HARVESTING ELECTRICITY FROM LIVING PLANTS USING ELECTROCHEMISTRY APPROACH WITH THE AID OF PHOTOSYNTHESIS PROCESS.

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2015

HARVESTING ELECTRICITY FROM LIVING PLANTS USING ELECTROCHEMISTRY APPROACH WITH THE AID OF PHOTOSYNTHESIS PROCESS.

CHOO YING YING

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2015

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL: HARVESTING ELECTRICITY FROM LIVING PLANTS USING ELECTROCHEMISTRY APPROACH WITH THE AID OF PHOTOSYNTHESIS PROCESS

IJAZAH: MASTER OF SCIENCE (FIZIK DENGAN ELEKTRONIK)

Saya **CHOO YING YING**, Sesi Pengajian <u>2010-2015</u>, mengaku membenarkan tesis Doktor Falsafah ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

UNIVERSITI MALAYSIA SABAH

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.)

TIDAK TERHAD

Disahkan oleh,

CHOO YING YING

(Tandatangan Pustakawan)

Tarikh: 11 Julai 2015

(Associate Professor Dr. Jedol Dayou) Penyelia

DECLARATION

I hereby declare that the material in this thesis is my own except for excerpts, equations and references, which have been dully acknowledged.

05 September 2014

Choo Ying Ying PS2010-8215

CERTIFICATION

- NAME : CHOO YING YING
- MATRIC NO. : **PS2010-8215**
- TITLE
 : HARVESTING ELECTRICITY FROM LIVING PLANTS USING

 ELECTROCHEMISTRY APPROACH WITH THE AID OF

 PHOTOSYNTHESIS PROCESS
- DEGREE : MASTER OF SCIENCE (PHYSICS WITH ELECTRONICS)
- VIVA DATE : 02 MARCH 2015

TABLE OF CONTENT

	Page
TITLE	i
DECLARATION	ii
CERTIFICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ARSTRACT	vi
	VI
	VII
LIST OF TABLES	Х
LIST OF FIGURES	xi
LIST OF SYMBOLS	xiv
CHAPTER 1 INTRODUCTION	1
1.1 Photosynthesis	1
1.2 Problem Statement	2
1.3 Research Objectives	3
1.4 Scope of the Research	3
1.5 Hypothesis of the Research	3
1.6 Thesis Contributions	4
Contraction of the second s	
CHAPTER 2: LITERATURE REVIEW ERSITI MALAYSIA SA	ABAH 5
2.1 Introduction	5
2.2 Weak Energy Sources	5
2.2.1 Piezoelectricity	5
a. Introduction	5
b. Types of Piezoelectric	6
c. Precaution Step for Manufacturing	7
Piezoelectric Materials	0
a. Application of Plezoelectricity	8
e. Power Output of Plezoelectric	9
T. Limiting Factors of Piezoelectric Materials	12
2.2.2 Biomass- Microbial Fuel Cells	13
d. Introduction	15
D. MITC Design and Configuration	15
C. Various Substrates Used in MFCs	10
a. Microorganisms in MFCs	19
	19
T. Power Output of MFC	20
	23
n. Limiting factors of MFC	23

	2.2.3 Plant Based Energy Source	24
CHAF	PTER 3: RESEARCH METHODOLOGY	26
3.1	Introduction	26
3.2	Development of Data Acquisition System	26
	3.2.1 Prototype of Monitoring System	28
	a. Hardware	28
	b. Software Development	28
	c. Sampling of the Analog Signal	30
	3.2.2 Calibration and Response of Monitoring System	30
	a. Static Response Characterization	31
	b. Measurement of the Capability Index (P/T)	31
	3.2.3 Data Analysis of Reliability	32
3.3	Investigation on Electrodes and Energy Sources	32
0.0	3.3.1 The Effect of Distance Between Electrodes and	35
	the Depth of Immersion	55
3.4	Mechanism Investigation of Energy Production in	35
	Living Plants	
	3.4.1 Flames Atomic Absorption Spectroscopy (FAAS)	36
	a. Preparation of Plant materials	36
	b. Sample Preparation for the Analysis of Metal Ions	37
	c. Method of Analysis	37
	d. Sample and Statistical Analysis	38
ß	3.4.2 Standard Electrochemical Potential	38
10	3.4.3 Distance of Electrodes with Number Pairing of	40
- VE	Electrodes	
3.5	Modeling of the Harvesting System based on	40
	Electrochemistry Process.	
3.6	Improving Energy Output from Living plants with	41
	Natural Photosynthesis	
3.7	Modeling on the Harvesting System based on	42
	Electrochemistry and Photosynthesis Process	
3.8	Examine on the Potential Application	42
		12
	Tetraduction	C⊤ 20
4.1	Introduction Calibration of Manitaring Craters	43 43
4.2	Calibration of Monitoring System	43
	4.2.1 Static Response Characterization	43
	4.2.2 The Capability Index (P/T) of the Monitoring	44
	System 4.2.2 Data Applysic of Poliphility	10
4 2	4.2.5 Data Analysis of Reliability	40
4.5	Selection of Electrode Pair and Energy Sources	40 40
4.4		49
	4 4 1 Elames Atomic Absorption Spectroscopy (EAAS)	51
	a Data Analysis for the Comparison of Metal	51
	Contents Between Fresh and Immersed Aloe Vera	21
	b. Data Analysis for the Comparison of Metal	52
	Contents Between Electrodes Immersed	52

	Aloe Vera in Opened and Closed Circuit	
	4.4.2 Standard Electrochemical Potential	53
	4.4.3 Distance of Electrodes with Number Pairing of	54
	Electrodes	
4.5	Modeling of the Harvesting System based on	56
	Electrochemistry Process	
4.6	Variations of Voltage Output of the Living Plants	62
	upon Light Stimulation and Increment of Energy	
4 7	Output with Natural Sunlight	C A
4./	Modeling on the Harvesting System based on	64
10	Eventing on Some Practical Applications	65
ч.0		05
СНА	PTER 5: CONCLUSION	68
5.1	Overview	68
5.2	Recommendations	69
REFE	RENCES	70
I IST OF PUBLICATIONS		
		00
APPENDIX 89		
UNS		

UNIVERSITI MALAYSIA SABAH

LIST OF PUBLICATIONS

Journal Paper

- Choo, Y. Y. & Dayou, J. 2013. A Method to Harvest Electrical Energy from Living Plants. *Journal of Science and Technology.* **5** (1): 79-90.
- Choo, Y. Y., Dayou, J. & Surugau, N. 2014. Origin of Weak Electrical Energy Production from Living Plants. *International Journal of Renewable Energy Research.* 4 (1): 198-203.
- Choo, Y. Y. & Dayou, J. 2014. Increasing the Energy Output from Living-plants Fuel Cells with Natural Photosynthesis. *Advances in Environmental Biology*.
 8 (14): 20-23.
- Choo, Y. Y. & Dayou, J. 2014. Modelling of the Electricity Generation from Living Plants. *Jurnal Teknologi-* accepted.

Conference / Proceedings

- Choo, Y. Y. & Dayou, J. 2011. Organic Energy Harvesting System, A New Renewable Energy Source. *Proceedings of 3rd CUTSE International Conference: CUTSE 2011 Innovative Green Technology for Sustainable Development.* Miri, Sarawak, Malaysia.
- Choo, Y. Y. & Dayou, J. 2011. Organic Energy Harvesting System, A New Renewable Energy Source. The Postgraduate Seminar, School of Science and Technology, UMS. November 17-18, 2011. Kota Kinabalu, Sabah, Malaysia.
- Choo, Y. Y. & Dayou, J. 2012. Mechanism Investigation of Energy Production in Bio-Plant. The Postgraduate Seminar, School of Science and Technology, UMS. November 7-8, 2012. Kota Kinabalu, Sabah, Malaysia.
- Choo, Y. Y. & Dayou, J. 2014. Increasing the Energy Output from Living-plants Fuel Cells with Natural Photosynthesis. *International Conference on Environmental and Biological Sciences.* 26-27 September, 2014. Krabi.

LIST OF TABLES

		Page		
Table 2.1	Human electrical power available using piezoelectric	10		
	generators (González et al., 2002).			
Table 2.2	Energetic motions for biomechanical electric power (Niu et	10		
	al., 2004).			
Table 2.3	Power output levels of piezoelectric energy harvesting system			
Table 2.4	Power output of Microbial fuel cells.			
Table 3.1	Characteristics of 8-bit, 12-bit and 16-bit A/D converter	28		
Table 3.2	Selected pair of electrodes embedded into the plants			
Table 3.3	Instrumental conditional for analysis	38		
Table 4.1	Accuracy of the monitoring system			
Table 4.2	Mean and σ_M , Standard Deviation of the measuring system	45		
Table 4.3	Crude estimates for interpreting correlational strength.			
Table 4.4	Comparison of the mean± standard deviation and Pearson	46		
ET -	coefficient of the paired t-tests on the plant.			
Table 4.5	Summary of the chemical composition of aloe Vera leaf pulp	50		
	and exudate			
Table 4.6	Standards calibration data for copper and zinc SIA SABAH	51		
Table 4.7	able 4.7 The concentration of copper and zinc between fresh and			
	electrodes immersed aloe Vera.			
Table 4.8	Concentration of copper and zinc (in mg/L) in electrodes	52		
	immersed Aloe Vera between opened and close circuit.			
Table 4.9	Measured mass loss (ML) in, gram of the zinc electrode	57		
	before and after the experiment			
Table 4.10	Measurement of voltages, V in three days time for $1 M \Omega$ used	58		
Table 4.11	Measurement of voltages, V in three days time for $1k\Omega$ used			
Table 4.12	Measured ML in, gram of the zinc electrode before and after	60		
	experiment for $1k\Omega$ load			
Table 4.13	Results summary at $1M\Omega$ and $1k\Omega$	60		

LIST OF FIGURES

		Page
Figure 2.1	Orientation of dipoles by polarization: a) random of polar	8
	domains, b) high DC electric field applied (polarization), c)	
	remnant polarization after the electric field is extinguished	
	(Vatansever et al., 2012).	
Figure 2.2	Working principle of a MFC (Logan et al., 2006).	14
Figure 2.3	Two microbial fuel cell system. a) Mediated MFC b)	15
	Mediator-less MFC (Das and Head, 2010).	
Figure 2.4	An MFC (a) with a proton permeable layer coating the inside	16
	of the window-mounted cathode, (b) consisting of an anode	
	and cathode placed on opposite side in a plastic cylindrical	
	chamber, (c) tubular MFC with outer cathode and inner	
AU.	anode consisting of graphite granules (Du et al., 2007).	
Figure 2.5	Schematics of a two-chamber MFC in (a) cylindrical shape,	17
E -	(b) rectangular shape, (c) miniature shape, (d) upflow	
a l	configuration with cylindrical shape, (e) cylindrical shape	
	with an U-shaped cathodic compartment (Du et al., 2007).	
Figure 2.6	Schematics diagram of mediator and membrane-less MFC	18
	with (a) cylindrical shape and (b) with rectangular shape (Du	
	et al., 2007).	
Figure 2.7	Stacked MFCs consisting of six individual units with granular	18
	graphite anode (Du et al., 2007)	
Figure 2.8	(a) Meteorological data buoy used in the demonstration on	20
	the pier (mooring and RF transmitter antenna not yet	
	configured). (b) First generation BMFC subunits on the pier	
	prior to deployment. Seven subunits were electrically	
	connected in parallel to provide sufficient power to operate	
	buoy (Tender et al., 2008).	
Figure 3.1	Flowchart of the development of data acquisition (DAQ)	27
	system.	
Figure 3.2	The GUI of the serial port configuration	29

Figure 3.3	The GUI of the software interface.	30	
Figure 3.4	Flowchart of the selection of harvesting electrodes pairs and		
	energy source of LFC.		
Figure 3.5	(a) Schematic diagram (b) Photos of experimental set-up.	34	
	The connection between the electrode pairs of the living		
	plants and the multi-meter.		
Figure 3.6	Experimental setup. (a) Opened circuit (b) Closed circuit		
Figure 3.7 Complete progress for preparing standard electrochemic		39	
	potential experiments.		
Figure 3.8	Schematic diagram for the experimental set-up.		
Figure 4.1	Voltage profile over time obtained from using banana tree,	47	
	scientific name as Musa acuminate using different pairs of		
	electrodes		
Figure 4.2	Voltage profile over time obtained from aloe Vera, scientific	48	
	name as Aloe Barbadensis using different pairs of electrodes		
Figure 4.3	Voltage profile over time obtained from Pulai tree, scientific	48	
- B	name as Alstonia Sp using different pairs of electrodes		
Figure 4.4	Voltage profile over time obtained from cactus, scientific	49	
3 1	name as Consolea Falcata using different pairs of electrodes		
Figure 4.5	Comparison of voltage output from two experimental tests	53	
-SI	with the standard electrode potential in randomized		
	electrode pairs.		
Figure 4.6	Voltage outputs with two pairs of Cu-Zn electrodes	55	
	immersed in the range of 4cm-32cm distance apart.		
Figure 4.7:	Voltages against times by distance in the range of 4cm-32cm	56	
	apart between two electrode pairs.		
Figure 4.8	Voltages against times by distance apart between two	56	
	electrode pairs in the range from 20cm-32cm.		
Figure 4.9	The representation of the living-plant fuel cell in a)	59	
	illustrative diagram, b) equivalent circuit where electrons in		
	red represent conductive electrons at predicted region and		
	electrons in yellow represent non-conductive electrons at		
	measured region.		

Figure 4.10 Illustrative diagram of stranded electrons in (a) saturated 61

condition and (b) non-saturated condition.

- Figure 4.11 Modelling of the behaviour of ions flow in LFC according to 62 the principle of electrochemistry with consideration on the efficiency effect
- Figure 4.12 Four cycles of darkness/illumination current responses with 63 200W m-2 desk lamp.
- Figure 4.13The (a) current and (b) power profile through 1kΩ external64load of LFC in the dark room and under sunlight.
- Figure 4.14 Modelling of the behavior of ions flow in LFC according to 65 the principle of electrochemistry and photosynthesis.
- Figure 4.15 The schematic diagram of the harvesting circuit. 66
- Figure 4.16 The LED is lighted up by LFC with a pair of electrode 66 embedded and aid of harvesting circuit
- Figure 4.17 A digital clock powered by LFC
- Figure 4.18 A scientific calculator powered by LFC. (a) Numerical input 67 shown on the screen (b) Calculation performed.

67

LIST OF SYMBOLS

CO ₂	Carbon dioxide	
H ₂ O	Water	
$C_6H_{12}O_6$	Hydrocarbon / Carbohydrates	
O ₂	Oxygen	
Ρ	Power output	
Vin	Low input voltage	
V	The changes of voltage	
e _{abs}	Absolute error	
e _{rel}	Relative error	
a _{cal}	Accuracy of the calibration	
P/T	Capability Index	
σΜ	Standard deviation of the system	
E	Electrochemical potential	
λmax	Maximum wavelength	
x 🛃 📕	Plant that immersed with metal	
y 🖾 📈	Fresh plant	
%	Percentage of accuracy	
r 🛛	Pearson's coefficient IVERSITI MALAYSIA SABAH	
ppm	Part per million	
σ	Standard deviation	
E°	Standard potential	
m	Mass of zinc released into the media	
Q	Total electrical charge flowing in the circuit	
е	Electronic charge, 1.6 x 10 ⁻¹⁹ Coulombs	
М	Molar mass of zinc	
N _A	Avogadro's number, 6.023 x 10^{23} mol ⁻¹	
R	Resistance value of the resistor used	
t	Time measured	
Q₀	Total electrons charge that flow through the load	
Qı	Total electrons charge (input charge) that released by the zin	
	electrodes	

QEff	Total charge efficiency
R _{int}	Internal resistance
Rload	Resistor used as load
MFCs	Microbial Fuel Cells

ABSTRACT

Living plants have been proven to have a potential in generating electricity, which offers a green approach that harvest electricity from sources that are abundantly available. The principal idea is that organic matters of the living plants are used as the electrolyte with the combination of electrodes to generate electricity. The monitoring system (data acquisition system) for electrical potential measurement was first developed for the actual data collection of low voltage and current continuously. A comprehensive knowledge regarding the mechanisms of energy generation is found, which the electrochemistry process is accountable for its mechanism of energy production. The behavior of the ions flow in this electrodeplant system is modeled and illustrated with a detailed discussion to support the proposed model. Then, a new strategy to employ efficiently both solar energy and chemical energy simultaneously is introduced. By using the sun as the energy source and taking natural photosynthesis into account, it is hypothesized that the power production of the Living-Plant Fuel Cell (LFC) is increased. It is found that the electrical current output 43%, which is corresponding to the increment of 111% in harvested electrical power. The mechanisms of energy production of LFC based on electrochemistry and photosynthesis process is also modeled and illustrated. Overall findings provide a better understanding of the energy production mechanism in the LFC system. In addition, LFC is shown to have its ability to power up some low power electronic instruments such as Light Emitting Diode (LED), digital clock and calculator.

ABSTRAK

PENUAIAN TENAGA ELEKTRIK DARIPADA TUMBUHAN HIDUP MENGGUNAKAN PENDEKATAN ELEKTROKIMIA DENGAN BANTUAN PROSES FOTOSINTESIS

Tumbuh-tumbuhan hidup telah terbukti berupaya menjana tenaga elektrik, ia menawarkan pendekatan hijau di mana elektrik boleh diperolehi daripada sumbersumber yang tiada batasnya. Konsep utamanya ialah bahan organik daripada tumbuh-tumbuhan hidup digunakan sebagai elektrolit dengan kombinasi elektrod untuk menjana tenaga elektrik. Sistem pemantauan (sistem perolehan data) untuk pengukuran keupayaan elektrik telah bina untuk mengumpulkan data sebenar bagi voltan dan arus yang rendah secara berterusan. Pengetahuan yang menyeluruh diperlukan untuk memahami mekanisme penjanaan tenaga, proses elektrokimia bertanggungjawab terhadap mekanisme penghasilan tenaga. Oleh itu, pengaliran ion dalam <mark>sistem el</mark>ektrod-tumbuhan ini telah dimodelkan dan digambarkan berserta dengan perbincangan yang terperinci untuk menyokong model yang dicadangkan. Seterusnya, pendekatan baru telah diperkenalkan dengan mengambilkira kedua-dua tenaga solar dan tenaga kimia secara serentak. Hipotesisnya, dengan menggunakan cahaya matahari sebagai sumber tenaga dan mengambilkira proses fotosintesis, pengeluaran kuasa daripada sel bahan-api tumbuhan hidup (Living-plant Fuel Cell, LFC) dapat ditingkatkan. Didapati bahawa arus elektrik meningkat 43%, iaitu sepadan dengan kenaikan 111% dalam kuasa elektrik yang dituai. Mekanisme penghasilan tenaga LFC berdasarkan elektrokimia dan proses fotosintesis juga dimodelkan dan digambarkan. Secara keseluruhannya, penemuan ini menambahbaik pemahaman mengenai mekanisme penghasilan tenaga dalam sistem LFC. Tambahan pula, keupayaan LFC telah ditunjukkan dalam menghidupkan beberapa peralatan elektronik berkuasa rendah seperti Diod Pemancar Cahaya (LED), jam digital dan kalkulator.

ACKNOWLEDGEMENT

I wish to express my deepest gratitude and appreciation to my supervisor, Associate Professor Dr. Jedol Dayou of Faculty of Science and Natural Resources, University Malaysia Sabah who had been patient enough to advise, guide, supervise and support me towards the completion of this thesis. I deeply thank him for being a role model in research, encouraging me, for giving me research freedom and for a good student-supervisor relationship. His continuous encouragement provided me the necessary impetus to complete the research and publish a few papers in journals.

My special sense of gratitude is also expressed to my dearest family who had been supporting me throughout the past years particularly in financial and emotional support. Finally, I wish to thank my loved one, my friends, all the e-VIBS lab members for their constructive ideas and encouragements throughout my master studies.

CHAPTER 1

INTRODUCTION

1.1 Photosynthesis

In living plants, the process of photosynthesis occurs in organelles called chloroplasts, especially using chlorophyll. The chlorophyll is a pigment that absorbs visible spectrum and capture energy from sunlight as well as responsible for the numerous proteins that make up the electron transport chain. It is capable to channel the energy of sunlight into chemical energy. This process consists of many physical and chemical reactions that involve biochemical components which enable organisms to exploit solar energy (Lawlor, 2001). The overall chemical reaction involved in photosynthesis is (McCarty and Johnson, 2003) :

$$6CO_{2} + 6H_{2}O \rightarrow C_{6}H_{12}O_{6} + 6O_{2}$$

This process occurs firstly while the light is captured by chlorophyll and is used to make energy carrying molecules, these are then used to capture carbon dioxide and water to transform them into carbohydrates and oxygen. The actual chemical mechanisms depend on a set of complex protein molecules that are located and around a highly organized membrane (Whitmarsh and Govindjee, 1999).

There are two parts of photosynthesis, which are light reactive (energyfixing reaction) that consist of electron and proton transfer reactions and dark reaction (carbon-fixing reaction) which consist of the biosynthesis of carbohydrates from carbon dioxide. Light reactions take place in the thylakoid membrane, use light energy to make Adenosine-5'-triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). Both of them are used in the dark reactions to produce sugar. The energy of the sunlight is captured and activates electrons jump out of the chlorophyll molecules in the reaction center and pass through a series of cytochromes in the nearby electron-transport system (Lawlor, 2001). According to Miles, there are two photosystems within the thylakoid membranes of the chloroplast. Photosystem II uses light energy to oxidize two molecules of water into one molecule of molecular oxygen, which is the byproduct of photosynthesis. Then, four electrons removed from the water molecules, and are transferred from Photosystem II through an electron transport chain that terminates at Photosystem I (Miles, 2003). These energy-rich electrons reach a high energy level when eventually are carried from the cytochrome enter the photosystem I protein complex by a small water soluble protein. The dark reaction takes place in the stroma of the plant cell and uses energy derived from these compounds to make Glyceraldehyde-3-phosphate (GA₃P) from CO₂ where glucose and other carbohydrates are synthesized (Srivastava, 2005).

1.2 Problem Statements

The electrical output directly from living plants is still unpretentious, anyhow, it is a promising and certainly worth exploring further. In order to measure and sampling the electric potential in the living plants for better analysis, the necessity of providing an instantaneous monitoring system of electrical potential should be apparent.

Other than that, with the comprehensive knowledge regarding the mechanisms of energy generation is believed to aid in order to increase the energy harvested directly from the living plants. It will come across as being a potential revolution in green energy, which with huge implications where it could be used. Unfortunately, the mechanisms of the energy production are not understood yet and its model has not been established. Hence, there is much to be done to fully understand the origin of the electricity generated from the plants.

In view of this, here comes the motivation of this work to investigate the mechanisms of energy production from living plants that aiming to optimize its power output. Few would disagree with the intention behind this offer, but its feasibility is the concern. With this in mind, several potential applications have been set up to examine the practical feasibility of this plant based energy source.

1.3 Research Objective

More specifically, the objectives of the research are listed as follows:

- To develop a monitoring system (data acquisition system) during the harvesting of electricity.
- To investigate the origin mechanism of electrical energy production from Living-Plant Fuel Cell (LFC) based on both electrochemistry and photosynthesis process.
- 3. To show the feasibility of using energy from living plant to operate several low power electronic instruments.

1.4 Scope of the Research

This was merely a living plant as the energy source and the harvesting electrode pair that built up the Living-Plant Fuel Cell (LFC). However, both living plants and electrode pair are with a conditional. Among the living plants, sample selection of the research is limited to the plants that commonly found, higher moisture contents and easy embedding of electrodes into the stem. Besides that, the harvesting electrode pair has to be restricted to the cost effective, easily acquire and appropriate for the conditions.

Due to how LFC has been built up, its energy production is limited to several types of a related investigation on the electrochemistry process. It has also been understood that free electrons were available during the photosynthesis process. Taking the abundance of the solar energy into account is hereby included. The verification on this examination is limited to the artificial white light source and the natural sunlight.

1.5 Hypothesis of the Research

In this research, two hypotheses were speculated while requiring to be verified through the experiments. This could be accepting or refuting them. The hypotheses are listed as follows:

- 1. The living plants can produce the electricity through the electrochemistry process.
- 2. The electrical power output harvested from Living-plants Fuel Cell (LFC) can be increased with the irradiation of light due to the photosynthesis process.

1.6 Thesis Contributions

Within this work, a protocol to harvest electricity from living plant was established and proposed as a plant-based energy source. This includes the best combination of electrode pair and energy source (the type of the plants) that set up the living-plant fuel cell, the origin of the electricity generation and a theoretical model for electricity generation and harvesting.

The main advantage of the LFC is the abundance of living plants which are toxic free and environmentally friendly that the globe most needed. The selection procedure attempts to comprehend the fundamental mechanisms of the LFC. In regard to the mechanism of this plant-based energy source, an analytical model was first constructed according to the principle of electrochemistry with considers the efficiency effect on the behavior of ions flow.

Following to this, with the particularity of living plants, a new strategy to employ efficiently both solar energy and chemical energy simultaneously in an environmental friendly manner is introduced. In this way, the energy output from living plants was increased and integrated by involving both electrochemical and photosynthetic to generate a practical electricity.

UNIVERSITI MALAYSIA SABAH

Due to the abundance of the living plants, especially widely available in many rural and sub-urban areas, should make good uses of these strengths. In the financial aspect, this new plant-based energy source which requires no additional high-priced equipments are advantageous in this prospect. By using the electrochemistry approach with the aid of the proposed photosynthesis process has contributed to the increase of the output power and provides an important approach in the future energy harvesting system.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter reviews the literatures related to the weak energy sources in three sections. The first section reviews the conversion and energy harvesting using piezoelectric. The second section discusses on a broad range aspects of microbial fuel cells as a transformative solution for integrated waste treatment and resource recovery. The last section discusses previous studies that related to plant-based energy generation that harvests electrical energy from living plants.

2.2 Weak Energy Sources

2.2.1 Piezoelectricity

a. Introduction

In the late nineteenth century, the phenomenon of piezoelectricity was discovered and it was found that certain materials generate electricity when they are under mechanical stress. These materials produce mechanical stresses when they are subjected to an applied voltage. This property provides the ability to absorb mechanical energy from ambient vibration and transform that wasted energy into electricity. Piezoelectricity is a property of certain classes of crystalline material, including natural crystals and artificial piezoelectric crystals such as barium titanate and lead zirconate titanate. A particularly cut electrode piezo crystal detects the longitudinal, transverse vibration, whereas converting these mechanical vibrations into electrical signal that displayed on an oscilloscope. When crystals are pressurized, an electric field is generated.

Piezoelectric effect exists in two domains, direct piezoelectric effect and converse piezoelectric effect. Direct piezoelectric effect depicts the ability to convert mechanical to electrical energy while the converse piezoelectric effect depicts the ability to transform electrical to mechanical energy. The direct piezoelectric effect is responsible for the material's ability to function as sensor and the converse piezoelectric effect is accountable to function as an actuator. The electrical energy generated can be stored to power electronic devices and known as "energy/power harvesting" (Vatansever et al., 2012). The deflection with an electrical energy input in a usual piezoelectric is almost invisible to the naked eye, as to increase the deflection, stacked device or bender device is used (Kim, 2002).

Piezoelectric material used as a non-conductive material which does not have free electrons, but they made up of crystals that have many "fixed" electrons. These fixed electrons can move slightly as the crystals deform by an external force. This movement of electrons alters the equilibrium status in adjacent conductive materials and creates an electric force that will push and pull the electrons in the electrodes attached to the piezoelectric crystals.

Piezoelectricity can be seen in different structures, which are naturally occurring biological piezoelectric materials, naturally occurring piezoelectric crystals, manmade piezoelectric ceramics and man-made piezoelectric polymers. Man-made piezoelectric materials are more efficient due to their complex crystalline structure, the process with which they are made is very precise. Piezoelectric materials have been widely used due to their wide bandwidth, relatively low power requirements, fast electromechanical response and high generative forces.

b. Types of Piezoelectric

i. Quartz (SiO₂)

A strong piezoelectricity due to its crystalline structure. When a pressure is applied to a quartz crystal, an electrical polarization can be observed along the pressure direction.

ii. Gallium orthophosphate (GaPO₄)

It has almost the same crystalline structure as quartz, with the same characteristics. Its piezoelectric effect is double the value of the quartz, making it a valuable asset for mechanical application. It is not found in nature, therefore, a hydrothermal process must be used to synthesize the crystal.