## FRACTIONATION AND CHARACTERIZATION OF RAMBUTAN SEED FATS (*NEPHELIUM LAPPACEUM L.*) AND THEIR POTENTIAL APPLICATIONS AS COCOA BUTTER IMPROVER

## **AZZATUL FATONAH SALIM**

UNIVERSITI MALAYSIA SABAH

## THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

# FACULTY OF FOOD SCIENCE AND NUTRITION UNIVERSITI MALAYSIA SABAH

2020

#### UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

#### JUDUL : FRACTIONATION AND CHARACTERIZATION OF RAMBUTAN SEED FATS (*NEPHELIUM LAPPACEUM L.*) AND THEIR POTENTIAL APPLICATIONS AS COCOA BUTTER IMPROVER

IJAZAH : SARJANA SAINS

#### BIDANG : TEKNOLOGI MAKANAN

Saya **AZZATUL FATONAH BINTI SALIM**, Sesi **2018-2020**, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan ( / ):



(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)



TIDAK TERHAD

AZZATUL FATONAH BINTI SALIM MN1811001T

Tarikh : 18 September 2020



(tandatangan Pustakawan)

Fluort

(Dr. Md. Jahurul Haque Akanda) Penyelia Utama

### DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excepts, equations, summaries and references, which have been duly acknowledged.

e Bootwis

27<sup>th</sup> April 2020

Azzatul Fatonah Salim MN1811001T



#### CERTIFICATION

#### NAME : AZZATUL FATONAH BINTI SALIM

MATRIC NO. : MN1811001T

TITLE : FRACTIONATION AND CHARACTERIZATION OF RAMBUTAN SEED FATS (*NEPHELIUM LAPPACEUM* L.) AND THEIR POTENTIAL APPLICATIONS AS COCOA BUTTER IMPROVER

- DEGREE : MASTER OF SCIENCE
- FIELD : FOOD TECHNOLOGY

VIVA DATE

20<sup>th</sup> JULY 2020

## CERTIFIED BY; ALAYSIA SABAH

SIGNATURE

#### 1. MAIN SUPERVISOR

Dr. Md. Jahurul Haque Akanda

#### 2. CO-SUPERVISOR

Dr. Norliza binti Julmohammad

Fahmel

#### ACKNOWLEDGEMENT



Alhamdulillah, all praise to Allah S.W.T, the Most Glorious and Merciful, for the opportunity to complete my thesis. Firstly, I would like to express my deepest thanks to my supervisor Dr. Md. Jahurul Hague bin Akanda, and my co-supervisor Dr. Norliza binti Julmohammad who are willing to share the knowledge, patiently provide guidance throughout the completion of the thesis and willing to give insights on improving my research writing skills. Appreciation and gratitude are also expressed to my colleagues Norazlina binti Mohammad Ridhwan, Shareenie Mariely Avu, Noraidah binti Haini, and Hana binti Mohd Zaini for all the help, experiences, exchange of knowledge, sharing of information and suggestions and brainstorming session. There are a lot of improvements I see in my way of critical evaluation as well as my way of writing. Finally, deepest thanks and appreciation to my parents Salim bin Tahir and Asmah binti Salleh, my husband Ibnu Sina bin Talip, and my family members Aidatul Fatinah binti Salim, Ahmad Afif Syahmi bin Salim, Aizatul Farzana binti Salim, Ahmad Adib Syahir bin Salim, Mohd Azrizan bin Januin, Assvafi bin Mohd Azrizan, Nurul Afigah Fattin binti Amat and Mariam Hanani binti Ismail who relentlessly supports my entire journey, my backbone and my strength, my fellow FSMP colleagues for their encouragement, cooperation, understanding, constructive suggestions and never-ending supports from the beginning of my journey until the last preparation on completing the thesis. I also want to thank all my friends and anyone who directly or indirectly contributed towards the completion of the thesis.

INIVERSITI MALAYSIA SABAH

Azzatul Fatonah Salim 27<sup>th</sup> April 2020

#### ABSTRACT

Rambutan (Nephelium lappaceum L.) is a commercial tropical crop which is appreciated by consumers because of its pleasant aroma, refreshing flavor, and exotic appearance. Rambutan seeds are the main by-products in the canning industry and has attracted attention for their feasibility in industrial applications. In this study, rambutan seed fat (RSF) was fractionated by two-stage acetone fractionation and their physicochemical, thermal properties (melting and crystallization) and morphology of RSF fractions were determined in order to identify their potential applications. The results showed that the second solid fraction (F2-S) exhibited the highest SMP (49.03 °C) and lowest IV (27.57 q iodine/q). The major fatty acids in all solid fractions were stearic (15.1-21.6%), oleic (25.0-35.5%), and arachidic (42.7-46.9%) acids. The high-melting symmetrical monounsaturated triacylglycerols (Hm-SMT) of  $F_2$ -S which is the sum of SOS (3.82%) and POS (1.19%) were also found to be higher than first solid fraction ( $F_1$ -S). The SFC of F<sub>2</sub>-S at 20 °C (78.57%) and 35 °C (22.95%) were found to be higher than F<sub>1</sub>-S, indicating a harder solid fraction. The melting onset (26.92-31.24 °C) and offset (49.57-52.84 °C) temperatures for both F<sub>1</sub>-S and F<sub>2</sub>-S increased from the crude RSF and shifted towards higher temperatures.  $F_2$ -S showed the densely packed microstructure compared to that of crude RSF and F1-S with the diameter of 20-30 µm under microscopic observation. This study revealed that by performing fractionation of RSF, a cocoa butter improvers (CBI) could be prepared by blending them with other fats that has the potential to be utilized in food industry.

#### ABSTRAK

### PEMERINGKATAN LEMAK BIJI BUAH RAMBUTAN (NEPHELIUM LAPPACEUM L.) DAN POTENSI KEGUNAANNYA DI DALAM INDUSTRI MAKANAN.

Rambutan (Nephelium lappaceum L.) adalah tanaman tropika komersial yang dikenali oleh pengguna kerana aromanya yang menyenangkan, rasa yang menyegarkan, dan rupa yang eksotik. Biji rambutan adalah produk sampingan utama dalam industri pengetinan dan kelebihannya untuk diaplikasikan dalam industri telah menarik perhatian. Melalui penyelidikan ini, lemak biji rambutan (RSF) dipecahkan melalui pemisahan aseton dua peringkat, dan ciri fizikokimia, sifat terma (peleburan dan penghabluran) dan morfologi pecahan RSF dikaji untuk mengenal pasti potensi kegunaannya. Dapatan kajian menunjukkan bahawa pecahan pepejal kedua (F2-S) menunjukkan SMP tertinggi (49.03 °C) dan IV terendah (27.57 g iodine/g). Asid lemak utama dalam semua pecahan pepejal adalah stearik (15.1-21.6%), oleik (25.0-35.5%), dan asid arakid (42.7-46.9%). Triasilgliserol simetri mono-tak tepu bertakat lebur tinggi (Hm-SMT) F<sub>2</sub>-S, di mana ianya jumlah daripada SOS (3.82%) dan POS (1.19%) didapati lebih tinggi daripada pecahan pepejal pertama (F1-S). SFC F2-S pada suhu 20 °C (78.57%) dan 35 °C (22.95%) didapati lebih tinggi daripada pecahan pepejal pertama (F<sub>1</sub>-S), yang menunjukkan ianya pecahan pepejal yang lebih keras. Suhu awal (26.92-31.24 °C) dan akhir (49.57-52.84 °C) bagi kedua-dua F1-S dan F2-S meningkat dari RSF mentah dan beranjak ke suhu lebih tinggi. F<sub>2</sub>-S menunjukkan mikro-struktur yang lebih padat berbanding RSF dan F1-S dengan saiz 20-30 µm di bawah pemerhatian mikroskopik. Kajian ini mendedahkan bahawa dengan melakukan pemeringkatan RSF, penambah baik mentega koko (CBI) boleh dihasilkan dengan mencampurkan mereka dengan lemak lain yang mempunyai potensi untuk digunakan dalam industri makanan.

### LIST OF CONTENTS

|      |                                           | Page |
|------|-------------------------------------------|------|
| TITL | E                                         | i    |
| DECL | ARATION                                   | 11   |
| CERT | TIFICATION                                | iii  |
| ACK  | NOWLEDGEMENT                              | iv   |
| ABST | RACT                                      | v    |
| ABS  | TRAK                                      | vi   |
| LIST | OF CONTENTS                               | vii  |
| LIST | OF TABLES                                 | xi   |
| LIST | OF FIGURES                                | xii  |
| LIST | OF ABBREVIATIONS/SYMBOLS                  | xiii |
| LIST | OF EQUATIONS                              | XV   |
| LIST | OF APPENDICES                             | xvi  |
| CHAI | PTER 1 : INTRODUCTION                     | 1    |
| 1.1  | Background of Study                       | 1    |
| 1.2  | Problem Statements                        | 4    |
| 1.3  | Objectives UNIVERSITI MALAYSIA SABAH      | 6    |
| 1.4  | Significances of Study                    | 6    |
| CHAI | PTER 2 : LITERATURE REVIEW                | 8    |
| 2.1  | Fats and Oils Modification                | 8    |
|      | 2.1.1 Fractionation                       | 9    |
|      | 2.1.1(a) Dry Fractionation                | 10   |
|      | 2.1.1(b) Solvent Fractionation            | 10   |
| 2.2  | Cocoa Beans                               | 13   |
|      | 2.2.1 Natural composition of cocoa butter | 14   |
| 2.3  | Cocoa Butter Alternatives (CBA)           | 15   |
|      | 2.3.1 Cocoa Butter Equivalent (CBE)       | 16   |

|      | 2.3.2 Fats Commonly Used as A Source of Cocoa Butter<br>Alternative                          | 17 |
|------|----------------------------------------------------------------------------------------------|----|
|      | 2.3.3(a) Mango Kernel Fat (MKF)                                                              | 17 |
|      | 2.3.3(b) Sal Fat                                                                             | 20 |
|      | 2.3.3(c) Shea Butter                                                                         | 20 |
|      | 2.3.3(d) Kokum Kernel Fat                                                                    | 21 |
|      | 2.3.3(e) Illipe Butter                                                                       | 23 |
|      | 2.3.3(f) Sunflower Oil (SO)                                                                  | 23 |
|      | 2.3.3(g) Palm Stearin (PS)                                                                   | 24 |
|      | 2.3.3(h) Palm Kernel Oil (PKO)                                                               | 25 |
|      | 2.3.3(i) Palm Mid-Fraction Oil (POMF)                                                        | 25 |
| 2.4  | Rambutan                                                                                     | 28 |
|      | 2.4.1 Background of Rambutan                                                                 | 27 |
|      | 2.4.2 Rambutan Seed                                                                          | 29 |
|      | 2.4.2(a) Antioxidant Activity of Rambutan Seed                                               | 29 |
|      | 2.4.2(b) Antibacterial, Anti-Nociceptive, CNS, and<br>Antifungal Activities of Rambutan Seed | 31 |
|      | 2.4.2(c) Antinutrient Contents in Rambutan Seed                                              | 32 |
|      | 2.4.2(d) Protein Content in Rambutan Seed                                                    | 33 |
| 2.5  | Rambutan Seed Fat (RSF)                                                                      | 34 |
|      | 2.5.1 Fatty Acid Profiles of RSF                                                             | 35 |
|      | 2.5.2 Triglyceride (TAGs) Profiles of RSF                                                    | 37 |
|      | 2.5.3 Physicochemical Properties of RSF                                                      | 39 |
|      | 2.5.4 Thermal Profiles of RSF                                                                | 41 |
|      | 2.5.5 Phytosterol and Tocopherol Contents in RSF                                             | 44 |
|      | 2.5.6 Potential Applications of Rambutan Seed and Its<br>Fat                                 | 44 |
| CHAF | PTER 3 : METHODOLOGY                                                                         | 47 |
| 3.1  | Experimental Design                                                                          | 47 |
| 3.2  | Sample Preparation                                                                           | 49 |
| 3.3  | Moisture Content Analysis                                                                    | 49 |

| 3.4  | Extraction of Rambutan Seed Fat (RSF)                                                | 49 |
|------|--------------------------------------------------------------------------------------|----|
| 3.5  | Fractionation of Rambutan Seed Fat (RSF)                                             | 50 |
| 3.6  | Fatty Acid Composition Analysis                                                      | 50 |
|      | 3.6.1 Preparation of Fatty Acid Methyl Esters (FAMEs)                                | 50 |
|      | 3.6.2 Gas Chromatography Analysis of Fatty Acids<br>Using GC-FID                     | 51 |
| 3.7  | Determination of Physicochemical Properties                                          | 51 |
|      | 3.7.1 Iodine Value (IV), Wijs Method                                                 | 51 |
|      | 3.7.2 Slip Melting Point (SMP)                                                       | 52 |
|      | 3.7.3 Acid Value (AV)                                                                | 52 |
|      | 3.7.4 Free Fatty Acid (FFA)                                                          | 53 |
| 3.8  | Determination of Thermal Properties: Melting and<br>Crystallization Properties (DSC) | 53 |
| 3.9  | Solid Fat Content (SFC)                                                              | 54 |
| 3.10 | Determination of Triglycerides Using HPLC                                            | 54 |
| 3.11 | Morphology Study by Polarised Light Microscopy (PLM)                                 | 54 |
| 3.12 | Statistical Analysis                                                                 | 55 |
| CHAI | PTER 4 : RESULTS AND DISCUSSIONS ALAYSIA SABAH                                       | 56 |
| 4.1  | Moisture Content and Extraction of Rambutan seed Fat                                 | 56 |
| 4.2  | Extraction and Yield of RSF and Its Fractions                                        | 57 |
| 4.2  | Fatty Acid Compositions                                                              | 59 |
| 4.4  | Physicochemical properties                                                           | 65 |
|      | 4.4.1 Iodine Value (IV)                                                              | 65 |
|      | 4.4.2 Slip Melting Point (SMP)                                                       | 68 |
|      | 4.4.3 Acid Value (AV)                                                                | 69 |
|      | 4.4.4 Free Fatty Acid (FFA)                                                          | 69 |
| 4.5  | Thermal Properties                                                                   | 70 |
|      | 4.5.1 Melting Profiles of RSF and Its Fractions                                      | 70 |
|      | 4.5.2 Crystallization Profiles of RSF and Its Factions                               | 74 |

| 4.6   | Solid Fat Content (SFC)                               | 78 |  |  |
|-------|-------------------------------------------------------|----|--|--|
| 4.7   | Triacylglycerol Compositions                          | 82 |  |  |
| 4.8   | Morphological Study                                   | 87 |  |  |
|       |                                                       |    |  |  |
| СНАРТ | ER 5 : CONCLUSION, RECOMMENDATIONS AND<br>LIMITATIONS | 90 |  |  |
| 5.1   | Conclusion                                            | 90 |  |  |
| 5.2   | Recommendations and Limitations of Study              | 91 |  |  |
| REFER | ENCES                                                 | 92 |  |  |
| APPEN | APPENDICES 12                                         |    |  |  |



### LIST OF TABLES

|           |     |                                                                                                                                   | Page |
|-----------|-----|-----------------------------------------------------------------------------------------------------------------------------------|------|
| Table 2.1 | :   | Iodine Value, Slip Melting Point (SMP), Acid Value<br>(AV) and Free Fatty Acid of commercial cocoa butter<br>and its alternatives | 18   |
| Table 2.2 | :   | Fatty Acid Profiles of Cocoa Butter and Its<br>Alternatives                                                                       | 19   |
| Table 2.3 | :   | Triacylglycerol composition of commercial cocoa butter and its alternatives                                                       | 22   |
| Table 2.4 | •   | Melting and Crystallization profiles of Commercial<br>Cocoa Butter and Its Alternatives                                           | 24   |
| Table 2.5 | :   | Solid Fat Content of Commercial Cocoa Butter and Its Alternatives                                                                 | 27   |
| Table 2.6 | :   | Total Rambutan Seed Fats (%) and Their Fatty<br>Acid Profiles from Various Studies                                                | 36   |
| Table 2.7 |     | Triacylglycerol (%) Profiles of Rambutan Seed Fat<br>in Different Studies                                                         | 38   |
| Table 2.8 | i e | The Physicochemical Properties of Rambutan<br>Seed Fats                                                                           | 40   |
| Table 2.9 | A B | Melting and Crystallization Temperatures of Rambutan Seed Fats                                                                    | 43   |
| Table 4.1 | :   | Total Yields of Crude RSF and Its Fractions                                                                                       | 58   |
| Table 4.2 | :   | Fatty Acid Composition (%) of Rambutan Seed Fat and Its Fractions                                                                 | 60   |
| Table 4.3 | 1   | Physicochemical Properties of Crude RSF and Its<br>Fractions                                                                      | 66   |
| Table 4.4 | :   | Melting Profiles of Crude RSF and Its Fractions                                                                                   | 72   |
| Table 4.5 | :   | Crystallization Profiles of Crude RSF and Its<br>Fractions                                                                        | 76   |
| Table 4.6 | :   | Solid Fat Content of Crude RSF and Its Fractions                                                                                  | 124  |
| Table 4.7 | :   | Triacylglycerol Compositions of Crude RSF and Its<br>Fractions                                                                    | 83   |

## LIST OF FIGURES

|            |                                       |                                                                                                                                                                                     | Page |
|------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 2.1 | :                                     | Categories of cocoa butter alternative (CBA)                                                                                                                                        | 16   |
| Figure 2.2 | **                                    | Application of Rambutan Seed and Its Fat in The Various Industries                                                                                                                  | 45   |
| Figure 3.1 | :                                     | Experimental Design of The Study                                                                                                                                                    | 48   |
| Figure 3.2 | :                                     | Rambutan Seed Fat Fractions Produced by Two-<br>Stage Acetone Fractionation                                                                                                         | 50   |
| Figure 4.1 | :                                     | GC chromatogram of FAME of (a) crude RSF, (b) First Solid Fraction ( $F_1$ -S), and (c) Second Solid Fraction ( $F_2$ -S)                                                           | 62   |
| Figure 4.2 | :                                     | DSC Melting Curves of RSF and Its Fractions                                                                                                                                         | 71   |
| Figure 4.3 | 1                                     | DSC Crystallization Curves of RSF and Its<br>Fractions                                                                                                                              | 75   |
| Figure 4.4 |                                       | Solid Fat Content (%), Measured at 10–40 °C of<br>Crude RSF and Its Fractions                                                                                                       | 79   |
| Figure 4.5 | · · · · · · · · · · · · · · · · · · · | HPLC chromatogram of TAGs of (a) RSF, (b)<br>First solid fraction ( $F_1$ -S) and (c) Second Solid<br>Fraction ( $F_2$ -S)                                                          | 125  |
| Figure 4.6 | 2                                     | Crystal morphology ( $40 \times$ lens) of RSF and its fractions crystallized at 21–23 °C for 48 h. (a) RSF, (b) F <sub>1</sub> -S, (c) F <sub>2</sub> -S, 1(d) cocoa butter crystal | 88   |

## LIST OF ABBREVIATIONS/SYMBOLS

| %           | -       | Percentage                                              |
|-------------|---------|---------------------------------------------------------|
| μL          | -       | microliter                                              |
| °C          | -       | Celsius                                                 |
| >           | -       | More than                                               |
| <           |         | Less than                                               |
| ABTS        | -       | 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) |
| ANOVA       | -       | Analysis of Variance                                    |
| AOAC        | ÷       | Association of Official Analytical Chemists             |
| AOCS        | -       | American Oil Chemists' Society                          |
| СВ          |         | Commercial cocoa butter                                 |
| cm          |         | centimeter                                              |
| CNS         |         | Central Nervous System                                  |
| <b>DPPH</b> |         | 2,2-diphenyl-1-picrylhydrazyl                           |
| DSC         | and all | Differential scanning calorimetry A SABAH               |
| FAO         | -       | Food and Agriculture Organization of the United Nations |
| g           | -       | Gram                                                    |
| GC-FID      | -       | Gas Chromatography-Flame Ionization Detector            |
| h           | -       | Hour                                                    |
| HPLC        | -       | High Performance-Liquid Chromatography                  |
| HSD         | -       | Tukey Honest Significance                               |
| КОН         |         | Potassium hydroxide                                     |
| m           | -       | Meter                                                   |
| mg          | •       | Milligram                                               |
| ml          | ÷.      | Milliliter                                              |

| Mono-UTAG | -3  | Mono-unsaturated TAG              |
|-----------|-----|-----------------------------------|
| NaOH      | Ξ.  | Sodium hydroxide                  |
| RSAC      | × . | Rambutan seed albumin concentrate |
| RSF       | -   | Rambutan seed fat                 |
| SC-CO2    | -   | Supercritical carbon dioxide      |
| SFA       |     | Saturated fatty acids             |
| SFC       | -   | Solid fat content                 |
| TAG       | -   | Triglyceride                      |
| USFA      | -   | Unsaturated fatty acids           |
| WHO       | -   | World Health Organization         |
| RSAC      | -   | Rambutan seed albumin concentrate |





## LIST OF EQUATIONS

|              |   |                                  | Page |
|--------------|---|----------------------------------|------|
| Equation 3.1 |   | Total Fat Yield                  | 49   |
| Equation 3.2 | : | Blank corrected IV of the sample | 52   |
| Equation 3.3 | : | Percentage of FFA                | 53   |
| Equation 3.4 | : | Percentage of acid value         | 53   |



## LIST OF APPENDICES

|            |                                                                                                                                                                                     | Page |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Appendix A | : Table 4.6 : Solid Fat Content of Crude RSF and Its Fractions                                                                                                                      | 124  |
| Appendix B | <ul> <li>Figure 4.5 : HPLC chromatogram of TAGs of</li> <li>(a) RSF, (b) First solid fraction (F<sub>1</sub>-S) and</li> <li>(c) Second Solid Fraction (F<sub>2</sub>-S)</li> </ul> | 125  |
| Appendix C | : Rambutan Seeds (i), Rambutan Seed<br>Powder (ii), Rambutan Seed Fat (RSF) And<br>Its Fractions (iii)                                                                              | 127  |
| Appendix D | : List of Publications, Proceeding Paper and<br>Participations                                                                                                                      | 129  |



#### **CHAPTER 1**

#### INTRODUCTION

#### **1.1 Background of Study**

In many food industries, Fats and oils are important ingredients in food that could providing an attractive flavour when consumed and giving a sensational moist in mouth. These characteristics have driven a vast potential application of fats and oils in food industries particularly when it used as an ingredient in food formulation such as bakery, confectionary, and chocolate products (Rios *et al.*, 2014). Fats and oils (i.e., cocoa, illipe, kokum, sal, shea, mango, rambutan, palm kernel, sunflower oils) are extracted from fruit seed and the fatty acids differ in terms of plant growth (Jahurul *et al.*, 2014a; Sonwai *et al.*, 2012; Kumar *et al.*, 2016; Solís-Fuentes *et al.*, 2010; Winayanuwattikun *et al.*, 2008). There is an attempt to find another fats and oils alternative with low cost and highly available such as mango and rambutan fruit seed and these natural sources of fats have been used in food formulation to develop a food product with desired properties. However, some of these physicochemical and thermal properties have limit their potential application in food product development (Jahurul *et al.*, 2019). Therefore, modification of fats and oils is needed in order to improve their properties, thus improving of food properties and increasing its consumption.

Pure fats and oils often do not have satisfactory physicochemical and thermal properties for the use in food products. Modification offers the possibility of changing the properties of oils and fats within wide ranges, thus making them suitable for many uses or for making oils and fats with desirable properties available in sufficient quantities. The techniques which are blending, hydrogenation, fractionation, and chemical and enzymatic interesterification used to produce fats for margarine, confectionery, cosmetic, and chemical industries (Momeny *et al.*, 2013; Kang *et al.*, 2013; Jin *et al.*, 2016; Kadivar *et al.*, 2016; Lakum & Sonwai, 2018). Solvent fractionation is applied to produce structural lipids such as hard fats (high-melting-point triacylglycerols), polyunsaturated fatty acid-rich oil, creams, and margarines due to the high separation efficiency and yield of aimed fractions with sharper melting properties (Gibon, 2006; Kellens *et al.*, 2007; Mu *et al.*, 2016; Jin *et al.*, 2016). For example, palm oil is fractionated into palm stearin and liquid and is the most widely fractionated oil worldwide (Senanayake & Shahidi, 2005; Gibon, 2006). Meanwhile, these palm oil fractions have been used to prepare wide variety of food products, especially confectionery products (Jahurul *et al.*, 2014a; Lakum & Sonwai, 2018).

One stage fractionation is the common technique for preparation of fat fractions, but fats obtained from multi-stage fractionation is characterized as a high-quality fat (Mondal *et al.*, 1999; Baliga & Shitole, 1981). Solvent fractionation of RSF and its applications is still an unexplored area of research. Therefore, this technique is superior to alter the properties of RSF crude and increase its value. In this work, the properties (physicochemical, thermal, and morphology) and potential uses of rambutan seed fractions produce from two-stage fractionation were analyzed to provide high-quality fat with diverse applications in food industries.

In food industry, fats play crucial role in order to produce desirable physicochemical characteristics, smoothness, velvety/valuable texture, appearance, alluring aromas and satisfying dietary outcomes (Rios *et al.*, 2014). The utilization of such fats (i.e., cocoa spread, illipe margarine, kokum spread, sal margarine, shea spread, mango, rambutan, and palm oil) are important in chocolate products as they provide the perfect qualities of polish, desirable melting properties at body temperature and preferential consistency (Jahurul *et al.*, 2014a; Bootello *et al.*, 2012; Sonwai & Ponprachanuvut, 2012; Munchiri *et al.*, 2012; Kumar *et al.*, 2016; Okullo *et al.*, 2010; Solís-Fuentes *et al.*, 2010; Winayanuwattikun *et al.*, 2008).

Rambutan (*Nephelium lappaceum* L.) is one of the most important tropical commercial fruit widely cultivated in Southeast Asia, Australia, South America, and

African countries. It is closely related to the subtropical fruits such as lychee (Litchi chinensis Sonn.), longan (Euphoria longan Steud.), and pulasan (Nephelium mutabile Blume) in the same family Sapindaceae. Thailand, Malaysia, and Indonesia are the leading producer (80% of the total world production) and exporter of the rambutan fruit (Tindall, 1994; Ahmad & Chua, 2013). Recently, Mahisanunt et al. (2017) reported that Thailand produce 318,000 tons rambutan from 2014 to 2015. It is rich in sugars (glucose and sucrose), proteins, vitamins, minerals, antioxidants, and valued for its refreshing flavor, pleasant aroma, and exotic appearance (Ong et al., 1998; Zhuang, et al., 2017; Li et al., 2018). Generally, rambutan is consumed as fresh. Rambutan juice, jam, jelly, chips, marmalade, spread, rambutan stuffed with a chunk of pineapple and canned in syrup are the main industrial products in Malaysia and Thailand (Morton, 1987, Chai et al., 2019a). After direct consumption or industrial processing, the residues mainly seed and peels are discarded as by-products (Solís-Fuentes et al., 2010). Recently, Mahisanunt et al. (2017) reported that the yearly average 1900 tons of rambutan seeds are discarded as by-products in Thailand. The huge quantities of this industrial byproducts cause serious environmental problems and also results in economic losses if not utilized effectively (Chai et al., 2018).

Although the rambutan seeds are a potential functional ingredient in food processing (Harahap *et al.*, 2012; Vuong *et al.*, 2016), most of these by-products are considered industrial waste becomes a source of environmental pollution (Chai *et al.*, 2018; Evaristus *et al.*, 2018). In developed countries, food industries produced around 39% food wastes and these wastes are being used as raw material for making various food products (Mirabella *et al.*, 2014). These by-products are not only growing problem but also are economically limiting factors for their disposal (costs to dry, store and shipping) (Schieber *et al.*, 2001; Jahurul *et al.*, 2015). Shalini and Gupta (2010) reported that annually \$10 million spent for the disposal of only apple pomace in the USA. The proper use of rambutan seed could generate economic gains for industry, contributing as potential protein ingredient to reduce nutritional deficiencies, promoting health (as a-amylase inhibitory peptides), reducing disposal cost, and reducing the environmental problems. This review examines the nutritional and functional potential of the rambutan

3

seeds and the mainstream sectors of applications such as in the food, pharmaceutical, nutraceutical, and cosmetic industries through scientifically proven information.

Cocoa butter (CB), is a high-priced constituent and crucial ingredient in chocolate formulations, and responsible for the melting behavior and glossy texture of chocolate products (Jin *et al.*, 2016; Kadivar *et al.*, 2016). Despite being the most ideal constituent and ingredients in chocolate and other confectionery products, the low melting point of CB causes the products, especially chocolate to melt easily in subtropical and tropical areas (Shahidi, 2005). Furthermore, demand for chocolate products is keep increasing despite the high-cost and uncertainty in the supply of CB increasing the interests among manufacturers and researchers to find for alternatives such as cocoa butter equivalents (CBE) (Tchobo *et al.*, 2009).

Afoakwa *et al.* (2008) reported that the crystallization and component of cocoa butter play a crucial role in the final product's quality during chocolate manufacture. The melting point of the chocolate product is highly affected by the crystalline state and the ratio of solid fat content. Solís-Fuentes *et al.* (2010) mentioned that the last peak curve of the rambutan seed fat melting point (~45 °C) was found to be higher than of cocoa butter and this gives advantages in the manufacturing process in most tropical countries. Meanwhile, at low temperature, rambutan seed fat was found to be smoother than cocoa butter, yet more consistent and solid at higher temperatures. This is due to the disparity in the composition of cocoa butter and rambutan seed fat (Solís-Fuentes *et al.*, 2004).

#### 1.2 Problem Statements

Rambutan seed is considered as a waste in rambutan canning manufactures with a noteworthy value as much as 94,500 tonnes/year from Thailand, Indonesia and Malaysia alone (Norlia et al., 2011). This massive value has become an issue that need to be solved. Hence, it has potential to be the new source of natural edible fat such to produce confectionary products that would be beneficial in food industry (Solís-Fuentes et al., 2010; Morton, 1987). However, RSF crude has wide crystallization and melting ranges and varies in triglyceride patterns which are unsuitable for use in specific food

4

products (Sirisompong *et al.*, 2011). Thus, a modification process should be applied to improve the crystallization and melting properties of RSF.

Cocoa butter (CB) is known as the ideal ingredient in most confectionary products especially chocolate, but chocolate can easily melt in tropical and subtropical areas due to the low melting point of CB (Shahidi, 2005). High price and rising cost, increasing demand and low supply due to only few countries have been cultivated and became cocoa butter supplier (Dewettinck & Depypere, 2011; Tchobo *et al.*, 2009). Thus, in the manufacture of chocolates produced from natural sources, it is important to consider a cheaper and more accessible alternative fats of cocoa butter to be used partially/wholly with CB in order to increase the quality of the product and reduce the cost of production, as well as to alter the production process and to create new business values (Khairy & Yang, 2016).

Fractionation is used to produce fat with sharp, high melting with specific functionality. Therefore, the two-stage fractionation produced RSF fractions produced from with wide applications, especially in confectionery products as alternatives to cocoa butter, specifically as cocoa butter improver (Harris, 2017). On the other hand, Jun et al., (2018) stated that one stage fractionation is the common method used to prepare mango kernel fat. However, the author found that fats obtained from two or multi-stage fractionation usually characterized as high-quality fat. Similar to mango, the properties of the RSF have been enhanced through the solvent fractionation, which yields fats with high melting properties and specific industrial applications. Fractionation improves the quality of rambutan seed fat produced from the fractionation as well as increases its values. Therefore, the rambutan seeds could become new fat resources and could help in reducing the manufacturing cost for one product. Commercial cocoa butter would have a new alternative that has similar desirable characteristics, which is beneficial in various industries, especially confectionery products. Therefore, new cocoa butter alternatives (CBI/CBE) or blending component as a source of CB are expected to be produced from this study for the use as a functional food in the confectionery industry.

This study will discuss the by-product of rambutan, specifically the rambutan seeds for rambutan seed fat production. The aim of this study was therefore to use fats obtained from the rambutan seed fat fractionation to study their physicochemical properties, thermal properties, and morphology. This information will contribute to a good evaluation of the potential of rambutan seed fat and its fractions as alternatives to cocoa butter (CBAs) in the food industry.

#### 1.3 Objectives

This study aims to:

- 1. To produce new fats from the two-stage fractionation of rambutan seed fats.
- 2. To evaluate and compare the physicochemical and thermal properties (fat yield, iodine value, slip melting point, free fatty acid, solid fat content, triglycerides, and fatty acids) of rambutan seed fat and its solid fractions using different chromatographic and thermal techniques
- 3. To study and compare the morphology of rambutan seed fat and its solid fractions using PLM.

#### 1.4 Significances of Study

The improved physical characteristics (thermally) of rambutan seed fat may make it a suitable to be cocoa butter equivalent (CBE) or cocoa butter improver (CBI) in chocolate and other confectionary products. To the best of the authors' knowledge, the two-stage fractionation of rambutan seed fat have not been studied yet. Hence, this study is aimed to provide new information about the product of fractionation of rambutan seed fat. Rambutan seed fat has good potential as a promising raw material for the industrial application especially in food industry. The potential usage of RSF, uniquely as cocoa butter alternatives (CBA/CBI) in tropical countries, identified based on their physicochemical and thermal properties. Other applications, such as in cooking and chocolate manufacturing were determined through the properties of the fractions. The modification method of solvent fractionation used in this study was to improve the properties of RSF so that it has desirable characteristics to be applied as multifunctional fats and oils in the industry. The utilization of rambutan seeds to produce rambutan seed fat and its fractions could be one of the solutions for a better waste management and ensure sustainable production.

