dijangka akan 
menjana keputusan yang lebih baik daripada strategi pembidaan yang 
mengaplikasikan kadar penyilangan and mutasi yang tetap. Adaptasi diri algoritma 
genetik merupakan model terakhir yang digunakan untuk mengevolusikan strategi-
strategi pembidaan. Strategi pembidaan yang mengaplikasi adaptasi diri adalah 
dijangka akan menjana keputusan yang lebih baik daripada strategi pembidaan 
ynag mengaplikasikan adaptasi dinamik disebabkan oleh sifat algorithma sendiri. 
Kajian dikendalikan dalam simulasi lelong talian yang mempunyai pelbagai lelong 
yang dijalankan serentak. Keberkesanan strategi-strategi pembidaan adalah diukur 
berdasarkan kepada purata kesesuaian individu, kadar kejayaan dan purata 
keuntungan dalam memenangi item dalam lelong. Prestasi strategi pembidaan ini 
akan didemonstrasi secara empirikal dalam tesis ini. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Introduction 

Auction is defined as a bidding mechanism and is expressed by a set of auction 

rules that specify how the winner is determined and how much he or she has to 

pay (Wolfstetter, 2002). It has been used widely since 500 B.C whereby auctions 

were used by the ancient people to allocate scarce resources in Babylon (Shubik, 

1983). The community was using auction to bid for their prospective wives and 

these bidding systems are still practiced in some of the places in Egypt. Moreover, 

the ancient Rome has been practicing auctions for commercial trading to liquidate 

property and to sell off leftover spoils of war at the battlefield. Since then, auctions 

have been practiced widely in the human civilizations where they were used to 

liquidate goods and to sell off the unsaleble goods. Throughout the years, auction 

has gained its popularity due to its effectiveness in allocating resources by the 

individuals who will value them the most (Reynolds, 1996). This effectiveness has 

brought about many variants of auctions, particularly the last few years (Wuman et 

al. 2001).  

 

The traditional single-sided auctions can mainly be classified into four 

different types as follows (Klemperer, 1999). 

a) The ascending-bid auction (also called the open, oral, or English auction) 

b) The descending-bid auction (also called Dutch auction) 

c) The first-price sealed bid auction 

d) The second-price sealed bid auction (also called Vickrey auction (Vickrey, 

     1961)) 

 

English auction is the most common auction. In this type of auction, the 

auctioneer will start the auction with a low price which will then be successively 

raised up until only one bidder is remains. The remaining bidder will be the 

winning bidder and thus, he or she will have to pay for the value of the item which 
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is equivalent to the bid value. This type of auction is executed in three different 

ways; by having the seller to announce the price, by having the bidders to call out 

the price themselves, or by having bids submitted electronically with the best latest 

bid posted at each stage of the auction. The bidders will have the chance to 

observe the latest high price posting while deciding either to continue bidding or to 

quit at any stage of the bidding. Once the bidder has decided to quit, he or she will 

not be allowed to rejoin the auction again. This type of auction can be commonly 

found in antiques, artworks and bidding auction house.  

 

The descending bidding auction is the opposite of the ascending bidding 

auction. In a descending bidding auction, the auctioneer normally starts with a 

relatively high price and progressively lowers the price until a bidder calls to claim 

for the item. The winning bidder will be the first bidder who calls out for the item 

at the current price stated. This type of auction is known as the Dutch auction and 

is commonly used in Netherlands for selling flowers (van Heck & Ribbers, 1997). 

Similar auction is also used to buy and sell fish and tobaccos in many countries 

such as Spain, Israel and Canada (Klemperer, 1999). 

 

The remaining two types of the auctions are called the sealed bid auctions. 

In sealed bid auctions, each bidder will submit their bids independently without 

knowing what the others’ bid values are. The bids are opened when the auction is 

closed and the winner will be decided. In the first-price sealed bid auction, the 

winner will be the bidder with the highest bid and he or she will pay for a price 

equivalent to his bid value for the item. In contrast, the winner will only have to 

pay the price that is equivalent to the second highest bid instead of the highest bid 

in the second-price sealed bid auction. First-price sealed bid auctions are normally 

used in auctioning mineral rights in government owned land and also used 

sometimes in the sales of artworks and real estates (Klemperer, 1999) whereas the 

second-price sealed bid auctions are used for auctioning stamps, autographs and 

Civil War memorabilia by mail (Lucking-Reiley, 2000b; Rothkopf et al. 1990). 
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1.2 What is Online Auction? 

Jansen defines an online auction as an Internet-based version of a traditional 

auction (Jansen, 2003). The advancement of the internet technology has brought a 

new method of trading, namely, the e-commerce. Any business transaction 

(buying and selling process) whose price or essential terms are negotiated over an 

online system such as the Internet, Extranet or Electronic Data Interchange 

network is called the E-commerce (or electronic commerce). In today’s e-

commerce market, online auction has acted as an important tool in the services for 

procuring goods and items either for commercialize purposed or for personal used. 

Online auctions have been reported as one of the most popular and effective ways 

of trading goods over the Internet (Bapna et al. 2001). Electronic devices, books, 

computer software, and hardware are among the thousands items sold in the 

online auctions every day. To date, there are 2603 auction houses that conduct 

online auctions as listed on the Internet (Internet Auction List, 2008). These 

auction houses conduct different types of auctions according to a variety of rules 

and protocols. eBay, as one of the largest auction house alone has more than 

338.2 million registered users and had transacted more than USD15.68 billion 

worth of goods during the second quarter of 2008 (eBay, 2008). These figures 

clearly show the importance of online auctions as an essential method for 

procuring goods in today’s e-commerce market. 

 

The major difference between the traditional auction and online auction is 

the flexibility in conducting the auction. There are many limitations in a traditional 

auction setting. With the aid of online auction, many constraints that used to be in 

the traditional auction have now been diminished. Table 1.1 shows some of the 

differences between traditional auction and online auction. 
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Table 1.1: Comparison between traditional auction and online auction 

Traditional Auction Online Auction 

The auctioneer and the bidders have to 

gather in one room at a given time to 

decide who gets the item and at what 

price. 

The users just need to be in front of a 

personal computer with an internet 

connection to participate in an online 

auction that may be located in another 

part of the world (Lucking-Reiley, 

2000a). 

Auctioneers and bidders are required to 

come to the auction’s venue. This 

practice limits many of the potential 

bidders that cannot attend the auction. 

Online auction increases flexibility and 

ease the participation in auction for 

users, thus allowing the users to 

participate in an auction wherever they 

are and whenever they want. 

Traditional auctions normally sell an 

item within a few minutes or even 

seconds. The rapid process with only 

limited time for the auction participants 

to make decision may cause many of 

them to pull out from bidding for the 

item in the auction. As a consequence, 

the sellers may not get the highest 

possible price for their goods (Turban et 

al. 2000).  

 

The duration for online auctions lasts 

longer than traditional auctions, it 

normally lasts for days and weeks, and 

this allows the bidders to have more 

time to think and to decide when to 

submit their bids. 

The goods to be auctioned may also 

cause problems in traditional auction 

because of the difficulty in transferring 

them to the auction site.  

 

Online auctions allow sellers to sell their 

goods efficiently with little action or 

effort required. 

A large cost is associated with operating 

the traditional auction since the sellers 

have to rent the auction site while the 

In online auction, seller will only be 

required to set up a seller's account by 

filling up a seller's form detailing the 


