LIQUID PHASE ADSORPTION ISOTHERM OF AZEOTROPIC AND NON-AZEOTROPIC ORGANIC SOLVENT MIXTURE ONTO POROUS ADSORBENTS

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2015

LIQUID PHASE ADSORPTION ISOTHERM OF AZEOTROPIC AND NON-AZEOTROPIC ORGANIC SOLVENT MIXTURE ONTO POROUS ADSORBENTS

NUR ABIDAH BINTI RAMLAN

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2015

PUMS 99:1

UNIVERSITI MALAYSIA SABAH

BORANG PI	ENGESAHAN TESIS
JUDUL :	
IJAZAH :	
SAYA :	SESI PENGAJIAN :
(HURUF BESAR)	
Mengaku membenarkan tesis *(LPSM/Sarjana/Dokto Sabah dengan syarat-syarat kegunaan seperti berikut:	r Falsafah) ini disimpan di Perpustakaan Universiti Malaysia -
 Tesis adalah hak milik Universiti Malaysia Saba Perpustakaan Universiti Malaysia Sabah diben Perpustakaan dibenarkan membuat salinan t tinggi. 	ah. Iarkan membuat salinan untuk tujuan pengajian sahaja. esis ini sebagai bahan pertukaran antara institusi pengajian
4. Sila tandakan (/)	mat yang berdarjah keselamatan atau kepentingan Malaysia
seperti yang termaktu TERHAD (Mengandungi maklu mana penyelidikan di	ıb di AKTA RAHSIA RASMI 1972) mat TERHAD yang telah ditentukan oleh organisasi/badan di jalankan)
TIDAK TERHAD	Disahkan oleh:
 (TANDATANGAN PENULIS) Alamat Tetap:	(TANDATANGAN PUSTAKAWAN)
 TARIKH:	(NAMA PENYELIA) TARIKH:
Catatan: *Potong yang tidak berkenaan. *Jika tesis ini SULIT dan TERHAD, sila lampirkan sur menyatakan sekali sebab dan tempoh tesis ini perlu *Tesis dimaksudkan sebagai tesis bagi Ijazah Dokto bagi pengajian secara kerja kursus dan Laporan Pro	at daripada pihak berkuasa/organisasi berkenaan dengan u dikelaskan sebagai SULIT dan TERHAD. r Falsafah dan Sarjana Secara Penyelidikan atau disertai ıjek Sarjana Muda (LPSM).

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

21 August 2015

Nur Abidah binti Ramlan PK2011-8077

CERTIFICATION

NAME : NUR ABIDAH BINTI RAMLAN

MATRIC NO : **PK2011-8077**

- TITLE : LIQUID PHASE ADSORPTION ISOTHERM OF AZEOTROPIC AND NON-AZEOTROPIC ORGANIC SOLVENT MIXTURE ONTO POROUS ADSORBENTS
- DEGREE : MASTER OF ENGINEERING (CHEMICAL ENGINEERING)

VIVA DATE : 27th AUGUST 2014

ACKNOWLEDGEMENT

First and foremost, I would like to thank Allah SWT who Has blessed me and guided me until I am able to accomplish this thesis as a partial fulfilment of the requirements for the Master Degree of Chemical Engineering in Universiti Malaysia Sabah (UMS).

I am heartily thankful to my supervisor, Prof Dr. Awang Bono and my cosupervisor, Mdm. Farm Yan Yan, whose encouragement, guidance, support, valuable time, advice, criticism and correction to this thesis from the beginning up to the end of the writing. I also want to thank all lecturers of the Faculty of Engineering in UMS who have taught and guided me during the years of study in this faculty.

In this very special moment, I would like to express my deepest thanks to my research partner, Norina Yadin, for the moral support and having confidence in me throughout the research work. Moreover, to the lab assistants, Ms. Noor Aemi Dawalih, Mdm. Noridah Abas and Mr. Razis, for assisting me in the laboratory until I managed to complete my lab works successfully.

Furthermore, to my beloved parents and family, for their love encouragement and supports both financially and mentally that made me possible to finish my study.

Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of this research.

ABSTRACT

Adsorption isotherm is an essential component in the understanding of the adsorption process. There are several ways and methods for the measurements, analysis and interpretation of adsorption isotherms either for gas or liquid phase adsorption. However, in the adsorption from solution were usually conducted at low region of liquid concentration and the direct interpretation of excess adsorption isotherm as adsorption isotherm. Therefore, a study on the adsorption of azeotropic and non-azeotropic organic solvent mixture onto porous adsorbent for whole range of liquid concentration is conducted. The study includes the measurement of excess adsorption isotherm, theoretical analysis, and interpretation of adsorption isotherm by using Pseudo Ideal Adsorption Model, Gibbs Dividing Plane Model and Langmuir-Freundlich Model as well as validation of theoretical analysis by direct measurement of adsorption. In this study, organic solvents such as acetone, methanol and propanol were chosen as the adsorbates whereas activated carbon and silicalite were chosen as the porous adsorbents. The measurement of excess isotherm was conducted using conventional method where known amount of adsorbent was mixed with known quantity and quality of organic solvent mixture in a sealed container and kept at constant temperature for a certain period to be equilibrated. Then the equilibrated liquid concentration was determined by standard procedure using Gas Chromatography Mass Spectrometer. The result of this study had shown that some agreement for the complete concentration range of adsorption isotherm trend for those interpreted and measured values, but not the magnitude.

UNIVERSITI MALAYSIA SABAH

ABSTRAK

FASA CECAIR PENJERAPAN ISOTERMA UNTUK CAMPURAN LARUTAN ORGANIK AZEOTROP DAN BUKAN AZEOTROP KE ATAS PENJERAP BERLIANG

Penjerapan isoterma merupakan komponen penting dalam memahami proses penjerapan . Terdapat beberapa cara dan kaedah dalam pengukuran, analisis dan tafsiran penjerapan isoterma sama ada untuk penjerapan gas atau cecair. Walau bagaimanapun, penjerapan cecair biasanya dijalankan pada julat kepekatan yang rendah dan tafsiran langsung daripada lebihan penjerapan isoterma sebagai penjerapan isoterma sering dilakukan. Oleh itu, kajian mengenai penjerapan campuran pelarut organik azeotrop dan bukan azeotrop ke atas dua penjerap yang berbeza struktur liang untuk keseluruhan julat kepekatan cecair telah dijalankan. Kajian ini termasuk pengukuran lebihan penjerapan isoterma , analisis teori, dan tafsiran isoterma penjerapan berdasarkan teori Pseudo Ideal Adsorption Model, Gibbs Dividing Plane Model dan Langmuir-Freundlich Model serta pengesahan analisis teori dengan ukuran langsung penjerapan . Dalam kajian ini, pelarut organik seperti aseton, metanol dan propanol telah dipilih sebagai komponen yang dijerap manakala karbon diaktifkan dan silikalit telah dipilih sebagai penjerap. lebihan isoterma dijalankan dengan menggunakan Pengukuran kaedah konvensional di mana sejumlah kuantiti penjerap dicampurkan dengan campuran pelarut organik di dalam bekas bertutup dan disimpan pada suhu yang berterusan untuk tempoh masa yang tertentu untuk mencapai keseimbangan. Kemudian kepekatan cecair dianalisis menggunakan Gas Chromatography Mass Spectrometer. Hasil kajian ini telah menunjukkan bahawa lebihan penjerapan isoterma yang ditafsirkan terus dari model penjerapan dan nilai-nilai yang diukur secara konvensional untuk julat kepekatan yang lengkap mempunyai trend yang sama tetapi berbeza dari segi magnitud.

TABLE OF CONTENTS

P	้ล	a	e
	u	У	C

		. age
TITLE	E	i
DECL	ARATION	ii
CERT	IFICATION	iii
ACKN	IOWLEDGEMENT	iv
ABST	RACT	v
ABST	RAK	vi
LIST	OF CONTENT	vii
LIST	OF TABLES	х
LIST	OF FIGURES	xiv
LIST	OF ABBREVIATIONS	xvii
LIST	OF SYMBOLS	xviii
LIST	OF APPENDIX	хх
СНАР	TER 1: INTRODUCTION	1
1.1	Background UNIVERSITI MALAYSIA SABAH	1
1.2	Research Objective	4
1.3	Scope of Work	5
1.4	Thesis Organization	5
СНАР	TER 2: LITERATURE REVIEW	7
2.1	Overview of Adsorption Process	7
2.2	Adsorbent	8
	2.2.1 Activated Carbon	8
	2.2.2 Activated Alumina	9
	2.2.3 Silica Gel	10

	2.2.4	Silicalite	10
2.3	Adsor	otion Isotherm	11
2.4	Measu	rement of Adsorption Isotherm	12
	2.4.1	Volumetric Method	12
	2.4.2	Gravimetric Method	12
	2.4.3	BET Experimental Method	13
	2.4.4	Liquid Phase Adsorption Method	14
2.5	Classif	ication of Adsorption Isotherm	15
2.6	Analys	is and Interpretation of Adsorption Isotherm	20
	2.6.1	Monolayer Adsorption	21
	2.6.2	Multilayer Adsorption	22
2.7	Theory	y and Model for Monolayer Adsorption	23
R	2.7.1	Pseudo Ideal Adsorption Model	23
6	2.7.2	Gibbs Dividing Plane Model	26
	2.7.3	Langmuir-Freundlich Isotherm Model	29
СНАР	TER 3:	METHODOLOGY	31
3.1	Introd	uction	31
3.2	Materi	als and Equipment	32
	3.2.1	Adsorbates	32
	3.2.2	Adsorbents	33
	3.2.3	Apparatus	33
3.3	3.2.3 Experi	Apparatus mental Work	33 34
3.3	3.2.3 Experi 3.3.1	Apparatus mental Work Analysis of Adsorbates	33 34 34

3.4	Analysi	is of Adsorption Isotherm	38
	3.4.1	Pseudo-Ideal Adsorption Model	38
	3.4.2	Gibbs Dividing Plane Model	39
	3.4.3	Langmuir-Freundlich Model	39
3.5	Experir	mental Design	40
CHAP	TER 4:	RESULT AND DISCUSSION	41
4.1	Introdu	uction	41
4.2	Excess	Adsorption Isotherm	41
4.3	Interpr	retation of Adsorption Isotherm	45
	4.3.1	Pseudo Ideal Adsorption Model	45
	4.3.2	Gibbs Dividing Plane Model	51
ß	4.3.3	Langmuir-Freundlich Model	53
4.4	An <mark>alys</mark> i	is of Adsorption Isotherm	58
CHAP	CHAPTER 5: CONCLUSION AND RECOMMENDATION 67		
5.1	Conclu	Sion UNIVERSITI MALAYSIA SABAH	67
5.2	Recom	mendation	68
REFE	RENCES	5	69
APPEI	APPENDICES 78		

LIST OF TABLES

		Page
Table 2.1:	Classified list of system	20
Table 2.2:	Material balance of adsorption in liquid phase	24
Table 2.3:	Interpretation of adsorption isotherm by using Pseudo Ideal	26
	Monolayer Adsorption Theory from previous works	
Table 2.4:	Interpretation of adsorption isotherm by using Gibbs Dividing	29
	Plane Model from previous works	
Table 2.5:	Interpretation of adsorption isotherm by using Langmuir-	30
	Freundlich Isotherm Model from previous works	
Table 3.1:	Binary Mixtures	32
Table 3.2:	Program setting of Gas Chromatography Mass	36
	Spectrophotometer (GCMS)	
Table 3.3:	Adsorption system of experimental work	37
Table 4.1:	Equilibrium constant, K and saturation value of adsorption, N_s	47
A	and regression coefficient, R^2 for selected binary mixture onto	
B X	activated carbon and silicalite	
Table 4.2:	Langmuir-Freundlich parameter for binary mixture obtained	56
VI	from Excel programme ERSITI MALAYSIA SABAH	
Table B.1:	Calibration Line Data of Acetone in Acetone-Propanol Mixture	83
Table C.1:	Calibration Line Data of Methanol in Methanol-Acetone Mixture	86
	for first trial	
Table C.2:	Calibration Line Data of Methanol in Methanol-Acetone Mixture	87
	for second trial	
Table C.3:	Calibration Line Data of Methanol in Methanol-Acetone Mixture	88
	for third trial	
Table D.1:	Excess isotherm data for adsorption of acetone in acetone-	89
	propanol mixture onto activated carbon for first trial	
Table D.2:	Excess isotherm data for adsorption of acetone in acetone-	90
	propanol mixture onto activated carbon for second trial	
Table D.3:	Excess isotherm data for adsorption of acetone in acetone-	91
	propanol mixture onto activated carbon for third trial	

Table D.4:	Average of excess isotherm data for adsorption of acetone in	92
	acetone-propanol mixture onto activated carbon	
Table D.5:	Excess isotherm data for adsorption of acetone in acetone-	93
	propanol mixture onto silicalite for first trial	
Table D.6:	Excess isotherm data for adsorption of acetone in acetone-	94
	propanol mixture onto silicalite for second trial	
Table D.7:	Excess isotherm data for adsorption of acetone in acetone-	95
	propanol mixture onto silicalite for third trial	
Table D.8:	Average of excess isotherm data for adsorption of acetone in	96
	acetone-propanol mixture onto silicalite	
Table D.9:	Excess isotherm data for adsorption of methanol in methanol-	97
	acetone mixture onto activated carbon for first trial	
Table D.10:	Excess isotherm data for adsorption of methanol in methanol-	98
	acetone mixture onto activated carbon for second trial	
Table D.11:	Excess isotherm data for adsorption of methanol in methanol-	99
B	acetone mixture onto activated carbon for third trial	
Table D.1 <mark>2:</mark>	Average of excess isotherm data for adsorption of	100
2	methanol in methpanol-acetone mixture onto activated carbon	
Table D. <mark>13:</mark>	Excess isotherm data for adsorption of methanol in	101
	methanol-acetone mixture onto silicalite for first trial	
Table D.14:	Excess isotherm data for adsorption of methanol in	102
	methanol-acetone mixture onto silicalite for second trial	
Table D.15:	Excess isotherm data for adsorption of methanol in	103
	methanol-acetone mixture onto silicalite for third trial	
Table D.16:	Average of excess isotherm data for adsorption of methanol in	104
	methanol-acetone mixture onto silicalite	
Table E.1:	Pseudo-Ideal Monolayer Adsorption Model data of acetone	105
	in acetone-propanol mixture onto activated carbon	
Table E.2:	Pseudo-Ideal Monolayer Adsorption Model data of acetone	106
	in acetone-propanol mixture onto silicalite	
Table E.3:	Pseudo-Ideal Monolayer Adsorption Model data of methanol	107
	in methanol-acetone mixture onto activated carbon	

Table E.4:	Pseudo-Ideal Monolayer Adsorption Model data of methanol	108
	in methanol-acetone mixture onto silicalite	
Table F.1:	Selectivity of acetone in acetone-propanol mixture onto	109
	activated carbon	
Table F.2:	Selectivity of methanol in methanol-acetone mixture onto	110
	silicalite	
Table F.3:	Selectivity of methanol in methanol-acetone mixture onto	111
	activated carbon	
Table F.4:	Selectivity of methanol in methanol-acetone mixture onto	112
	silicalite	
Table G.1:	Number of acetone-propanol component adsorbed onto	113
	activated carbon	
Table G.2:	Number of acetone-propanol component adsorbed onto	114
	silicalite	
Table G.3:	Number of methanol-acetone component adsorbed onto	115
	activated carbon	
Table G.4:	Number of methanol-acetone component adsorbed onto	116
E L	silicalite	
Table H. <mark>1</mark> :	Interpretation of adsorption isotherm using Gibbs dividing	117
	plane model for acetone in acetone-propanol mixture onto	
	activated carbon	
Table H.2:	Interpretation of adsorption isotherm using Gibbs dividing	118
	plane model for acetone in acetone-propanol mixture onto	
	silicalite	
Table H.3:	Interpretation of adsorption isotherm using Gibbs dividing	119
	plane model for methanol in methanol-acetone mixture	
	onto activated carbon	
Table H.4:	Interpretation of adsorption isotherm using Gibbs dividing	120
	plane model for methanol in methanol-acetone mixture	
	onto silicalite	
Table I.1:	Comparison between experimental value and predicted value	121
	using Langmuir-Freundlich model for acetone in acetone-	
	propanol mixture onto activated carbon	

Table I.2:	Comparison between experimental value and predicted value	122
	using Langmuir-Freundlich model for acetone in acetone-	
	propanol mixture onto silicalite	
Table I.3:	Comparison between experimental value and predicted value	123
	using Langmuir-Freundlich model for methanol in methanol-	
	acetone mixture onto activated carbon	
Table I.4:	Comparison between experimental value and predicted value	124
	using Langmuir-Freundlich model for methanol in methanol-	
	acetone mixture onto silicalite	
Table J.1:	Interpretation of adsorption isotherm using Langmuir-	125
	Freundlich model for acetone in acetone-propanol mixture	
	onto activated carbon	
Table J.2:	Interpretation of adsorption isotherm using Langmuir-	126
	Freundlich model for acetone in acetone-propanol mixture	
and the	onto silicalite	
Table J.3:	Interpretation of adsorption isotherm using Langmuir-	127
	Freundlich model for methanol in methanol-acetone mixture	
2	onto activated carbon	
Table J. <mark>4:</mark>	Interpretation of adsorption isotherm using Langmuir-	128
	Freundlich model for methanol in methanol-acetone mixture	
	onto silicalite	

LIST OF FIGURES

		Page
Figure 2.1:	Favorable and Unfavorable isotherm type	15
Figure 2.2:	Classification of isotherm shapes by Giles and co-workers	16
Figure 2.3:	Types of composite isotherm by Kippling	18
Figure 2.4:	Classification of composite isotherms by Schay and Nagy	18
Figure 2.5:	Graph of monolayer adsorption	21
Figure 2.6:	Monolayer adsorption	22
Figure 2.7:	Graph of multilayer adsorption	22
Figure 2.8:	Multilayer adsorption	23
Figure 2.9:	Representation of the static adsorption system in the state of a	27
	complete filling of adsorbed layer	
Figure 3.1:	Reagents used (Methanol, Acetone, Propanol)	32
Figure 3.2:	Activated Carbon and Silicalite ZSM-5	33
Figure 3.3:	Gas Chromatography-Mass Spectrophotometer (GCMS)	35
Figure 4.1:	Excess adsorption isotherm of preference adsorbate in binary	43
2	mixture onto activated carbon and silicalite at 30°C;	
819	(a) acetone in acetone-propanol mixture and	
	(b) methanol in methanol-acetone mixture	
Figure 4.2:	Apparent conformity of Pseudo-Ideal Monolayer Adsorption of	45
	preference adsorbate onto activated carbon and silicalite;	
	(a) acetone in acetone-propanol mixture and (b) methanol in	
	methanol-acetone mixture	
Figure 4.3:	Selectivity of preference adsorbate for each binary mixture onto	o 48
	activate carbon and silicalite; (a) acetone in acetone-propanol	
	mixture and (b) methanol in methanol-acetone mixture	
Figure 4.4:	Individual adsorption isotherm of binary mixture onto activated	49
	carbon and silicalite using Pseudo-Ideal Adsorption Model;	
	(a) acetone in acetone-propanol mixture and (b) methanol in	
	methanol-acetone mixture	

Figure 4.5:	Individual adsorption isotherm of binary mixture onto	52
	activated carbon and silicalite using Gibbs Dividing Plane Model;	
	(a) acetone in acetone-propanol mixture and (b) methanol in	
	methanol-acetone mixture	
Figure 4.6:	Experimentally measured and predicted preference adsorbate	54
	adsorbed onto activated carbon and silicalite based on	
	Langmuir-Freundlich isotherm model; (a) acetone in acetone-	
	propanol mixture onto activated carbon, (b) acetone in acetone-	
	propanol mixture onto silicalite (c) methanol in methanol-	
	acetone mixture onto activated carbon and (d) methanol in	
	methanol-acetone mixture onto silicalite	
Figure 4.7:	Individual adsorption isotherm of binary mixture onto	57
	activated carbon and silicalite using Langmuir-Freundlich Model;	
	(a) acetone in acetone-propanol mixture and (b) methanol in	
and the	methanol-acetone mixture	
Figure 4.8:	Analysis of adsorption of acetone in acetone-propanol mixture	58
- AY 📕	onto activated carbon at 30ºC; (a) adsorbed amount of	
2	acetone, n_1^s and (b) adsorbed mole fraction of acetone, X_1^s	
Figure 4.9:	Analysis of adsorption of acetone in acetone-propanol mixture	61
	onto silicalite at 30°C; (a) adsorbed amount of acetone, n_1^s	
- db	and (b) adsorbed mole fraction of acetone, X_1^s	
Figure 4.10:	Analysis of adsorption of methanol in methanol-acetone	62
	mixture onto activated carbon at 30° C; (a) adsorbed amount of	
	methanol, $n_1{}^s$ and (b) adsorbed mole fraction of methanol, $X_1{}^s$	
Figure 4.11:	Analysis of adsorption of methanol in methanol-acetone	64
	mixture onto silicalite at 30° C; (a) adsorbed amount of	
	methanol, $n_1{}^s$ and (b) adsorbed mole fraction of methanol, $X_1{}^s$	
Figure B.1:	Calibration Line of Acetone in Acetone-Propanol Mixture	81
Figure C.1:	Calibration Line of Methanol in Methanol-Acetone Mixture	84
Figure K.1:	Chromatogram Result for 30% of Acetone in Binary Mixture	129
	-Calibration Curve	
Figure K.2:	Chromatogram Result for 60% of Acetone in Binary Mixture	129
	-Calibration Curve	

- Figure K.3: Chromatogram Result for 20% of Acetone in Binary Mixture of 130 Excess Adsorption
- Figure K.4: Chromatogram Result for 60% of Acetone in Binary Mixture of 130 Excess Adsorption

LIST OF ABBREVIATIONS

ZSM-5-Zeolite Socony Mobil–5TCD-Thermal Conductivity Detectorpsi-Pounds per square inchGCMS-Gas Chromatography Mass Spectrophotometer

LIST OF SYMBOLS

Co	-	initial concentration of adsorbate in mg/L
C _e	-	final equilibrium concentration of adsorbate in mg/L
m	-	mass of adsorbent in g
N _s	-	saturation adsorption capacity in mole/g
W_0^w	-	initial total mass of liquid mixture in g
W_s	-	mass of adsorbent in g
W_0	-	initial total mole of liquid mixture in mole
V	-	volume of liquid mixture in L
Γ_1^w	-	excess adsorption of component 1 in m/g
Γ ₁	-	excess adsorption of component 1 in mole/g
Г (С _e)	-	excess adsorption value
a _{max}	-	maximum adsorbate amount which could be adsorbed on 1 \ensuremath{m}^2 on
	at t	the adsorbent surface
a _{tot}	2	total adsorbed amount
c []		BET constant
C _e . V _a	-	equilibrium adsorbate concentration on the volume of adsorbed layer
E1	5	heat of adsorption for the first layer
EL	-06	that for the second and higher layers and is equal to the heat of
		liquefaction
К	-	equilibrium constant
K ₀	-	the preexponential factor
n ^s	-	amount of component 1 adsorbed
n ^s 2	-	amount of component 2 adsorbed
р	-	equilibrium pressure of adsorbates at the temperature of adsorption
po	-	saturation pressure of adsorbates at the temperature of adsorption
q	-	adsorbent phase concentration after equilibrium
x ^w ₁₀	-	initial mass fraction
$\mathbf{x_1^w}$	-	equilibrium mass fraction
x ₁₀	-	initial liquid mole fraction of component 1
x ₁	-	equilibrium liquid mole fraction of component 1
x ₂	-	equilibrium liquid mole fraction of component 2

- $x_1^s \quad \ \ \, \text{-} \quad \ \ \, \text{adsorbed phase mole faction of component } 1$
- v the adsorbed gas quantity
- $v_m \quad \ \ \, \text{-} \quad \ \ \, \text{the monolayer adsorbed gas quantity}$
- V_a specific adsorbed volume of sorbates

LIST OF APPENDIX

		Page
Appendix A	Methods of Calculation	78
Appendix B	Calibration Line of Acetone-Propanol Mixture	81
Appendix C	Calibration Line of Methanol-Acetone Mixture	84
Appendix D	Excess Isotherm Data (Activated Carbon)	89
Appendix E	Pseudo-Ideal Monolayer Adsorption Model Data	105
Appendix F	Selectivity of preference adsorbate for all binary	109
	mixtures	
Appendix G	Individual adsorption of each adsorbate adsorbed	113
	onto activated carbon and silicalite data	
Appendix H	Interpretation of adsorption isotherm using Gibbs	117
	dividing plane model	
Appendix I	Comparison between experimental value and predicted	121
ASK -	value using Langmuir-Freundlich model	
Appendix J	Interpretation of adsorption isotherm using	125
2	Langmuir-Freundlich model	
Appendi <mark>x K</mark>	Example of peak area of adorbate from GCMS	129
	UNIVERSITI MALAYSIA SABAH	

CHAPTER 1

INTRODUCTION

1.1 Background

Adsorption is the phenomenon of accumulation of large number of molecular species at the surface of liquid or solid phase in comparison to the bulk. The process of adsorption arises due to presence of unbalanced or residual forces at the surface of liquid or solid phase. These unbalanced residual forces have tendency to attract and retain the molecular species with which it comes in contact with the surface. Adsorption is essentially a surface phenomenon. Adsorption is a term which is completely different from absorption. Meanwhile, absorption means uniform distribution of the substance throughout the bulk, adsorption essentially happens at the surface of the substance.

There are many important applications of adsorption process in industries such as color removal in textile industries. Hameed and co-workers (Hameed *et al.*, 2007) applied oil-palm ash as adsorbent in eliminating dyes from textile wastewater since Malaysia is the largest exporter of palm oil in the international market make it a low-cost and easily available adsorbent. Other than that, it also helps in removing color and taste as stated in the literature (Hanzlík *et al*, 2004; Juang *et al*, 2006). Other application includes the removal the unwanted organic and inorganic impurities in drinking waters and waste effluence (Juang *et al.*, 2006; Abdelwahab, 2008).

The potential theory of adsorption first introduced in 1914 by Polanyi (Bansal & Goyal, 2005) and it has now I ::n widely employed to remove unwanted materials from a solution (Hameed *et al.*, 2007; Rahchamani *et al.*, 2011; Ahmed & Theydan, 2012). The adsorption process is divided into physical adsorption (Saha et al., 2003; Critoph & Metcalf, 2004) and chemical adsorption (Srivastava & Eames, 1998; Kato *et al*, 2001).

In the case of physical adsorption or physisorption, the adsorbate is bound to the surface by relatively weak van der Waals forces, which are similar to the molecular forces of cohesion and are involved in the condensation of vapors into liquids (Bansal & Goyal, 2005). The performance of adsorbents used in physisorption is governed largely by surface properties, such as surface area, micropores and macropores, size of granules in powders, crystals or in pellets (Srivastava & Eames, 1998). Physical adsorbents with mesopores can adsorb consecutives layers of adsorbate, while those with micropores, have the volume of the pores filled with the adsorbate (Wang et al., 2009). Chemisorption or chemical adsorption, on the other hand, involves exchange or sharing of electrons between the adsorbate molecules and the surface of the adsorbent resulting in a chemical reaction (Bansal & Goyal, 2005). Chemical adsorption is caused by the reaction between adsorbates and the surface molecules of adsorbents. Electron transfer, atom rearrangement and fracture or formation of chemical bond always occurs in the process of chemical adsorption. Only one layer of adsorbate reacts with the surface molecules of chemical adsorbent (Wang et al., 2009).

Adsorbent plays the major role in influencing the adsorption process ability. Most of the solid adsorbents of great industrial applications possess a complex porous structure that consists of pores of different sizes and shapes. In terms of the experience of adsorption science, total porosity is usually classified into three groups. According to the IUPAC recommendation, the micropores are defined as pores of a width not exceeding 2 nm, mesopores are pores of a width between 2 and 50 nm, but macropores represent pores of a width greater than 50 nm. The significance of pores in the adsorption processes largely depends on their sizes. Since sizes of micropores are comparable to those of adsorbate molecules, all atoms or molecules of the adsorbent can interact with the adsorbate species. That is the fundamental difference between adsorption in micropores and larger pores like meso- and macropores (Dabrowski, 2001). Thus in this research work, activated carbon and silicalite were selected as the adsorbents. The selection of the adsorbent was based on pore structure.