ISOLATION AND CHARACTERIZATION OF ANTARCTIC ACTINOBACTERIA, BACTERIA AND FUNGI WITH ANTIMICROBIAL ACTIVITIES

YONG SHEAU TING

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

BIOTECHNOLOGY RESEARCH INSTITUTE UNIVERSITI MALAYSIA SABAH 2019

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN TESIS

JUDUL: ISOLATION AND CHARACTERIZATION OF ACTINOBACTERIA, BACTERIA AND FUNGI WITH ANTIMICROBIAL ACTIVITIES

IJAZAH: DOKTOR FALSAFAH (BIOTEKNOLOGI)

Saya <u>YONG SHEAU TING</u>, sesi <u>2012-2019</u>, mengaku membenarkan tesis Doktor Falsafah ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syaratsyarat kegunaan seperti berikut:

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesisi ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan, Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

UNIVERSITI MALAYSIA SABAH

Disahkan Oleh,

YONG SHEAU TING PZ1211009T (Tanda Tangan Pustakawan)

Tarikh: 30 OGOS 2019

PROF. DR. CLEMENTE MICHAEL WONG VUI LING Penyelia

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excepts, equations, summaries and references, which have been duly acknowledged.

30 August 2019

Yong Sheau Ting PZ1211009T

CERTIFICATION

NAME	:	YONG SHEAU TING
MATRIX NO.	:	PZ1211009T
TITLE	:	ISOLATION AND CHARACTERIZATION OF ANTARCTIC ACTINOBACTERIA, BACTERIA AND FUNGI WITH ANTIMICROBIAL ACTIVITIES
DEGREE	:	DOCTOR OF PHILOSOPHY
		(BIOTECHNOLOGY)
DATE OF VIVA	:	21 June 2019

ACKNOWLEDGEMENT

It has been a long but fruitful journey. The completion of this thesis would not have been possible without the support, understanding and guidance of many people. I would like to take this opportunity to thank those who have assisted me in a myriad of ways.

I would first like to express my heartfelt gratitude to my supervisor, Prof. Dr. Clemente Michael Wong Vui Ling. It is my honour to have met such a supportive supervisor. A more supportive and considerate supervisor I could not have asked for. My PhD student life would not have been so rich, rewarding and memorable without all the opportunities that Prof. Michael has given to me. Thank you for the guidance, patience and understanding during my thesis writing time.

The funding supports from the Ministry of Science, Technology, and Innovation (MOSTI), Malaysia, under the Antarctica Flagship Programme (Sub-Project 1: FP1213E036), and Yayasan Penyelidikan Antartika Sultan Mizan (YPASM), and logistic support from Instituto Antartico Chileno (INACH) are gratefully acknowledged. I would also like to extend my sincere thanks to all personnel of INACH especially Dr. José Retamales, Dr. Marcelo Gonzalez and Dr. Paris Lavin for their support and assistance.

I would like to acknowledge the help of the lab assistants, Miss Vidarita Maikin, Mr. Mony Mian, Miss Azie Zafirah A. Aziz, Mr. Nordin bin Wahid and Miss Marlenny Jumadi. I cannot leave Biotechnology Research Institute without mentioning my labmates, Yip, Fong Tyng, Chui Peng, Lai Mun, Fui Fui, Xin Jie, Chuen Yang, Vun Yee, Shing Yi etc. Thank you for the help, encouragement and little moments of fun and laughter over the years.

I am deeply indebted to my parents for their unconditional love and support throughout my life. Thank you for allowing me to choose my own path in life. The past two years have not been an easy ride, both academically and personally. Thank you Khoon Meng for being there for having faith in me and my intellect, and ensure me that everything will be alright when I felt like digging hole and crawling into one.

And last, thank you myself for bouncing back when life hit rock bottom.

Yong Sheau Ting

30 August 2019

ABSTRACT

Antimicrobial resistance (AMR) is a serious health problem worldwide. The escalating prevalence of AMR is driving the need for new antimicrobial drugs. Exploration of extreme environments such as Antarctica may give us hope to discover promising drug candidates. This study aimed to discover Antarctic sporeforming soil microorganisms that produce novel antimicrobial compounds. The microbial isolation was carried out using a combination of low- and high-nutrient isolation agar media. A total of 90 strains were isolated from two soil samples, which were further clustered into 19 groups at a similarity of 60% using random amplified polymorphic DNA fingerprinting (RAPD) fingerprinting technique. Antimicrobial activities of the isolates were tested against 13 Gram-positive and negative bacteria, and strain Im33 was chosen for further characterization due to its capability to inhibit all bacteria. It was described on the basis of morphological, physiological and molecular phylogenetic analyses, as well as carbon utilization and antimicrobial capabilities, along with strains E22 and INACH3013. They were identified as Talaromyces, Penicillium and Streptomyces spp. respectively based on 16S rDNA, 18S rDNA or internal transcribed spacer (ITS) sequences. The strains were capable of producing enzymes to degrade a wide variety of carbon sources, suggesting that they might play a role in the nutrient cycling of Antarctic terrestrial ecosystem in order to obtain nutrients for survival and growth. Both strains Im33 and E22 showed high levels of resistance to cycloheximide, which could probably be a defence mechanism that confers them a competitive advantage over cycloheximide-sensitive species in a nutrient scarce environment. Strain INACH3013 might have a narrow spectrum β -lactamase or a different mechanism of resistance, given that it was susceptible to ampicillin but not to other β -lactam antibiotics. The inhibitory effect of strains Im33, E22 and INACH3013 against multiple Grampositive and Gram-negative bacteria indicated that they produce broad-spectrum antimicrobial compounds. The antimicrobial compounds synthesized by strain Im33 were pH-stable, thermostable, non-polar and non-toxic, which might be good candidates for drug development. The estimated genome size of strain INACH3013 is 9,357,559 bp with 70.5% G+C content. A total of 8,551 coding sequences (CDSs) in 432 subsystems were annotated by the Rapid Annotation using Subsystems Technology (RAST) server. The secondary metabolite biosynthetic potential of strain INACH3013 was assessed using the antibiotics and Secondary Metabolites Analysis SHell (antiSMASH). Thirty-two biosynthetic gene clusters (BGCs) were predicted to be involved in the production of 1 bacteriocin-terpene hybrid, 2 bacteriocins, 8 NRPSs, 2 T1PKSs, 1 T2PKS, 1 T3PKS, 1 ectoine, 1 lantipeptide, 1 lassopeptide, 2 melanins, 2 siderophores, 2 terpenes, 1 T1PKS-NRPS hybrid, 1 bacteriocin-T1PKS hybrid, 1 T1PKS-butyrolactone hybrid, 1 T2PKS-T1PKS hybrid, 1 lantipeptide-terpene hybrid and 3 secondary metabolite-related proteins that did not fit into any category. Fifteen clusters that displayed low similarities (<40%) to known BGCs in other strains are most probably species specific and might encode metabolites with previously unreported novel chemical structures and biological activities. Eight clusters that showed no relatedness to any known BGCs might synthesize potentially unknown natural products, or their compounds could only be partially predicted from the genes' organization. These preliminary findings support that Antarctic spore-forming microorganisms are a great source of novel bioactive metabolites with biotechnological and pharmaceutical potentials.

ABSTRAK

Pemencilan dan Pencirian Actinobacteria, Bakteria dan Fungi Antartika dengan Aktiviti Antimikrob

Rintangan antimikrob (AMR) adalah satu masalah kesihatan yang serius di seluruh dunia. Peningkatan kelaziman AMR mendorong keperluan untuk ubat antimikrob baru. Penerokaan persekitaran yang melampau seperti Antartika mungkin memberi kita harapan untuk menemui calon-calon yang menjanjikan. Kajian ini bertujuan untuk menemui mikroorganisma tanah pembentuk spora Antartika yang menghasilkan sebatian antimikrob baru. Pemencilan mikroorganisma telah dijalankan dengan menggunakan gabungan media pengasingan nutrien rendah dan nutrien tinggi. Sebanyak 90 pencilan telah dipencilkan daripada dua sampel tanah, dan seterusnya dikelompokkan kepada 19 kumpulan berdasarkan 60% persamaan dengan menggunakan teknik amplifikasi rawak DNA polimorfik (RAPD). Aktiviti antimikrob pencilan telah diuji terhadap 13 bakteria Gram-positif dan Gramnegatif, dan strain Im33 dipilih untuk pencirian selanjutnya disebabkan kemampuannya untuk menghalang semua bakteria. Ia digambarkan berdasarkan analisis morfologi, fisiologi dan filogenetik molekul, serta penggunaan karbon dan keupayaan antimikrob, bersama dengan strain-strain E22 dan INACH3013. Mereka dikenali sebagai Talaromyces, Penicillium dan Streptomyces spp. masing-masing berdasarkan jujukan 16S rDNA, 18S rDNA atau kawasan penjarak dalaman (ITS). Strain-strain mampu menghasilkan enzim untuk memecahkan pelbagai sumber karbon, menunjukkan bahawa mereka mungkin memainkan peranan dalam pengitaran nutrien ekosistem terestrial Antartika untuk mendapatkan nutrien untuk kelangsungan hidup dan pertumbuhan. Kedua-dua strain Im33 dan E22 menunjukkan tahap rintangan yang tinggi terhadap sikloheximide, yang mungkin merupakan satu mekanisme pertahanan yang memberikan mereka kelebihan daya saing terhadap spesies sensitif sikloheximide dalam persekitaran kurang nutrien. Strain INACH3013 mungkin mempunyai spektrum sempit β-laktamase atau mekanisme rintangan yang berbeza, memandangkan ia sensitif kepada ampicillin tetapi tidak kepada antibiotik β-laktam yang lain. Kesan halangan kuat strain-strain Im33, E22 dan INACH3013 terhadap pelbagai bakteria Gram-positif dan Gramnegatif menunjukkan bahawa mereka menghasilkan sebatian antimikrob yang berspektrum luas. Sebatian antimikrob yang disintesis oleh strain Im33 adalah pH stabil, termostabil, tidak berkutub dan tidak toksik, yang mungkin merupakan calon-calon yang baik untuk pembangunan ubat. Anggaran saiz genom strain INACH3013 adalah 9.357.559 bp dengan 70.5% kandungan G+C, Sebanyak 8.551 jujukan kod (CDSs) dalam 432 subsistem telah dianotasi oleh pelayan Rapid Annotation using Subsystems Technology (RAST). Potensi biosintetik metabolit sekunder strain INACH3013 telah dinilai dengan menggunakan antibiotics and Secondary Metabolites Analysis SHell (antiSMASH). Tiga puluh dua kelompok gen biosintetik (BGC) dijangka terlibat dalam penghasilan 1 hibrid bakteriosin-terpen, 2 bakteriosin, 8 NRPS, 2 T1PKS, 1 T2PKS, 1 T3PKS, 1 ectoine, 1 lantipeptide, 1 lassopeptide, 2 melanin, 2 siderofor, 2 terpen, 1 hibrid T1PKS-NRPS, 1 hibrid bakteriosin-T1PKS, 1 hibrid T1PKS-butirolakton, 1 hibrid T2PKS-T1PKS, 1 hibrid lantipeptide-terpen dan 3 protein berkaitan dengan metabolit sekunder yang tidak dapat dimasukkan dalam sebarang kategori. Lima belas kelompok yang memperlihatkan persamaan rendah (<40%) kepada BGC yang diketahui dalam

strain-strain lain kemungkinan besarnya adalah spesies spesifik dan mungkin mengekod metabolit yang mempunyai struktur kimia dan aktiviti biologi baru yang belum pernah dilaporkan. Lapan kelompok yang tidak menunjukkan kesalinghubungan kepada mana-mana BGC yang diketahui mungkin mensintesis produk semula jadi yang berpotensi tidak diketahui, atau sebatiannya hanya dapat diramal sebahagiannya daripada organisasi gen. Penemuan awal ini menyokong bahawa mikroorganisma pembentuk spora Antartika merupakan satu sumber metabolit bioaktif baru yang hebat dengan potensi bioteknologi dan farmaseutikal.

TABLE OF CONTENT

TITLEDECLARATIONCERTIFICATIONACKNOWLEDGEMENTABSTRACTABSTRAKVTABLE OF CONTENTLIST OF TABLESXLIST OF FIGURESXIST OF SYMBOLSXIST OF ABBREVIATIONSXIST OF ABBREVIATIONSXIST OF ABBREVIATIONSXIST OF ABBREVIATIONSXXICHAPTER 1 : INTRODUCTION1.1Background1.2Objectives1.3Introduction to the Strains of Interest in the Perpertive Chapters		
		6
СПАР 2 1	Scope and Hypothesis	0 6
2.1	Antimicrobials	6
	2.2.1 History of Antimicrobials	7
14	2.2.2 Role of Antibiotics in Nature	14
2.3	Antimicrobial Resistance (AMR)	15
191	2.3.1 Mechanisms of AMR	16
	2.3.2 Factors Contributing to the Spread of AMR	17
	2.3.3 Prevalence of AMR FRST MALAYSIA SABA-	18
2.4	Modern Antimicrobial Drug Discovery	20
	2.4.1 Problems Faced in Modern Antimicrobial Drug Discovery	23
2.5	Current Drug Discovery Approaches	24
2.6	Antarctica	28
	2.6.1 Antarctic Microorganisms	30
2 7	2.6.2 Spore-forming Microorganisms in Antarctica	31
2.7	Secondary Melabolites	52
CHAP	FER 3 : GENERAL METHODOLOGY	36
3.1	Maintenance of Purified Strains	36
3.2	Molecular Phylogenetic Analysis	36
3.3	Antimicrobial Activities Against Foodborne Pathogens	37
3.4	Cycloheximide Sensitivity Test	37
3.5	Carbon Utilization Test	38
CHAP	FER 4 : ISOLATION, CHARACTERIZATION AND	39
	IDENTIFICATION OF SPORE-FORMING SOIL	
	MICROBES WITH ANTIMICROBIAL ACTIVITIES	
4 1	FROM DECEPTION ISLAND	20
4.1	Introduction	39
		39

	4.1.2	Objectives	40				
4.2	Methodo	blogy	41				
	4.2.1 Samples Collection, Isolation and Maintenance						
	4.2.2	Genomic DNA Extraction	42				
	4.2.3	Random Amplified Polymorphic DNA (RAPD)	43				
		Fingerprinting					
	4.2.4	Antimicrobial Activity Against Foodborne Pathogens	43				
	4.2.5	16S or 18S rDNA Amplification	44				
	4.2.6	Purification of PCR Products	45				
	4.2.7	Preparation of Competent Cells	45				
	4.2.8	Cloning and Transformation	46				
	4.2.9	Plasmid Purification, Restriction Enzyme Digestion and	46				
		Sequencing					
4.3	Researc	h Findings	48				
	4.3.1	Isolation of Antarctic Microorganisms	48				
	4.3.2	RAPD Fingerprinting	49				
	4.3.3	Antimicrobial Activities Against Foodborne Pathogens	52				
	4.3.4	Identification of Strains with Antimicrobial Activities	55				
4.4	Discussio	on and Conclusion	56				
СНАРТ	ER 5 : C	HARACTERIZATION OF A NOVEL TALAROMYCES	60				
	S	TRAIN IM33 WITH ANTIMICROBIAL ACTIVITY	00				
5.1	Introduc	tion	60				
10	5.1.1	Background	60				
- (A)	5.1.2	Objectives	61				
5.2	Methodo	blogy	62				
Z	5.2.1	Strain Isolation and Maintenance	63				
R	5.2.2	Spore Morphological Chacterization	63				
11	5.2.3	DNA Extraction	63				
	5.2.4	Species Identification Using ITS Regions	64				
	5.2.5	Phylogenetic Analysis	64				
	5.2.6	Effect of Temperature on Growth	65				
	5.2.7	Carbon Utilization Test	65				
	5.2.8	Cycloheximide Sensitivity Test	65				
	5.2.9	Effect of Culture Media on Growth	66				
	5.2.10	Effect of Culture Media on Production of Antimicrobial	66				
		Compounds					
	5.2.11	Effect of pH on Growth and Production of Antimicrobial	67				
		Compounds					
	5.2.12	Effect of Temperature on Stability of Antimicrobial	67				
		Compounds					
	5.2.13	Effect of pH on Stability of Antimicrobial Compounds	67				
	5.2.14	Determination of Minimum Inhibitory Concentration (MIC)	68				
		and Minimum Bactericidal Concentration (MBC) of Crude					
		Bioactive Compounds					
	5.2.15	in vivo Brine Shrimp Lethality Test	68				
	5.2.16	Semi-purification and Activitiy of Antimicrobial Compounds	68				
5.3	Research	h Findings	69				
	5.3.1	Spore Morphology	69				
	5.3.2	Species Identification and Phylogenetic Analysis	70				

	5.3.3	Growth at Different Temperatures	73
	5.3.4	Carbon Utilization Ability	73
	5.3.5	Sensitivity to Cycloheximide	74
	5.3.6	Growth and Production of Antimicrobial Compounds in Different Media	74
	5.3.7	Growth and Production of Antimicrobial Compounds at Different pH	78
	5.3.8	Stability of Antimicrobial Compounds at Different Temperatures	78
	5.3.9	Stability of Antimicrobial Compounds at Different pH	80
	5.3.10	MIC and MBC of Crude Bioactive Compounds	80
	5.3.11	in vivo Brine Shrimp Lethality	81
	5.3.12	Antimicrobial Activity of Supernatant	82
5.4	Discuss	sion and Conclusion	83
CHAP	TER 6 : 0	CHARACTERIZATION, IDENTIFICATION AND ANTIMICROBIAL ACITVITY OF <i>PENICILLIUM</i> STRAIN	88
	Ē	E22 FROM DECEPTION ISLAND	
6.1	Introdu	iction	88
	6.1.1	Background	88
	6.1.2	Objectives	89
6.2	Method	lology	90
	6.2.1	Strain Isolation and Maintenance	90
	6.2.2	Colony and Spore Morphological Characterization	90
1Þ1	6.2.3	DNA Extraction	91
	6 <mark>.2.4</mark>	18S rDNA Amplification	91
B	6.2.5	Amplification of ITS Regions	92
	6.2.6	Phylogenetic Analysis	92
	6.2.7	Cycloheximide Sensitivity Test	93
	6.2.8	Carbon Utilization Test 13111 MALAYSIA SADAR	93
	6.2.9	Antimicrobial Activities Against Foodborne Pathogens	93
6.3	Researc	ch Findings	93
	6.3.1	Colony Morphology	93
	6.3.2	Spore Morphology	94
	0.3.3	Species Identity and Phylogenetic Analysis	94
	0.3. 4 6.2 E	Carbon Litilization Ability	99
	636	Caliboni of Antimicrohial Activity Against Foodborne	100
	0.5.0	Detection of Antimicrobial Activity Against 1 00000me	100
6.4	Discuss	sion and Conclusion	101
			101
СНАР	'IER / : J	IDENTIFICATION, CHARACTERIZATION AND WHOLE	106
]	INACH3013	
7.1	Introdu	iction	106
	7.1.1	Background	106
	7.1.2	Objectives	107
7.2	Method	lology	108
	7.2.1	Strain Isolation and Maintenance	108
	7.2.2	Spore and Colony Morphological Characterization	108

	7.2.3	DNA Extraction for 16S rDNA Analysis	109
	7.2.4	16S rDNA Amplification	110
	7.2.5	Phylogenetic Analysis	110
	7.2.6	Carbon Utilization Test	111
	7.2.7	Antimicrobial Susceptibility Test	111
	7.2.8	Antimicrobial Activity Against Foodborne Pathogens	111
	7.2.9	DNA Extraction for Whole Genome Sequencing	112
	7.2.10	Bioinformatics Analysis	113
7.3	Research	h Findings	113
	7.3.1	Colony Morphology	113
	7.3.2	Spore Morphology	114
	7.3.3	Species Identity and Phylogenetic Analysis	114
	7.3.4	Carbon Utilization Ability	117
	7.3.5	Detection of Antimicrobial Activity Against Foodborne Pathogens	118
	7.3.6	Sensitivity to Antimicrobials	119
	7.3.7	Determination of Putative Secondary Metabolite Gene	121
7.4	Discussio	on and Conclusion	133
CUADT			
CHAPI	ER 8 : G	ENERAL DISCUSSION	145
СНАРТ	ER 9 : C	ONCLUSION	150
REFER	ENCES		152
APPEN	DICES		192
121			
13			
	Jane 1		
	SABI	UNIVERSITI MALAYSIA SABAH	

LIST OF TABLES

	Page
Table 2.1(a): The origin of previously discovered antibiotics.	9
Table 2.1(b): The origin of previously discovered antibiotics.	10
Table 2.1(c): The origin of previously discovered antibiotics.	11
Table 2.1(d): The origin of previously discovered antibiotics.	12
Table 2.1(e): The origin of previously discovered antibiotics.	13
Table 3.1: Temperature for the maintenance of each purified strain	36
on yeast extract-malt extract slant agar.	
Table 4.1: Strains isolated at each temperature.	48
Table 4.2: Clustering of 79 out of 90 strains at 60% similarity level.	52
Table 4.3: Inhibitory effect of 30 strains against 13 foodborne	53
pathgoens using the first screening method.	
Table 4.4: Inhibitory effect of 30 strains against 13 foodborne	54
pathgoens using the second screening method.	
Table 4.5: 16S or 18S rDNA sequence similarities of the strains to	56
their closest neighbours.	
Table 5.1: BLAST result table of strain Im33.	71
Table 5.2: Colony morphology of strain Im33 grown in different agar	75
media.	
Table 5.3: Growth of strain Im33 on different culture media.	76
Table 5.4: Antimicrobial activity of strain Im33 grown in different	77
liquid media.	
Table 5.5: Growth and production of antimicrobial compounds at	78
different pH.	
Table 5.6: Inhibitory effects of various concentrations of strain Im33	81
supernatant (µg/ml) Against <i>E. coli</i> TOP10. (+) indicates	
inhibition; (-) indicates no inhibition.	
Table 6.1: BLAST result table of partial 18S rDNA Sequence of strain	96
E22.	
Table 6.2: BLAST Result Table of ITS1-5.8S-ITS2 rDNA Sequence of	97
strain E22.	

Table 6.3: Antimicrobial activity of strain E22 against foodborne	101
pathogens.	
Table 7.1: Colony morphology of strain INACH3013 grown in	114
different agar media.	
Table 7.2: BLAST result table of strain INACH3013.	116
Table 7.3: Antimicrobial activity of strain INACH3013 against	119
foodborne pathogens.	
Table 7.4: Sensitivity of strain INACH3013 to antimicrobials.	121
Table 7.5: Genome features of strain INACH3013.	123
Table 7.6: Putative secondary metabolite gene clusters of strain	127
INACH3013.	

LIST OF FIGURES

	Page
Figure 2.1: Discovery timeline of the antimicrobial classes from 1900- 2018	22
Figure 4.1: A flow chart of the methodology of Chapter 4	41
Figure 4.2: Recovery of a 10 ⁻¹ diluted soil suspension on different	49
isolation media and temperatures. (a) YMA at 20°C, (b)	
OA at 12°C, (c) IM2 at 12°C, (d) SA at 12°C, and (e) ISSA at 20°C.	
Figure 4.3(a): Dendrogram constructed using RAPD fingerprint profiles of 90 strains.	50
Figure 4.3(b): Dendrogram constructed using RAPD fingerprint profiles	51
of 90 strains.	
Figure 4.4: Inhibition activities of the strains against foodborne	55
pathogens using the first screening method. (a) Strain	
Y38 against <i>S. equorum</i> and (b) Strain Im32 against <i>S.</i>	
haemolyticus.	
Figure 4.5: Inhibition activities of the strains against foodborne	55
pathogens using the second screening method. (a) Strain	
O35 against S. haemolyticus and (b) Strain Im33 against	
S. Newport.	
Figure 5.1: A flow chart of the methodology of Chapter 5.	62
Figure 5.2: Spore morphology of strain Im33 observed under SEM.	69
Figure 5.3: Phylogenetic tree of ITS1-5.8S-ITS2 rDNA sequences	72
inferred by ML method (using an alignment of 454 sites).	
Trichocoma paradoxa was used as outgroup. Numbers	
shown next to the branches indicate bootstrap values of	
ML and MP, respectively. Sequences used are presented	
with GenBank accession numbers followed by the name	
of the strain.	
Figure 5.4: Average colony diameter of strain Im33 on YMA after four	73
days of incubation at different temperatures.	

Figure 5.5: Formation of (a) bright yellow to orange colonies, and (b)	73
light yellow colonies on basal agar media supplemented	
with different carbon sources.	
Figure 5.6: A photo of the supernatant of YMB in which strain Im33	78
was grown for a week at 28°C.	
Figure 5.7: Antimicrobial activity of the supernatant against E. coli	79
TOP10 after being heat-treated at different temperatures	
for 1 min.	
Figure 5.8: Antimicrobial activity of the supernatant against E. coli	79
TOP10 after being heated at 100°c over time.	
Figure 5.9: Inhibitory effect of the supernatant against E. coli TOP10	80
after being autoclaved at 121°C for 20 min.	
Figure 5.10: Inhibitory effect of the pH-treated supernatant against E.	80
<i>coli</i> TOP 10.	
Figure 5.11: Probit regression lines between probit mortality of brine	82
shrimps nauplii and concentration (mg/ml) of the	
supernatant of strain Im33 after 24 h, 48 h and 72 h	
exposure.	
Figure 5.12: Antimicrobial activity of the supernatant, water and ethyl	82
acetate fractions. UNIVERSITI MALAYSIA SABAH	
Figure 5.13: Activity of the antimicrobial compounds recovered in	83
acetonitrile using Sep-Pak C18 classic column.	
Figure 6.1: A flow chart of the methodology of Chapter 6.	90
Figure 6.2: Colony morphology of strain E22 on YMA.	94
Figure 6.3: Spore Morphology of Strain E22 Observed Under SEM.	94
Figure 6.4: Phylogenetic tree of ITS1-5.8S-ITS2 rDNA sequences	98
inferred by ML Method (using an alignment of 289 sites).	
Trichocoma paradoxa was used as outgroup. Sequences	
used are presented with GenBank accession numbers	
followed by the name of the strain.	
Figure 6.5: Growth of strain E22 on YMA supplemented with (a) 0 mg/l,	99
(b) 25 mg/l, (c) 50 mg/l, (d) 100 mg/l, (e) 150 mg/l and (f)	
200 mg/l of cycloheximide.	

- Figure 6.6: Growth of strain E22 on basal agar media supplemented 100 with (a) glucose , (b) sucrose, (c) mannose, (d) raffinose, (e) sorbitol, (f) mannitol, (g) fructose, (h) galactose, (i) inositol, (j) xylose and (k) arabinose and (l) no carbon source.
- Figure 6.7: Antimicrobial activities of 4-day and 14-day old strain E22 101 cultures against (a) *S. equorum* and (b) *S.* Typhimurium.
- Figure 7.1: A flow chart of the methodology of Chapter 7. 108
- Figure 7.2: Colony morphology of strain INACH3013 grown in different 113 agar media.
- Figure 7.3: Spore morphology of strain INACH3013 observed under 114 SEM.
- Figure 7.4: Phylogenetic tree of 16S rDNA sequences inferred by ML 117 method (using an alignment of 1124 positions including Gaps). *E. coli* ATCC 11775T was used as the outgroup. Numbers at nodes represent levels of bootstrap support (%) based on a ML analysis of 1000 resampled datasets.
- Figure 7.5: Growth of strain INACH3013 on basal agar media 118 supplemented with (a) glucose, (b) mannose, (c) xylose, (d) mannitol, (e) galactose, (f) fructose, (g) arabinose, (h) inositol, (i) raffinose, (j) sorbitol, (k) sucrose and (l) no carbon source.
- Figure 7.6: Antimicrobial activities of cell-free culture supernatant of 119 strain INACH3013 against (a) *E. faecalis* and (b) *B. cereus* K3.

- 120 Figure 7.7: Sensitivity of strain INACH3013 to (a) cefotaxime and metronidazole, (b) chloramphenicol and tetracycline, (c) ampicillin, (d) clarithromycin and ciprofloxacin and cefpodoxime, (e) clindamycin and nitrofurantoin, (f) erythromycin and rifampicin, (g) gentamicin and mupirocin, (h) imipenem and cephalothin, (i) lincomycin and spectinomycin, (j) nalidixic acid and cefixime, (k) novobiocin and cefpirome, (I) streptomycin and carbenicillin, trimethoprim and (m) sulphonamides Compound, and (n) Vancomycin and Ceftazidime.
- Figure 7.8: Subsystem distribution of strain INACH3013 based on RAST 123 annotation server.
- Figure 7.9: Number of genes involved in each subcategory of 124 carbohydrates.
- Figure 7.10: Number of genes involved in each subcategory of 124 virulence, disease and defense.
- Figure 7.11: Number of genes involved in each subcategory of stress 125 response.
- Figure 7.12: Number of genes involved in each subcategory of 125 secondary metabolism.

Figure 7.13: Analysis and schematic representation of gene cluster 27. 128 128 Figure 7.14: Analysis and schematic representation of gene cluster 12. 129 Figure 7.15: Analysis and schematic representation of gene cluster 24. Figure 7.16: Analysis and schematic representation of gene cluster 28. 130 Figure 7.17: Analysis and schematic representation of gene cluster 16. 131 Figure 7.18: Analysis and schematic representation of gene cluster 5. 132 Figure 7.19: Analysis and schematic representation of gene cluster 22. 132 Figure 7.20: Analysis and schematic representation of gene cluster 1. 132 Figure 7.21: Analysis and schematic representation of gene cluster 26. 133

LIST OF SYMBOLS

%	-	Percent
°C	-	Degree celcius
µg/ml	-	Microgram per millilitre
Da	-	Dalton
g	-	Gram
h	-	Hour
mg	-	Milligram
mg/l	-	Milligram per litre
min	-	Minute
mm	-	Millimetre
mM	-	Millimolar
ng	-	Nanogram
nm 🕂	-70	Nanometre
0.D.	-	Optical density
pmol	-	Picomole
rpm	-/	Revolutions per minute
s	4	Second
v/v	a - 13	Volume per volumer SITI MALAYSIA SABAH
w/v	-	Weight per volume
X	-	Times
β	-	Beta
μg	-	Microgram
μΙ	-	Microlitre

LIST OF ABBREVIATIONS

ABA	-	Actinomycetes Agar
ACP	-	Acyl Carrier Protein
AIA	-	Actinomycetes Isolation Agar
AMPs	-	Antimicrobial Peptides
AMR	-	Antimicrobial Resistance
antiSMASH	-	Antibiotics and Secondary Metabolites Analysis Shell
ARO	-	Aromatases
ASPA	-	Antarctic Specially Protected Area
BenA	-	β-tubulin
BGC	-	Biosynthetic Gene Cluster
BLASTn	-	Nucleotide Basic Local Alignment Search Tool
$CaCl_2.2H_2O$	-	Calcium Chloride Dihydrate
CaCO ₃		Calcium Carbonate
CaM	- 1	Calmodulin
CDSs	7	Coding Sequences
CLF	5	Chain Length Factor
CoA	Ł	Coenzyme A
Csp	2	Cold Shock Protein
$CuSO_4.5H_2O$	-	Copper (II) Sulphate Pentahydrate
cUTI	-	Complicated Urinary Tract Infections
CYA	-	Czapek Yeast Extract Agar
СҮВ	-	Czapek Yeast Extract Broth
СҮС	-	Cyclases
DHPS	-	Dihydropteroate Synthase
DNA	-	Deoxyribonucleic Acid
dNTPs	-	2'-deoxyribonucleoside-5'-triphosphates
EPS	-	Extracellular Polymeric Substance
ESBLs	-	Extended-spectrum β-lactamases
EtBr	-	Ethidium Bromide
FeSO ₄ .7H ₂ O	-	Iron(II) Sulphate Heptahydrate
FUR	-	Ferric Uptake Regulation Protein

GAA	-	Glycerol-Asparagine Agar
HGT	-	Horizontal Gene Transfer
Hsp	-	Heat Shock Protein
HTS	-	High-throughput Screening
iChip	-	Isolation Chip
IM2	-	Gause Modified Agar
ISSA	-	Inorganic-Salts-Starch Agar
ITS	-	Internal Transcribed Spacer
K ₂ HPO ₄	-	Dipotassium Phosphate
KCH ₃ CO ₂	-	Potassium Acetate
КСІ	-	Potassium Chloride
KGI	-	King George Island
KH ₂ PO ₄	-	Potassium Dihydrogen Phosphate
KNO ₃	-	Potassium Nitrate
KR	5	Ketoreductases
LB	40	Luria Bertani
	-	Lignocellulose Agar
LCB	ź	Lignocellulose Broth
LeuRS	2)	Leucyl-tRNA Synthetase
LPS	S	Lipopolysaccharide SITI MALAYSIA SABAH
MEA	-	Malt-Extract Agar
MEB	-	Malt-Extract Broth
MgCl ₂	-	Magnesium Chloride
MgSO ₄	-	Magnesium Sulphate
MgSO ₄ .7H ₂ O	-	Magnesium Sulphate Heptahydrate
MgSO ₄ .H ₂ O	-	Magnesium Sulphate Monohydrate
МНА	-	Muellar-Hinton Agar
МНВ	-	Muellar-Hinton Broth
ML	-	Maximum Likelihood
МІВ	-	2-Methylisoborneol
MnCl ₂ .4H ₂ O	-	Manganese (II) Chloride Tetrahydrate
MRSA	-	Methicillin-Resistant S. aureus
MS	-	Mass Spectrometry

NA	-	Nutrient Agar
NaCl	-	Sodium Chloride
NADPH	-	Reduced Nicotinamide Adenine Dinucleotide Phosphate
NaNO ₃	-	Sodium Nitrate
NaOAc	-	Sodium Acetate
NDM-1	-	New Delhi Metallo-β-lactamase 1
NGS	-	Next Generation Sequencing
(NH ₄) ₂ SO ₄	-	Ammonium Sulphate
NMR	-	Nuclear Magnetic Resonance
NRPs	-	Non-Ribosomal Peptides
NRPSs	-	Non-Ribosomal Peptide Synthetases
ΟΑ	-	Oatmeal Agar
OD	-	Optical Density
PABA	-	<i>p</i> -Aminobenzoic Acid
PAHs	5.	Polycyclic Aromatic Hydrocarbons
PBP2a	-0	Penicillin-Binding Protein 2a
PBPs	- `	Penicillin-Binding Proteins
PCR	£	Polymerase Chain Reaction
PDA	2/	Potato Dextrose Agar
PDB	S	Potato Dextrose Broth
PKs	-	Polyketides
PKSs	-	Polyketide Synthases
ΡΥΑ	-	Peptone-Yeast Extract Iron Agar
R2A	-	Reasoner's 2A Agar
RAPD	-	Random Amplification of Polymorphic DNA
RAST	-	Rapid Annotation using Subsystems Technology
ROS	-	Reactive Oxygen Species
RPB2	-	RNA Polymerase II Subunit
SA	-	<i>Streptomyces</i> Agar
SDA	-	Sabouraud Dextrose Agar
SDB	-	Sabouraud Dextrose Broth
SDS	-	Sodium Dodecyl Sulphate
SEM	-	Scanning Electron Microscope

SOD	-	Superoxide Dismutase
sub-MIC	-	Sub-Minimum Inhibitory Concentration
T1PKS	-	Type I Polyketide Synthase
T2PKS	-	Type II Polyketide Synthase
T3PKS	-	Type III Polyketide Synthase
ТА	-	Tyrosine Agar
thpD	-	Ectoine Hydrolase Gene
UPGMA	-	Unweighted Pair Group Method Using Arithmetic Mean
VP	-	Variable Pressure
VISA	-	Vancomycin Intermediate S. aureus
WHO	-	World Health Organization
YMA	-	Yeast-Extract Malt-Extract Agar
ҮМВ	-	Yeast-Extract Malt-Extract Broth
ZnSO ₄ .7H ₂ O	-	Zinc Sulphate Heptahydrate
ZUR	The second	Zinc Uptake Regulation Protein
		UNS
AB	V	UNIVERSITI MALAYSIA SABAH

LIST OF APPENDICES

	Page			
Appendix A: ITS-5.8S-ITS2 rDNA sequence of strain Im33 deposited	191			
in Genbank				
Appendix B: 18S rDNA sequence of strain E22 deposited in Genbank	192			
Appendix C: ITS-5.8S-ITS2 rDNA sequence of strain E22 deposited in				
Genbank				
Appendix D: Phylogenetic tree constructed based on the	194			
ITS+BenA+CaM+RPB2 sequences of strain E22 and				
other closely related Penicillium species				
Appendix E: 16S rDNA sequence of strain INACH3013 deposited in				
Genbank				
Appendix F: Roles of Genes Involved in Oxidative Stress Subsystem				
Predicted by RAST				
Appendix G: Roles of Genes in the Spore Pigment BGC Predicted by				
RAST				
UNIVERSITI MALAYSIA SABAH				