EXPERIMENTAL INVESTIGATION ON THE CHIMNEY DIVERGENCE AND WIRE MESH INFLUENCES ON THE PERFORMANCE OF SOLAR CHIMNEY

AHMED JAWAD

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE MASTER OF ENGINEERING

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2020

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL : EXPERIMENTAL INVESTIGATION ON THE CHIMNEY DIVERGENCE AND WIRE MESH INFLUENCES ON THE PERFORMANCE OF SOLAR CHIMNEY

IJAZAH : IJAZAH SARJANA KEJURUTERAAN

BIDANG : KEJURUTERAAN MEKANIKAL

Saya **AHMED JAWAD**, Sesi **2018-2020**, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

Disahkan Oleh, BERTO ANING BTAKAWAN KANAN

RSITI MALAYSIA SABAH

(Tandatangan Pustakawan)

Towad

AHMED JAWAD MK1621023T

CR. MOND SUPPLAN ON MSA² Kenas Program Kepanisan Baharikat Fakuta Kepanisanaka Universiti Anjanusia Saladi

(Dr. Mohd Suffian Bin Misaran@Misran) Penyelia

Tarikh : 2 Oktober 2020

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, equations, summaries and references, which hava been duly acknowledged.

28 July 2020

Jawad

Ahmed Jawad MK1621023T

CERTIFICATION

- NAME : AHMED JAWAD
- MATRIC NO. : MK1621023T

TITLE : EXPERIMENTAL INVESTIGATION ON THE CHIMNEY DIVERGENCE AND WIRE MESH INFLUENCES ON THE PERFORMANCE OF SOLAR CHIMNEY

- DEGREE : MASTER OF ENGINEERING (MECHANICAL ENGINEERING)
- DATE OF VIVA : 25 OCTOBER 2019

CERTIFIED BY;

1. SUPERVISOR

Dr. Mohd Suffian Bin Misaran@Misran

Signature

pre la construction de la construction Construction de la construction Construction de la construction Construction de la construction La construction de la construction La construction de la construction

2. CO-SUPERVISOR

Dr. Md Mizanur Rahman

ACKNOWLEDGEMENT

TO MY SUPERVISOR: The author would like to express his sincere gratitude to his supervisor Dr. Mohd Suffian Bin Misaran@Misran and co-supervisor Dr. Md Mizanur Rahman for their kind supervision, guidance and encouragement throughout this research work.

TO FACULTY OF ENGINEERING AND MECHANICAL ENGINEERING PROGRAMME LECTURERS: The author is indebted to Associate Professor Ts Dr. Ismail Saad, Dean Faculty of Engineering. The author expresses his heartfelt thanks to Dr. Chris Chu Chi Ming for moral encouragement and all the technical staff Mr. Jasmi for their help and support in the fabrication part.

TO MY COLLEAGUES: The author wishes to thank ever staff member and colleagues at the UMS for their cooperation and support during study period. The authors mainly thanks to all friends specially Helfi, Carla, Sharwin, Shirly and Bina for their help, encouragement and moral support during the study period.

TO MY SIBLINGS: A deep gratitude extended to author's parent brother sister for their love, all out support valuable suggestion and encouragement to complete the study.

TO GOD: Above all, the author once again thankful to Almighty Allah for the wisdom and strength provided throughout the period of his stay as well as conducting study in Malaysia.

Thanks to all of you! AYSIA SABAH

Ahmed Jawad 28 July 2020

ABSTRACT

Solar chimney power generation system is a renewable alternative option to fossil fuels to generate electric energy, but its construction and maintenance are expensive. A lot of innovative prototypes of solar chimneys were developed by researchers to reduce costs related to its size, vet no significant solution has been established. This study aims to investigate the performance of divergent solar chimney compared to cylindrical-solar chimney at different inlet heights and electric heat loads. The electric heating load is gained from the electrical coil located below the chimney to simulate the solar energy in the collector. Scaled down divergent and cylindrical solar chimney models were designed and fabricated in the lab. The working parameter of the scaled down solar chimney was measured at different electric heat loads to observe the performance variants. A wire mesh addition at the chimney exit was also tested and analysed to study the effect of cold inflow to divergent solar chimney performance. Experimental results of the divergent chimney showed improved stack effect and increases in velocity at the throat caused by the reduced area. The power potential of the chimney is also increased from 6 to 15 times compared to a cylindrical chimney. Wire mesh addition at the exit of the chimney prevents cold inflow by the formation of eddies due to flow separation and an increase in turbulence flow. As such, it causes improved flow behaviour and an increase in air velocity by 30%. This study concludes that divergent chimney has a better performance compared to a cylindrical chimney. The addition of wire mesh further increases the power potential of the divergent solar chimney. These findings show that the divergent solar chimney is a highly probable alternative design to reduce capital cost by reducing the height while having better power potential.

UNIVERSITI MALAYSIA SABAH

ABSTRAK

SIASATAN EKSPERIMENTAL KESAN CEROBONG CAPAH DAN JARINGAN DAWAI TERHADAP PRESTASI CEROBONG SOLAR

Peniana sistem cerobong kuasa suria adalah satu alternatif bagi meniana tenaga elektrik, namun pembinaan dan penyelenggaraannya melibatkan kos yang agak tinggi. Terdapat banyak prototaip inovasi cerobong suria telah dibangunkan oleh para penyelidik untuk mengurangkan kos awal pembinaannya termasuklah dari segi saiz, tetapi inovasi yang telah dibangunkan masih berada dalam peringkat kajian. Kajian ini dijalankan bertujuan untuk menyelidik kecekapan cerobong suria berbentuk tirus berbanding cerobong suria berbentuk silinder pada ketinggian dan beban kepanasan elektrik yang berbeza. Beban kepanasan elektrik didapati daripada pemanas elektrik vang terletak di bawah cerobong sebagai simulasi pengumpul tenaga solar. Model cerobong suria tirus dan berbentuk silinder telah direka dan dibangunkan dalam makmal. Model cerobong suria tirus diukur pada ketinggian dan beban kepanasan elektrik yang berbeza untuk diperhatikan perbezaan prestasi. Analisis dan ujian juga turut dijalankan bagi mendapatkan kesan aliran balik udara sejuk pada cerobong suria tirus apabila net besi dipasang pada bahagian hujung keluar cerobong. Keputusan eksperimen cerobong suria berbentuk tirus menunjukkan kesan stack dan peningkatan halaju angin pada tengkorok atas pengurangan diameter cerobong. Potensi kuasa cerobong juga meningkat dari 6 ke 15 kali berbanding dengan cerobong berbentuk silinder. Pemasangan net besi pada hujung cerobong dapat menghalang aliran balik udara sejuk dengan pembentukan perolakan disebabkan oleh pemisahan aliran dan peningkatan aliran udara bergolak. Dengan itu, bentuk aliran udara dapat diperbaiki dengan 30% peningkatan halaju udara. Kajian ini menyimpulkan bahawa cerobong berbentuk tirus mempunyai prestasi yang lebih baik berbanding cerobong berbentuk silinder tepat. Potensi kuasa cerobong suria berbentuk tirus turut meningkat dengan pemasangan net besi. Dapatan kajian ini juga menunjukkan bahawa cerobong suria berbentuk tirus adalah alternatif reka bentuk yang boleh di guna pakai untuk mengurangkan kos awalan pembinaan cerobong suria dengan pengurangan ketinggian cerobong di samping mempunyai potensi kuasa yang lebih baik.

TABLE OF CONTENTS

		Page
TITLE		i
DECLAF	RATION	ii
CERTIF	ICATION	iii
ACKNO	WLEDGEMENT	iv
ABSTR	ACT	V
ABSTRA	AK C	vi
TABLES	OF CONTENTS	vii
LIST OF	TABLES	xi
LIST OF	FIGURES	xiii
LIST OF	ABBREVIATION	xvii
LIST OF	SYMBOLS	xviii
LIST OF	GREEK LETTERS	xix
LIST OF	APPENDICES UNIVERSITI MALAYSIA SABAH	xx
СНАРТИ	ER 1: INTRODUCTION	
1.1	Introduction	1
1.2	Problem Statement	3
1.3	Research Objectives	4
1.4	Scope of the Study	5
1.5	Significance of the Study	5
1.6	Thesis Content	5
СНАРТЕ	R 2: LITERATURE REVIEW	

2.1 Overview

vii

7

2.2	Solar Chimney For Power Generation 9				
2.3	The W	orking Principles and Applications of Solar Chimneys	10		
	2.3.1	Solar Collector and Heat Sources	11		
	2.3.2	The Wind Turbine	16		
	2.3.3	Chimney Design	18		
2.4	Solar (Chimney Under Different Geographical Conditions	23		
2.5	Gap Ar	nalysis	25		
2.6	Summ	ary	27		
СНАРТЕ	R 3: MI	ETHODOLOGY			
		and the second			
3.1	Overvi	ew	28		
3.2	Design	of Divergent Chimney	30		
	3.2.1	Fabrication	32		
3.3	Experi	mental Design	33		
	3.3.1	Experimental Layout	35		
3.4	Experii	mental Procedure	36		
3.5	Experii	mental Results and Data Analysis	40		
	3.5.1	Comparison of the Divergent Shaped and Cylindrical Designs	40		
	3.5.2	Effect of Wire Mesh on the Divergent Shaped Chimney	41		
	3.5.3	Air Velocity with Different Air Inlet Heightsi In the Divergent Shaped Chimneys	41		
3.6	Parame	eters and Other Equations	41		
3.7	Summa	ary	42		

CHAPTER 4: EXPERIMENTAL RESULTS AND ANALYSES

4.1 Overview

43

4.2	Experimen	tal Results for Divergent and Cylindrical Chimney	43		
	4.2.1 Ai	r Velocity	44		
	4.2.2 Te	emperature	46		
	4.2.3 M	ass Flow Rate	49		
4.3	Analysis of	f the Solar Chimney	50		
	4.3.1 Th Pe	ne Effect of Theoretical Wind Power on the erformance Divergent and Cylindrical Chimneys	50		
4.4	Cold Inflow	v Phenomenon	55		
	4.4.1 Ex Ch	xperimental Results for Divergent Wire Mesh nimney	58		
	4.4.2 Th W	neoretical Wind Power Potential With and Without a Vire Mesh Configuration	66		
4.5	Air Inlet Heights				
	4.5.1 Ex	xperimental Results of Air Inlet Heights Without a l <mark>i</mark> re Mesh	70		
	4.5.2 Th Cl	neoretical Wind Power Potential in Divergent nimney in Different Air Inlet Height Configurations	74		
4.6	Experimen Equipped Height Cor	tal Data of the Divergent Chimney Models With a Wire Mesh in the Four Different Air Inlet nfigurations Under Different Electric Heat Loads	77		
	4.6.1 Th Ec Ho	neoretical Wind Power in the Divergent Chimney quipped With a Wire Mesh in Different Air Inlet eights	80		
4.7	4.7 Sur	nmary	83		
СНАРТЕ	R 5: CONC	LUSION AND FUTURE WORK			
5.1	Introductio	on	85		
5.2	Future Wo	rk	86		
REFERE	NCES		88		

LIST OF TABLES

			Page
Table 3.1	:	Manzanares solar chimney power plant outcomes	31
Table 3.2	:	Geometric parameters of chimney models	31
Table 3.3	:	Design of the experimental setup for comparison of Divergent and Cylindrical chimneys	38
Table 3.4	i	Design for experiments in of Divergent Chimney with and without wire mesh configuration	38
Table 3.5	:	Divergent Chimney on different air inlet heights without wire mesh configuration	39
Table 3.6		Divergent Chimney on different air inlet heights with wire mesh configuration	40
Table 4.1		Temperature results of the 2 metre cylindrical and divergent shaped chimneys under four different electric heat loads	47
Table 4.2		Temperature results of the 1, 1.5 and 2 metre divergent shaped chimneys under four different electric heat loads	48
Table 4.3	SA.	Temperature results of the 1, 1.5 and 2 metre cylindrical shaped chimney under different electric heat loads	48
Table 4.4	:	Temperature readings of 1, 1.5 and 2 metre divergent chimneys with a wire mesh configuration	61
Table 4.5	:	Temperature differences of 2 metre divergent chimney with and without wire mesh configuration	62
Table 4.6	:	Effects of four different air inlet heights on 1 metre divergent chimney under different electric heat loads	72
Table 4.7	:	Effects of four different air inlet heights on 2 metre divergent chimney under different electric heat load	74
Table 4.8	:	Effects of the four different air inlet heights on 1.5 metre divergent chimney under different electric heat loads	78

Table 4.9Effects of four different air inlet heights on 2 metre
divergent chimney under different electric heat load

LIST OF FIGURES

			Page
Figure 2.1	:	Prototype of solar chimney power plant in Manzanares	8
Figure 2.2	:	Solar chimney working principle	10
Figure 2.3	;	Solar collector with ribs	12
Figure 2.4	:	Solar collector configurations	13
Figure 2.5	:	Solar Chimney power plant integrated with PV cells	16
Figure 2.6	:	Turbine orientation	17
Figure 2.7	;	Different number of blades of turbine	18
Figure 2.8	2 L	Sloped solar chimney	20
Figure 2.9		Floating chimney	21
Figure 3.1	Stand I	Research Methodology	29
Figure 3.2	:	CAD design of the divergent chimney	32
Figure 3.3	:	(a) Cylindrical Chimneys and (b) Divergent Chimneys	33
Figure 3.4	:	Schematic diagram of the experimental setup	35
Figure 3.5	:	Experimental setup of 2 metre Solar Chimney	37
Figure 4.1	:	Air velocity comparison of the 1 metre chimneys under different electric heat loads	44
Figure 4.2	:	Air velocity comparison of the 1.5 metre chimneys under different electric heat loads	42
Figure 4.3	:	Air velocity comparison of the 2 metre chimneys	42

Figure 4.4	:	Mass flowrate of the divergent chimney models under different electric heat loads	49
Figure 4.5	:	Mass flowrate of the cylindrical chimney models under different electric heat loads	50
Figure 4.6	•	Theoretical wind power potential in 1 metre chimney models	51
Figure 4.7	•	Theoretical wind power potential in 1.5 metre chimney models	51
Figure 4.8	:	Theoretical wind power potential in 2 metre chimney models	52
Figure 4.9	:	Theoretical electric power generation in divergent chimneys	53
Figure 4.10	:	Theoretical electric power generation in cylindrical chimneys	54
Figure 4.11		Smoke test on 1 metre chimney without a wire mesh on lower electric heat load	56
Figure 4.12		Smoke test on 1.5 metre chimney without a wire mesh	56
Figure 4.13	ST.	Smoke test on 1 metre divergent chimney without a wire mesh on a higher electric heat load	57
Figure 4.14	•	Smoke test on 1 metre chimney with wire mesh	58
Figure 4.15	:	Smoke test on 1.5 metre chimney with a wire mesh	58
Figure 4.16	:	Air velocity of 1 metre divergent chimney with and without a wire mesh configuration	59
Figure 4.17	•	Air velocity in 1.5 metre divergent chimney with and without a wire mesh configuration	60
Figure 4.18	:	Air velocity of 2 metre divergent chimney with and without a wire mesh configuration	60
Figure 4.19	:	Thermal camera images of a chimney without a wire mesh configuration	62

Figure 4.20	:	Thermal camera images of a chimney with a wire mesh configuration	63
Figure 4.21	•	Flow separation on the cylindrical objects	64
Figure 4.22	:	Chimney used to investigate impact of with and without wire mesh configuration	65
Figure 4.23	:	Effects on air intake velocity and air velocity at the exit of 2 metre divergent chimney with a wire mesh screen	65
Figure 4.24	÷	Theoretical power in wind in 1 metre divergent chimney with and without a wire mesh	66
Figure 4.25	:	Theoretical wind power potential in 1.5 metre divergent chimney with and without a wire mesh	67
Figure 4.26	:	Theoretical wind power potential in 2 metre divergent chimney with and without a wire mesh	67
Figure 4.27	11	Theoretical electric power generation in 1 metre divergent chimney with and without a wire mesh	68
Figure 4.28		Theoretical electric power generation in 1.5 metre divergent chimney with and without a wire mesh	69
Figure 4.29	S:A B	Theoretical electric power generation in the 2 BAH metre divergent chimney with and without a wire mesh and the cylindrical chimney	70
Figure 4.30	;	Theoretical electric power generation in the 2 metre divergent chimney with and without a wire mesh and the cylindrical chimney	71
Figure 4.31	:	Air velocity of 2 metre chimney on different air inlet heights	73
Figure 4.32		Theoretical wind power potential of 1 metre chimney on different air inlet height configurations	75
Figure 4.33	:	Theoretical electric power generation of 1 metre chimney on different air inlet height configurations	75
Figure 4.34	:	Theoretical wind power potential of 2 metre chimney on different air inlet heights	76

Figure 4.35	Theoretical electric power generation of 2 metre chimney on different air inlet height configurations	77
Figure 4.36 :	Air velocity in 1.5 metre chimney on the different air inlet heights with wire mesh configuration	78
Figure 4.37 :	Air velocity in 2 metre chimney on different air inlet heights with wire mesh configuration	79
Figure 4.38 :	Theoretical wind power potential of 1.5 metre chimney on different air inlet heights with a wire mesh configuration	81
Figure 4.39 :	Theoretical electric power generation of 1.5 metre chimney on different air inlet heights with a wire mesh configuration	82
Figure 4.40 :	Theoretical wind power potential of 2 metre chimney equipped different air inlet heights with a wire mesh configuration	82
Figure 4.41 :	Theoretical electric power generation of 2 metre chimney on different air inlet heights with a wire mesh configuration	83

UNIVERSITI MALAYSIA SABAH

LIST OF ABBREVIATION

CFD - Computational Fluid Dynamics

LIST OF SYMBOLS

A _{ch}	-	Chimney Cross-sectional area (m ²)
BM_h	-	Bellmouth height (m)
BM_r	٠	Bellmouth radius (m)
D	۲	Diameter (m)
D_m	-	Diameter of model (m)
D_p	٠	Diameter of Prototype (m)
fr		Frouder number (dimensionless)
g	-	Gravitational acceleration (ms^{-2})
h	-	Height of chimney (m)
'n	-	Mass flowrate (kgs $^{-1}$)
Pelectric	E	Electric Power Generation (W)
P _{wind}		Wind Power Potential (W)
Т	249	Temperature (K)
T _{chimney}	-	Temperature inside chimney (K)
T _{co}	-	Ambient Temperature (K)
V	-	Velocity (ms ⁻¹)
V_m	-	Velocity in model (ms^{-1})
V_p	-	Velocity in Prototype (ms^{-1})

LIST OF GREEK LETTERS

- η_g Generator efficiency (dimensionless)
- η_t Turbine efficiency (dimensionless)
- ρ Fluid Density (kgm⁻³)
- ΔT Temperature difference between exit and ambient (K)

LIST OF APPENDICES

			Page
Appendix A	;	Air Properties	98
Appendix B	:	Experimental Equipment	99
Appendix C1	ł	Experimental results of 2 metre cylindrical chimney	103
Appendix C2	:	Experimental results of 1.5 metre cylindrical chimney	104
Appendix C3	:	Experimental results of 1 metre cylindrical chimney	105
Appendix C4	:	Experimental results of 2 metre divergent chimney on air inlet height 1 without wire mesh	106
Appendix C5	:	Experimental results of 2 metre divergent chimney on air inlet height 2 without wire mesh	107
Appendix C6	:	Experimental results of 2 metre divergent chimney on air inlet height 3 without wire mesh	108
Appendix C7		Experimental results of 2 metre divergent chimney on air inlet height 4 without wire mesh	109
Appendix C8		Experimental results of 1.5 metre divergent chimney on air inlet height 1 without wire mesh	110
Appendix C9	A	Experimental results of 1.5 metre divergent chimney on air inlet height 2 without wire mesh	111
Appendix C10	:	Experimental results of 1.5 metre divergent chimney on air inlet height 3 without wire mesh	112
Appendix C11	:	Experimental results of 1.5 metre divergent chimney on air inlet height 4 without wire mesh	113
Appendix C12	•	Experimental results of 1 metre divergent chimney on air inlet height 1 without wire mesh	114
Appendix C13	:	Experimental results of 1 metre divergent chimney on air inlet height 2 without wire mesh	115
Appendix C14	:	Experimental results of 1 metre divergent chimney on air inlet height 3 without wire mesh	116
Appendix C15	\$	Experimental results of 1 metre divergent chimney on air inlet height 4 without wire mesh	117

Appendix C16	÷	Experimental results of 2 metre divergent chimney on air inlet height 1 with wire mesh	118
Appendix C17	:	Experimental results of 2 metre divergent chimney on air inlet height 2 with wire mesh	119
Appendix C18	:	Experimental results of 2 metre divergent chimney on air inlet height 3 with wire mesh	120
Appendix C19	8	Experimental results of 2 metre divergent chimney on air inlet height 4 with wire mesh	121
Appendix C20	:	Experimental results of 1.5 metre divergent chimney on air inlet height 1 with wire mesh	122
Appendix C21	*	Experimental results of 1.5 metre divergent chimney on air inlet height 2 with wire mesh	123
Appendix C22	:	Experimental results of 1.5 metre divergent chimney on air inlet height 3 with wire mesh	124
Appendix C23	:	Experimental results of 1.5 metre divergent chimney on air inlet height 4 with wire mesh	125
Appendix C24	÷	Experimental results of 1 metre divergent chimney on air inlet height 1 with wire mesh	126
Appendix C25		Experimental results of 1 metre divergent chimney on air inlet height 2 with wire mesh	127
Appendix C26	S.A.	Experimental results of 1 metre divergent chimney on air inlet height 3 with wire mesh	128
Appendix C27	:	Experimental results of 1 metre divergent chimney on air inlet height 4 with wire mesh	129

CHAPTER 1

INTRODUCTION

1.1 Introduction

Population growth, modernization, technological development and dependencies on electric power have led to global power crises. So, the feasibility of the cheap, sustainable and environment-friendly power generation through fossil fuel and renewable energies is now a hot debate. Power generation is mostly done using the fossil fuel which leads to hazardous emissions and other forms of pollution namely water pollution and thermal pollution (Bozkurt, 2010; Hausfather, 2014). It has a very high impact on the environment, which in-turn cause's disturbances in the ecosystem. While renewable energies like solar and wind energy are infinite, abundant and environment-friendly. It is estimated that the world will be generating about 30% of global electricity through renewable energy sources; this encourages the expansion of renewable energy technologies and reduce the dependencies on fossil fuel (Saygin *et al.*, 2015).

Solar PV system and wind turbine are used to harvest electrical energy from sun and wind. These two technologies are well established and adequate yet other efficient ways need to be considered also; one of them being the solar chimney which lacks attention due to bigger size and capital cost, though this technology was established a long time ago. The first working prototype of the solar chimney, in Manzanares, Spain had a gigantic chimney and less power generating capability, making its implementation harder (BRIGITTE, 2007). The solar chimney does not produce any emissions or cause any pollution, unlike electricity generation through fossil fuels (Chen, 2014). The solar chimney can be a promising solution to future electricity-generation problems since it is environment-friendly and can be installed in rough areas and weathers. Also, its maintenance cost is very low. Study suggest that a solar chimney infrastructure is reliable for more than 80 years that makes it a unique and promising technique to generate the electricity (Grose, 2014).

The working principle of the solar chimney is very simple; it has solar collectors that receive energy from solar radiations and heat the air. The hot air from the solar collector rises upwards in the chimney due to the buoyancy. The chimney is equipped with a turbine that uses kinetic energy of hot air molecules and converts it into mechanical energy. This mechanical energy is used to generate electrical energy by the generator. The hot and less dense air is ejected into the surroundings through the chimney; this phenomenon is also known as the Stack Effect.

Outcomes obtained from a vast number of simulations, mathematical models and small scale laboratory experiments, performed by different researchers, encourage the use of solar chimney for power generation. The construction of a solar chimney power plant consists of 3 major parts: solar collectors, chimney or draft, and turbines. The application of a solar chimney is not limited to electricity generation, it can also be used for other purposes such as paddy and vegetable dryer, and the passive cooling for buildings (Chungloo & Limmeechokchai, 2007). Also, the distillation of waste water and seawater can be done efficiently by using a solar chimney (Zuo *et al.*, 2011a).

Solar chimney's efficiency depends upon the diameter, pattern and material quality of the solar collector. A sufficient number of researches have been carried out on solar collector's quality, design and heat storage as well as on how to enhance the efficiency of the plant during night time and in the winter (Kayiem, 2006; Bernardes, 2013; Choi *et al.*, 2016;). Gigantic height of the chimney is a major drawback of a solar chimney. Also, a tall solar chimney is less efficient due to lower temperature at higher altitude. The cold air from the surrounding also enters at the chimney exist, resulting in a decrease in the power generation. There is little or no research on the divergent design and effects of cold inflow on the performance of a solar chimney power plant. Therefore, this study focuses mainly on experimental results obtained from the model draft to enhance efficiency. A wire

2