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ABSTRACT 

 

 

DEVELOPMENT OF HETEROGENEOUS CATALYST FOR BIODIESEL 

PRODUCTION 

 
Biodiesel is a renewable, biodegradable and nontoxic fuel. Biodiesel production 
using various types of heterogeneous metal oxide catalysts has been studied in the 
past. However, most of these catalysts have been prepared in the form of powders 
with size ranging from nano- to micrometer. The small particle size may offer high 
catalytic activity but it gives rise to several problems such as high pressure drops, 
poor mass/heat transfer, poor contact efficiency and difficulties in handling and 
separation. Until now, there has been limited work to prepare alkali metal based 
catalyst in macroscopic form to catalyze the transesterification reaction for biodiesel 
production. The aim of this work was to develop a heterogeneous catalyst in the 
form of milimetric spherical beads and to evaluate its performance in biodiesel 
production in terms of biodiesel yield and catalyst reusability. Preliminary studies 
involved synthesis of the beads from commercial boehmite powders by the sol-gel 
method using two different approaches: integrated gelling process and oil-drop 
granulation process. The gelled beads were then calcined to produce the γ-Al2O3 
support beads. It was found that the beads produced by the oil-drop granulation 
process had higher mechanical strength, thus the process was used for bead 
production in subsequent works. The γ-Al2O3 support beads were activated by 
impregnating with aqueous solution of KF NaNO3 and KI, as catalyst. The surface 
properties of the supported catalysts were analyzed using BET and the basicity 
properties, evaluated in terms of number and strength of basic sites, were analyzed 
using CO2-TPD. Bead morphology was studied using SEM. The supported catalysts 
were used in transesterification reaction with methanol at 60 oC in batch process. 
The composition of biodiesel was evaluated by the gas chromatography method 
and the effects of catalyst properties, reaction time, molar ratio of methanol to oil, 
catalyst loading on biodiesel yield were studied. The reusability of the catalyst was 
also determined and the leachate of catalyst into the reaction product was verified 
by XRF. Results show that boehmite was transformed to γ-Al2O3 at 800 oC where 
crystalline structure was formed, as verified by XRD. The highest FAME yield 
obtained from KI/γ-Al2O3 catalyst was 98% after 4 h of reaction time at 60 oC and 
the yield was found to directly correspond to the catalyst basicity. It can be 
correlated with their generation of K2O, KAlO2 for KI/γ-Al2O3 catalyst as evident 
from XRD which were possibly the main active sites for the transesterification 
reaction. Similarly, the activity of KF/Al2O3 catalysts was remarkably improved when 
the catalysts loading were 0.30g (gCat/gγ-Al2O3) for NaNO3/γ-Al2O3 and 0.24g (gCat/gγ-

Al2O3) for KF/γ-Al2O3. The high activity towards the transesterification reaction 
corresponds to the generation of Na2O, NaAlO2 on NaNO3/γ-Al2O3 catalyst, K2O, 
KAlF4 on KF/γ-Al2O3 catalyst. The high FAME yield could also be attributed to the 
mesoporous characteristic of the catalyst with pore diameter of 7-9 nm since the 
smaller triglycerides molecules could diffuse into the catalyst. Moreover, the 
catalyst exhibited good operational stability with biodiesel yield of 79% after 11 
cycles of successive reuse. In conclusion, a heterogeneous catalyst in the form of 
milimetric spherical beads with potential application in biodiesel production has 
been developed.  
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ABSTRAK 

 

 
Biodiesel adalah satu sumber yang boleh diperbaharui, mesra alam dan tidak 
bertoksik. Penghasilan biodiesel menggunakan pelbagai jenis mangkin heterogen 
oksida logam telah dikaji sebelum ini. Walau bagaimanapun, kebanyakan 
pemangkin yang dibuat adalah dalam bentuk serbuk dengan saiz antara nano 
hingga mikrometer. Saiz zarah kecil mungkin menawarkan aktiviti pemangkin yang 
tinggi tetapi saiz zarah kecil ini mungkin juga menimbulkan beberapa masalah 
seperti penurunan tekanan yang tinggi, pemindahan jisim/haba yang lemah, 
kecekapan hubungan yang lemah dan masalah dalam pengendalian dan 
pengasingan. Sehingga kini, penyelidikan adalah terhad dalam penyediaan 
pemangkin logam alkali dalam bentuk makroskopik untuk memangkinkan tindak 
balas transesterifikasi untuk penghasilan biodiesel. Tujuan kerja ini adalah untuk 
membangunkan satu pemangkin heterogen dalam bentuk manik bulat milimetrik 
dan menilai prestasi dalam penghasilan biodiesel dari segi hasil biodiesel dan sifat 
penggunaan semula pemangkin. Kajian awal yang melibatkan sintesis manik dari 
serbuk boehmite komersil dengan kaedah sol-gel menggunakan dua pendekatan 
yang berbeza: proses pengelan integrasi dan proses granulasi titisan-minyak. Manik 
gel kemudian dikalsinasi untuk menghasilkan manik sokongan γ-Al2O3. Didapati 
bahawa manik yang dihasilkan oleh proses granulasi titisan-minyak mempunyai 
kekuatan mekanikal yang lebih tinggi, oleh itu proses ini digunakan untuk 
penghasilan manik dalam kerja-kerja seterusnya. Manik sokongan γ-Al2O3 diaktifkan 
dengan mengimpregnat dengan larutan KF NaNO3 dan KI, sebagai pemangkin dan 
kalsinasi bagi kali kedua pada pelbagai suhu. Ciri-ciri permukaan pemangkin 
sokongan dianalisis dengan menggunakan BET dan sifat kebesan, dinilai dari segi 
bilangan dan kekuatan tapak bes, dan dianalisis dengan menggunakan CO2-TPD. 
Morfologi manik dikaji dengan menggunakan SEM. Pemangkin sokongan digunakan 
dalam tindak balas pengtransesteran dengan metanol pada suhu 60 oC dalam 
proses kelompok. Komposisi biodiesel dinilai dengan menggunakan kaedah 
kromatografi gas dan kesan ciri-ciri pemangkin, tempoh reaksi, nisbah molar 
metanol dengan minyak, penyaratan mangkin terhadap keputusan biodiesel juga 
dikaji. Sifat penggunaan semula pemangkin ditentukan dan sifat leachate 
pemangkin terhadap reaksi produk juga disahkan oleh XRF. Keputusan 
menunjukkan bahawa boehmite berubah kepada γ-Al2O3pada 800 oC di mana 
struktur kristal telah dibentuk, seperti yang disahkan oleh XRD. Hasil FAME yang 
tertinggi diperolehi daripada pemangkin KI/γ-Al2O3 adalah 98% selepas 4 jam 
tindak balas pada 60 oC dan hasil didapati berkadar secara langsung kebesan 
pemangkin. Ia boleh dikaitkan dengan penghasilan K2O, KAlO2 untuk pemangkin 
KI/γ-Al2O3 seperti yang terbukti daripada XRD yang mungkin tapak aktif utama 
untuk reaksi pengtransesteran. Begitu juga dengan aktiviti pemangkin KF/Al2O3 
adalah bertambah bagus apabila beban pemangkin ialah 0.30g (gCat/gγ-Al2O3) untuk 
NaNO3/γ-Al2O3dan 0.24g (gCat/gγ-Al2O3) untuk KF/γ-Al2O3. Aktiviti tinggi terhadap 
reaksi pen gtransesteran adalah disebabkan oleh penghasilan Na2O, NaAlO2 pada 
pemangkin NaNO3/γ-Al2O3, K2O, KAlF4 pada pemangkin KF/γ-Al2O3.  
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Keputusan FAME yang tinggi mungkin juga disebabkan oleh ciri-ciri mesoliang 
mangkin dengan diameter liang sekitar 7-9 nm di mana trigliserida molekul kecil 
dapat meresap ke dalam mangkin. Selain itu, mangkin ini menunjukkan kestabilan 
operasi yang baik dengan penghasilan biodiesel sebanyak 79% selepas 11 kitaran 
gunasemula berturut-turut. Sebagai kesimpulan, mangkin heterogen dalam bentuk 
manik-manik sfera dalam ukuran milimetric telah dihasilkan dengan potensi untuk 
diaplikasikan dalam penghasilan biodiesel. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Research Background 

The enormous worldwide use of diesel fuel and the rapid depletion of crude oil 

reserves have prompted keen interest and exhaustive research into suitable 

alternative fuel. Currently, attention is focused on human and environmental safety, 

in relation to the release of hydrocarbons into the environment. Petroleum 

derivatives contain benzene, toluene, ethylbenzene and xylene isomers the major 

components of fossil fuel, which are hazardous substances subject to regulations in 

many parts of the world (Serrano et al., 2006). As a consequence, the demand of 

green energy is increasingly gaining international attention. When green energy is 

used, the primary objective is to reduce air pollution, and minimize or eradicate 

completely any impacts to the environment (Burgess, 1990). Among many possible 

sources, apparently, biodiesel is a viable alternative energy to conventional diesel 

fuel, which is of environmental concern and is under legislative pressure to be 

replaced by biodegradable substitutes.  

 

 The most common way to produce biodiesel is by transesterification which 

refers to a catalyzed chemical reaction involving vegetable oil and an alcohol to 

yield fatty acid alkyl esters (biodiesel) and glycerol (Freedman et al., 1984; Lottero 

et al., 2006), as shown in Figure 1.1. Triglycerides, as the main component of 

vegetable oil, consist of three long chain fatty acids esterified to a glycerol 

structure. When triglycerides react with an alcohol (e.g., methanol), the three fatty 

acid chains are released from the glycerol skeleton and combine with the methanol 

to yield fatty acid methyl esters (FAME). Glycerol is produced as a by-product. The 

transesterification reaction can be carried out using homogeneous, heterogeneous 

or enzymatic catalysts (Lopez et al., 2005; Dossin et al., 2006; Jenannathan et al., 

2008).  

 




