DEVELOPMENT OF MILLIMETRIC HETEROGENEOUS CATALYST FOR BIODIESEL PRODUCTION

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2011

DEVELOPMENT OF MILLIMETRIC HETEROGENEOUS CATALYST FOR BIODIESEL PRODUCTION

MD. AMINUL ISLAM

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2011

PUMS 99:1

UNIVERSITI MALAYSIA SABAH

BORANG PI	ENGESAHAN TESIS
JUDUL :	
IJAZAH :	
SAYA :	SESI PENGAJIAN :
(HURUF BESAR)	
Mengaku membenarkan tesis *(LPSM/Sarjana/Dokto Sabah dengan syarat-syarat kegunaan seperti berikut:	r Falsafah) ini disimpan di Perpustakaan Universiti Malaysia -
 Tesis adalah hak milik Universiti Malaysia Saba Perpustakaan Universiti Malaysia Sabah diben Perpustakaan dibenarkan membuat salinan t tinggi. 	ah. Jarkan membuat salinan untuk tujuan pengajian sahaja. esis ini sebagai bahan pertukaran antara institusi pengajian
4. Sila tandakan (/)	mat yang berdarjah keselamatan atau kepentingan Malaysia
seperti yang termaktu TERHAD (Mengandungi maklu mana penyelidikan di	ıb di AKTA RAHSIA RASMI 1972) mat TERHAD yang telah ditentukan oleh organisasi/badan di jalankan)
TIDAK TERHAD	Disahkan oleh:
 (TANDATANGAN PENULIS) Alamat Tetap:	(TANDATANGAN PUSTAKAWAN)
 	(NAMA PENYELIA) TARIKH:
Catatan: *Potong yang tidak berkenaan. *Jika tesis ini SULIT dan TERHAD, sila lampirkan sur menyatakan sekali sebab dan tempoh tesis ini perlu *Tesis dimaksudkan sebagai tesis bagi Ijazah Dokto bagi pengajian secara kerja kursus dan Laporan Pro	at daripada pihak berkuasa/organisasi berkenaan dengan u dikelaskan sebagai SULIT dan TERHAD. r Falsafah dan Sarjana Secara Penyelidikan atau disertai ıjek Sarjana Muda (LPSM).

DECLARATION

I hereby declare that the material in this thesis is original except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

13 January 2012

Md. Aminul Islam

MD. AMINUL ISLAM PK2OO8-8012

CERTIFICATION

- NAME : MD. AMINUL ISLAM
- MATRIC NO. : **PK2008-8012**
- TITLE:DEVELOPMENT OF MILLIMETRIC HETEROGENEOUS
CATALYST FOR BIODIESEL PRODUCTION
- DEGREE : DOCTOR OF PHILOSOPHY (CHEMICAL ENGINEERING)
- VIVA DATE : 12 DECEMBER 2011

DECLARED BY

2. CO-SUPERVISOR Associated Professor Dr. Chan Eng Seng

Signature

ACKNOWLEDGEMENT

First and foremost, I would like to express my profound sense of gratitude and indebtedness to my supervisor, Professor Dr. Pogaku Ravindra, Department of chemical engineering, School of Engineering and Information Technology, University Malaysia Sabah, Malaysia. His generosity, encouragement and the overwhelming enthusiasm were invaluable for the completion of this research.

I would like to convey my sincere gratitude to Dr. Eng Seng Chan, Department of chemical engineering, School of Engineering and Information Technology, University Malaysia Sabah (UMS), Malaysia, for his inspiring, helpful suggestions and persistent encouragements as well as close and consistent supervision throughout the period of my PhD program.

I am most grateful to Dr. Chu Chi Ming, Program Head, Chemical Engineering Programme, School of Engineering and IT, UMS, for his encouragement and support throughout this research. I would like to convey my regards to Dr. Rachel Fran Mansa for her support during my research. I would like to extend my deep gratitude to Prof. Dr. Taufik Yap Yun Hin, Faculty of Science, Universiti Putra Malaysia, Malaysia, for giving me opportunity to perform some of my experimental works at Center of Excellence for Catalysis Science and Technology. My special thanks also go to all the catalysis science group members for their help and support to carry out my works.

I would also like to thank the fellow students. I had the pleasure to work with during this project: Catherine Voo, Joreen Lim, Lim Tek Kaun, Bala Krishna. I would specially thank Yim Zhi Hui for his friendship and support in the workplace. I would like to extend my appreciation to the laboratory assistant, Noor Aemi Dawalih, Noridah Abas and the other laboratory assistants for the help offered to me. The financial support provided by ministry of science and technology innovation (MOSTI) and fundamental research grant scheme (FRGS) are gratefully acknowledged. My special gratitude to my parents, brothers, and sister whose love and affection is the source of inspiration and encouragement for my studies. Last, but not least, I extend thanks and appreciation to everyone who helped directly or indirectly to get this work done.

ABSTRACT

DEVELOPMENT OF HETEROGENEOUS CATALYST FOR BIODIESEL PRODUCTION

Biodiesel is a renewable, biodegradable and nontoxic fuel. Biodiesel production using various types of heterogeneous metal oxide catalysts has been studied in the past. However, most of these catalysts have been prepared in the form of powders with size ranging from nano- to micrometer. The small particle size may offer high catalytic activity but it gives rise to several problems such as high pressure drops, poor mass/heat transfer, poor contact efficiency and difficulties in handling and separation. Until now, there has been limited work to prepare alkali metal based catalyst in macroscopic form to catalyze the transesterification reaction for biodiesel production. The aim of this work was to develop a heterogeneous catalyst in the form of milimetric spherical beads and to evaluate its performance in biodiesel production in terms of biodiesel yield and catalyst reusability. Preliminary studies involved synthesis of the beads from commercial boehmite powders by the sol-gel method using two different approaches: integrated gelling process and oil-drop granulation process. The gelled beads were then calcined to produce the γ -Al₂O₃ support beads. It was found that the beads produced by the oil-drop granulation process had higher mechanical strength, thus the process was used for bead production in subsequent works. The y-Al₂O₃ support beads were activated by impregnating with aqueous solution of KF NaNO₃ and KI, as catalyst. The surface properties of the supported catalysts were analyzed using BET and the basicity properties, evaluated in terms of number and strength of basic sites, were analyzed using CO₂-TPD. Bead morphology was studied using SEM. The supported catalysts were used in transesterification reaction with methanol at 60 °C in batch process. The composition of biodiesel was evaluated by the gas chromatography method and the effects of catalyst properties, reaction time, molar ratio of methanol to oil, catalyst loading on biodiesel yield were studied. The reusability of the catalyst was also determined and the leachate of catalyst into the reaction product was verified by XRF. Results show that boehmite was transformed to y-Al₂O₃ at 800 °C where crystalline structure was formed, as verified by XRD. The highest FAME yield obtained from KI/y-Al₂O₃ catalyst was 98% after 4 h of reaction time at 60 °C and the yield was found to directly correspond to the catalyst basicity. It can be correlated with their generation of K₂O, KAIO₂ for KI/y-Al₂O₃ catalyst as evident from XRD which were possibly the main active sites for the transesterification reaction. Similarly, the activity of KF/Al₂O₃ catalysts was remarkably improved when the catalysts loading were 0.30g ($g_{Cat}/g_{v-Al2O3}$) for NaNO₃/ γ -Al₂O₃ and 0.24g ($g_{Cat}/g_{v-Al2O3}$) $_{Al2O3}$) for KF/ γ -Al₂O₃. The high activity towards the transesterification reaction corresponds to the generation of Na₂O, NaAlO₂ on NaNO₃/ γ -Al₂O₃ catalyst, K₂O, $KAIF_4$ on KF/γ - AI_2O_3 catalyst. The high FAME yield could also be attributed to the mesoporous characteristic of the catalyst with pore diameter of 7-9 nm since the smaller triglycerides molecules could diffuse into the catalyst. Moreover, the catalyst exhibited good operational stability with biodiesel yield of 79% after 11 cycles of successive reuse. In conclusion, a heterogeneous catalyst in the form of milimetric spherical beads with potential application in biodiesel production has been developed.

ABSTRAK

Biodiesel adalah satu sumber yang boleh diperbaharui, mesra alam dan tidak bertoksik. Penghasilan biodiesel menggunakan pelbagai jenis mangkin heterogen oksida logam telah dikaji sebelum ini. Walau bagaimanapun, kebanyakan pemangkin yang dibuat adalah dalam bentuk serbuk dengan saiz antara nano hingga mikrometer. Saiz zarah kecil mungkin menawarkan aktiviti pemangkin yang tinggi tetapi saiz zarah kecil ini mungkin juga menimbulkan beberapa masalah seperti penurunan tekanan yang tinggi, pemindahan jisim/haba yang lemah, kecekapan hubungan yang lemah dan masalah dalam pengendalian dan pengasingan. Sehingga kini, penyelidikan adalah terhad dalam penyediaan pemangkin logam alkali dalam bentuk makroskopik untuk memangkinkan tindak balas transesterifikasi untuk penghasilan biodiesel. Tujuan kerja ini adalah untuk membangunkan satu pemangkin heterogen dalam bentuk manik bulat milimetrik dan menilai prestasi dalam penghasilan biodiesel dari segi hasil biodiesel dan sifat penggunaan semula pemangkin. Kajian awal yang melibatkan sintesis manik dari serbuk boehmite komersil dengan kaedah sol-gel menggunakan dua pendekatan yang berbeza: proses pengelan integrasi dan proses granulasi titisan-minyak. Manik gel kemudian dikalsinasi untuk menghasilkan manik sokongan y-Al₂O₃. Didapati bahawa manik yang dihasilkan oleh proses granulasi titisan-minyak mempunyai kekuatan mekanikal yang lebih tinggi, oleh itu proses ini digunakan untuk penghasilan manik dalam kerja-kerja seterusnya. Manik sokongan y-Al₂O₃ diaktifkan dengan mengimpregnat dengan larutan KF NaNO3 dan KI, sebagai pemangkin dan kalsinasi bagi kali kedua pada pelbagai suhu. Ciri-ciri permukaan pemangkin sokongan dianalisis dengan menggunakan BET dan sifat kebesan, dinilai dari segi bilangan dan kekuatan tapak bes, dan dianalisis dengan menggunakan CO₂-TPD. Morfologi manik dikaji dengan menggunakan SEM. Pemangkin sokongan digunakan dalam tindak balas pengtransesteran dengan metanol pada suhu 60 °C dalam proses kelompok. Komposisi biodiesel dinilai dengan menggunakan kaedah kromatografi gas dan kesan ciri-ciri pemangkin, tempoh reaksi, nisbah molar metanol dengan minyak, penyaratan mangkin terhadap keputusan biodiesel juga dikaji. Sifat penggunaan semula pemangkin ditentukan dan sifat leachate pemangkin terhadap reaksi produk juga disahkan oleh XRF. Keputusan menunjukkan bahawa boehmite berubah kepada y-Al₂O₃pada 800 °C di mana struktur kristal telah dibentuk, seperti yang disahkan oleh XRD. Hasil FAME yang tertinggi diperolehi daripada pemangkin KI/y-Al₂O₃ adalah 98% selepas 4 jam tindak balas pada 60 °C dan hasil didapati berkadar secara langsung kebesan pemangkin. Ia boleh dikaitkan dengan penghasilan K₂O, KAlO₂ untuk pemangkin KI/y-Al₂O₃ seperti yang terbukti daripada XRD yang mungkin tapak aktif utama untuk reaksi pengtransesteran. Begitu juga dengan aktiviti pemangkin KF/Al₂O₃ adalah bertambah bagus apabila beban pemangkin ialah 0.30g $(q_{Cat}/q_{v-AI2O3})$ untuk NaNO₃/y-Al₂O₃dan 0.24g (g_{Cat}/g_{v-Al2O3}) untuk KF/y-Al₂O₃. Aktiviti tinggi terhadap reaksi pen gtransesteran adalah disebabkan oleh penghasilan Na₂O, NaAlO₂ pada pemangkin NaNO₃/ γ -Al₂O₃, K₂O, KAIF₄ pada pemangkin KF/ γ -Al₂O₃.

Keputusan FAME yang tinggi mungkin juga disebabkan oleh ciri-ciri mesoliang mangkin dengan diameter liang sekitar 7-9 nm di mana trigliserida molekul kecil dapat meresap ke dalam mangkin. Selain itu, mangkin ini menunjukkan kestabilan operasi yang baik dengan penghasilan biodiesel sebanyak 79% selepas 11 kitaran gunasemula berturut-turut. Sebagai kesimpulan, mangkin heterogen dalam bentuk manik-manik sfera dalam ukuran milimetric telah dihasilkan dengan potensi untuk diaplikasikan dalam penghasilan biodiesel.

TABLE OF CONTENTS

TITLE	i
DECLARATION	ii
CERTIFICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	ix
LIST OF TABLES	xiv
LIST OF FIGURES	xvi
LIST OF SYMBOLS	xxi

CHAPTER 1: INTRODUCTION

1.1	Research Background	1
1.2 🥖	Research Problem	5
1.3	Research Objective	6
1.4	Research scope	7
1.5	Significance of research	8
1.6	Research Methodology	10
1.7	Thesis Organization	13
	and a start of the	

CHAPTER 2: LITERATURE REVIEWS IT I MALAYSIA SABAH

2.1 2.2	Introduction Biodiesel		
	2.2.1	Non-catalyzed biodiesel production	17
	2.2.2	Homogeneous base-catalyzed processes	23
	2.2.3	Homogeneous acid-catalyzed processes	24
	2.2.4	Enzyme-catalyzed transesterification	27
	2.2.5	Catalyst support/carrier for heterogeneous catalysis	28
	2.2.6	Production of alumina (γ -Al ₂ O ₃) support particle	30
	2.2.7	Production of supported catalyst	31
		i Impregnation	33
		ii Precipitation	34
		iii Drying	35
		iv Calcination and activation	35
	2.2.8	Supported-catalysts employed for biodiesel production	36
	2.2.9	Preparation of supported materials	36
	2.2.10	Effect of process variables	38
		i Effect of molar ratio of alcohol to oil	38
		ii Effect of catalyst amount	39

		iii	Effect of reaction time	40
		iv	Effect of reaction temperature	41
		V	Effect of mixing intensity	43
		vi	Effect of particle size	44
		vii	Shape of particle	46
	2.2.11	Effe	ct of catalyst properties	46
		i	Effect of a base/acid catalyzed reaction	46
		ii	Solid basic catalysts	51
		iii	Solid acid catalysts	56
		iv	Effect of catalyst hydrophilicity and	61
			hydrophobicity	
		v	Effect of calcination temperature of catalyst	65
		vi	Effect of catalyst porosity	67
		vii	Effect of catalyst surface area	69
		viii	Effect of catalyst reusability	70
2.3	Conclusio	on		72

CHAPTER 3: MATERIALS AND METHODS

3.1	Introduct	tion	74
3.2	Determin	ation of rheological properties of the boehmite Sols	75
	3.2.1	Preparation of boehmite suspension	75
14	3.2.2	Particle size measurement	76
A	3.2.3	Measurement of rheological properties of boehmite suspensions	77
a	3.2.4	Determination of consistency index (k) and flow behaviour index (n)	78
	3.2.5	Determination of activation energy of flow	78
3.3	Productio	on and characterization of alumina particles	79
	3.3.1	Materials UNIVERSI I MALAYSIA SABAH	79
	3.3.2	Measurement of density, surface tension and viscosity of liquids	79
	3.3.3	Preparation of particles using integrated gelling	80
		process	
	3.3.4	Preparation of particles using oil drop granulation	81
		process	
	3.3.5	Determination of particle shape	82
	3.3.6	Determination of particle size	83
	3.3.7	Determination of surface morphology of particle	84
	3.3.8	Determination of structure of particle	85
	3.3.9	Determination of basicity of particle	86
	3.3.10	Determination of Surface area, pore size distribution	87
		and pore volume of particle	
	3.3.11	Determination of crush strength of particle	89
3.4	Productio catalyst	on and characterization of alumina beads supported	90
	3.4.1	Model catalysts	90
	3.4.2	Preparation of alumina beads supported catalyst	90

	3.4.3	Characterizations of particle-supported catalyst	92
3.5	Product	tion and analysis of biodiesel	92
	3.5.1	Materials	92
	3.5.2	Transesterification reaction conditions	93
	3.5.3	Analysis of biodiesel	93
3.6	Reusab	ility of catalyst	96
	3.6.1	Determination of chemical composition of reused catalyst particle	97

CHAPTER 4: DEVELOPMENT OF MILLIMETRIC PARTICLE FOR BIODIESEL PRODUCTION

4.1	Introdu	lction	98
4.2	Gelling	behaviour of the boehmite suspension	98
	4.2.1	Effect of pH on viscosity	99
	4.2.2	Proposed model	101
	4.2.3	Sedimentation study	102
	4.2.4	Effect of shear rate on viscosity of the suspension	103
	4.2.5	The effect of temperature on viscosity and flow activation energy	106
	4.2.6	Effect of pH on density	108
4.3	Develop	pment of millimetric particle	109
163	4.3.1	Integrated gelling process	110
101		i Shape of particles	110
121		ii Size of particles	112
2		iii Structure of particles	114
19		Surface area and porosity of particles	116
		v Mechanical strength and surface morphology of	119
	CARI	particles NIVERSITI MALAYSIA SARAH	
	4.3.2	Oil drop granulation process	121
		i Shape of particles	121
		ii Size of particles	128
		iii Structure of particles	130
		iv Surface area and porosity of particles	131
		 Mechanical strength and surface morphology of particles 	135
		4.4 Comparison of particle properties	138
		4.5 Summary	139
CHAPT	ER 5	PRODUCTION OF BIODIESEL USING SPHERICAL MILLIMETRIC γ-Al ₂ O ₃ CATALYST	

5.1	Introduction	141
5.2	Structure of catalyst	141
5.3	Properties of catalyst	145
	5.3.1 Basicity of catalyst	145
	5.3.2 Surface area and pore structure of catalyst	150
5.4	Biodiesel production	153

Optimization of process variables and reusability of KI/γ - Al_2O_3 catalyst		
5.5.1	Effect of reaction time on the FAME yield	157
5.5.2	Effect of oil and methanol ratio on the FAME yield	158
5.5.3	Catalyst reusability	159
Summa	ary	164
	Optimiz catalys 5.5.1 5.5.2 5.5.3 Summa	Optimization of process variables and reusability of KI/γ-Al ₂ O ₃ catalyst 5.5.1 Effect of reaction time on the FAME yield 5.5.2 Effect of oil and methanol ratio on the FAME yield 5.5.3 Catalyst reusability Summary

CHAPTER 8: CONCLUSIONS

6.1	Gelling behaviour of the boehmite suspension	165		
6.2	Synthesis and characterization of alumina particles	165		
6.3	Biodiesel production using alumina beads supported catalysts	166		
6.4	Suggestions for further work	167		
REFERENCES		168		
APPENDIX				

APPENDIX

LIST OF TABLES

Critical temperatures and critical pressures of various alcohols	18
Summarization of non-catalyzed biodiesel production	20
Common carriers employed for transesterification reaction	29
Heterogeneous catalysts employed for transesterification reactions	37
FAME yield using basic catalysts in the transesterification of vegetables oil	47
Summarization of biodiesel synthesis using acidic heterogeneous catalyst	57
Sulfonic modified mesoporous hydrophobic groups	62
The chemical compositions of AlOOH	75
The alginate-boehmite gel properties and particle preparation parameters	80
Impregnation of millimetric catalyst	91
Characterizations of particle-supported catalyst	92
Process variables and optimization of biodiesel production	93
The flow characteristics parameter estimated from the shear rate and shear stress data of 30% (w/v) boehmite suspension prepared from various pH at 25 °C.	105
Influence of pH on gelation at various temperatures of $30\%(w/v)$ boehmite suspensions.	108
The porosity and mechanical properties of beads	118
Properties of the boehmite gel	121
The porous and mechanical properties of the air-dried and calcinated beads	133
Comparison of surface area of the particles	135
Comparison of particle properties	137
	Critical temperatures and critical pressures of various alcohols Summarization of non-catalyzed biodiesel production Common carriers employed for transesterification reaction Heterogeneous catalysts employed for transesterification reactions FAME yield using basic catalysts in the transesterification of vegetables oil Summarization of biodiesel synthesis using acidic heterogeneous catalyst Sulfonic modified mesoporous hydrophobic groups The chemical compositions of AlOOH The alginate-boehmite gel properties and particle preparation parameters Impregnation of millimetric catalyst Characterizations of particle-supported catalyst Process variables and optimization of biodiesel production The flow characteristics parameter estimated from the shear rate and shear stress data of 30% (w/v) boehmite suspension prepared from various pH at 25 °C. Influence of pH on gelation at various temperatures of 30%(w/v) boehmite suspensions. The porosity and mechanical properties of beads Properties of the boehmite gel The porous and mechanical properties of the air-dried and calcinated beads Comparison of surface area of the particles Comparison of particle properties

Table 5.1	CO ₂ -TPD spectrum of millimetric γ -Al ₂ O ₃ particles with different catalyst loadings.	149
Table 5.2	BET surface area and pore structure of millimetric $\gamma\text{-Al}_2O_3$ particles with different catalyst loadings.	152
Table 5.3	Comparison of biodiesel yields	155
Table 5.4	Composition of reused KI/ γ -Al ₂ O ₃	161
Table 5.5	Optimized parameter for biodiesel production of KI/γ - Al_2O_3	161

LIST OF FIGURES

Figure 1.1	Overall transesterification reaction.	2
Figure 1.2	Malaysia and Indonesia palm oil production.	9
Figure 1.3	Overall process flow of research.	12
Figure 2.1	Summary of literature review	16
Figure 2.2	Classification of catalyst used for biodiesel production.	18
Figure 2.3	Hydrolysis of ester and formation of soap by the presence of water.	23
Figure 2.4	General preparation scheme of supported catalyst.	32
Figure 2.5	Schematic representation of the supported catalytic particles; (a) porous support, (b) non-porous support.	33
Figure 2.6	Changes in yield percentage of methyl esters as treated with supercritical methanol at different temperatures as a function of reaction temperature.	42
Figure 2.7	Reaction route of transesterification of triglyceride with methanol using CaO.	52
Figure 2 <mark>.8</mark>	Ester alcoholysis mechanism proposed on calcium methoxide catalysts.	53
Figure 2.9	Structure of brønsted acid and lewis acid sites on sulphated titania.	60
Figure 2.10	Strategy of synthesis for the preparation of PMO's materials.	64
Figure 2.11	Percentage of FAME yields obtained by different calcination temperature in the transesterification reaction of palm kernel oil. (methanol/oil molar ratio,65; catalyst amount ,10 wt% based on oil weight; temperature, 60 °C; time 3 h).	65
Figure 3.1	Summary of materials and methods.	74
Figure 3.2	Sonication apparatus. 1. Microprocessor based control unit of ultrasonic; 2. Ultrasound horn; 3. Sample used for sonication.	76

- Figure 3.3 Rheological properties measurement apparatus. 1. Viscometer 77 (Brookfield Engineering Laboratories, Inc., USA. Model: Programmable DV III+); 2. Water bath with circulation pump (Thermo/Haake DC30-K10).
- Figure 3.4 Experimental set-up for production of boehmite-alginate 81 particles.
- Figure 3.5 Experimental set-up for production of boehmite-starch 82 particles.
- Figure 3.6 The X-rays scattered by atoms in an ordered lattice interfere 86 constructively in directions given by Bragg's law.
- Figure 3.7 Gas chromatogram of (a) standard methyl ester and (b) 96 experimental biodiesel product.
- Figure 4.1 The particle size distribution of boehmite powder 99
- Figure 4.2 Effect of pH on viscosity for different concentration at 25 ^oC 100 and proposed gelling model depicting the morphological changes occurring in a boehmite suspensions on the controlled of pH.
- Figure 4.3 Boehmite gel structure. 102
- Figure 4.4 Settling behavior of 30 %(w/v) boehmite suspensions at 103 different pH values.
- Figure 4.5 Relationship between shear rate and viscosity of 30 %(w/v) 104 boehmite suspensions for different pH at 25 °C.
- Figure 4.6 Shows the Power Law plots using the shear rate vs. data for 106 pH from 1.0 to 7.6 at 30 % (w/v) of boehmite suspension at $25 \ ^{\circ}C$.
- Figure 4.7 Viscosity of boehmite suspension of 30 %(w/v) at different pH 107 as a function of temperature.
- Figure 4.8 Effect of pH on the density of different concentrations 109 boehmite suspensions at 25 °C.
- Figure 4.9 Effect of CaCl₂ concentration on sphericity factor of the 110 alginate-boehmite beads.
- Figure 4.10 Optical photographs of the beads at different CaCl₂ 112 concentrations
- Figure 4.11 Beads size at different preparation steps. 113

- Figure 4.12 Optical photographs of the spherical beads calcined at different 115 temperatures for 3 h.
- Figure 4.13 XRD patterns of the sample after calcination for 3 h at various 116 temperatures: (a) 300 °C (b) 500 °C (c) 800 °C.
- Figure 4.14 Nitrogen adsorption-desorption isotherms for (a) air-dried and 117 (b) calcined (800 °C) beads.
- Figure 4.15 Pore size distribution of the (a) air-dried and (b) calcined 119 beads.
- Figure 4.16 Scanning electron micrograph of the beads showing the cross- 120 sectioned surface morphology, (a) air dried beads, and (b) calcined beads.
- Figure 4.17 Photographs of the progression of droplet in air phase (a) 124 undetached drop holding at the tip of the needle; (b) droplet just after the disintegrates and (c) further progression of droplet towards the downward direction. The photograph obtained with various initial boehmite concentrations; I. 13% (w/v), II. 16% (w/v), III. 19% (w/v), IV. 22% (w/v), V. 25% (w/v), VI. 28% (w/v).
- Figure 4.18 Photographs of the progression of droplet in paraffin oil layer 126 phase; (a) near to the surface of oil layer, (b) away from the surface of oil layer and (c) further continues to move in the downward direction. The photograph obtained with various initial boehmite concentrations (g/L); I. 13% (w/v), II. 16% (w/v), III. 19% (w/v), IV. 22% (w/v), V. 25% (w/v), VI. 28% (w/v).
- Figure 4.19 Optical photograph shows the effect of boehmite concentration 127 on sphericity factor of the bead.
- Figure 4.20 Effect of boehmite concentration on sphericity factor of the 128 beads.
- Figure 4.21 Changes in bead size after each preparation steps (Boehmite 129 concentration=16% (w/v) (for spherical beads).
- Figure 4.22 XRD pattern of the spherical beads after calcination for 3 h at 131 various temperatures: (a) 300 °C (b) 500 °C (c) 800 °C.
- Figure 4.23 N₂ adsorption–desorption isotherms of (a) air-dried beads and 132 (b) calcined beads.

- Figure 4.24 BJH pore size distribution curves of (a) air-dried and (b) 134 calcined beads.
- Figure 4.25 Scanning electron micrograph of the beads showing the cross- 136 sectioned surface morphology at different magnifications; (a-b) air dried beads, and (c-d) calcined beads.
- Figure 4.26 Weak forces of attraction in the boehmite gelling process 139
- Figure 4.27 Summary of the development of millimetric particle for 140 biodiesel production
- Figure 5.1 XRD spectra of γ -Al₂O₃ particles with different catalyst loading 142 (a) 0.06g g_{KI}/g_{γAl2O3}, (b) 0.15g_{KI}/g_{γAl2O3}, (c) 0.24g_{KI}/g_{γAl2O3}, (d) 0.30g_{KI}/g_{γAl2O3}, (e) 0.33g_{KI}/g_{γAl2O3}.
- Figure 5.2 XRD spectrum of KF/ γ -Al₂O₃ catalyst with different KF loadings 143 (a) 0.06 g/g γ -Al₂O₃ (b) 0.15 g/g γ -Al₂O₃ (c) 0.24 g/g γ -Al₂O₃ (d) 0.30 g/g γ -Al₂O₃ (e) 0.33 g/g γ -Al₂O₃.
- Figure 5.3 XRD spectrum of NaNO₃/ γ -Al₂O₃ catalyst with different NaNO₃ 145 loadings: (a) 0.06 g/g γ -Al₂O₃ (b) 0.15 g/g γ -Al₂O₃ (c) 0.24 g/g γ -Al₂O₃ (d) 0.30 g/g γ -Al₂O₃ (e) 0.33 g/g γ -Al₂O₃.
- Figure 5.4 CO₂-TPD spectra of γ -Al₂O₃ particles with different catalyst 146 loading (a) 0.06 g_{KI}/g_{γAl2O3}, (b) 0.15g_{KI}/g_{γAl2O3}.(c) 0.24g_{KI}/g_{γAl2O3}, (d) 0.30g_{KI}/g_{γAl2O3}, (e) 0.33g_{KI}/g_{γAl2O3}.
- Figure 5.5 CO₂-TPD profiles of KF/ γ -Al₂O₃ catalyst with different KF 147 loadings: (a) 0.06 g/g γ -Al₂O₃ (b) 0.15 g/g γ -Al₂O₃ (c) 0.24 g/g γ -Al₂O₃ (d) 0.30 g/g γ -Al₂O₃ (e) 0.33 g/g γ Al₂O₃.
- Figure 5.6 CO₂-TPD profiles of NaNO₃/ γ -Al₂O₃ catalyst with different 148 NaNO₃ loadings: (a) 0.06 g/g γ -Al₂O₃ (b) 0.15 g/g γ -Al₂O₃ (c) 0.24 g/g γ -Al₂O₃ (d) 0.30 g/g γ -Al₂O₃ (e) 0.33 g/g γ -Al₂O₃.
- Figure 5.7 N_2 adsorption-desorption isotherm of the millimetric γ -Al₂O₃ 150 particles.
- Figure 5.8 BJH pore size distribution (b) of the millimetric γ -Al₂O₃ 151 particles.
- Figure 5.9 Effect of KI and NaNO₃ catalyst loadings on FAME yield. 154 Reaction conditions: methanol/oil molar ratio of 14:1, catalyst amount 0.6 g (4 wt%, g_{cat} ./ g_{oil} , calcined at 500 °C), reaction temperature of 60 °C, reaction time of 4 h.

- Figure 5.10 Effect of reaction time on FAME yield. Reaction conditions: 158 methanol/oil molar ratio 14:1, catalyst loading $0.24g_{KL}/g_{\gamma AI2O3}$, reaction temperature 60 °C, catalyst amount 0.6g (4 wt.%, g_{Cat}/g_{oil}) and catalyst calcined at 500 °C.
- Figure 5.11 Influence of methanol/oil molar ratio on the FAME yield. 159 reaction conditions: catalyst loading, $0.24g_{KI}/g_{V-AI2O3}$, reaction temperature 60 °C, reaction time 4 h, catalyst amount .6g (4 wt%, g_{cat} ./ g_{oil}), calcined at 500 °C.
- Figure 5.12 Reusability of KI/γ - Al_2O_3 catalyst in transesterification of palm 160 oil. Reaction conditions: methanol/oil molar ratio 14:1, catalyst loading $0.24g_{KI}/g_{\gamma Al2O3}$, reaction temperature 60 °C, reaction time 4 h, catalyst amount 0.6g (4 wt.%, g_{Cat}/g_{oil}) and catalyst calcined at 500 °C.
- Figure 5.13 Optical photograph of KI/γ - Al_2O_3 catalyst (a) before and (b) 162 after use in transesterification of palm oil with methanol
- Figure 5.14 Summary of the biodiesel production using millimetric catalyst 164

LIST OF SYMBOLS

- A Temperature dependent pre-exponential term
- A_{is} Area of internal standard
- $A_{iss} \qquad \mbox{Area of internal standard in the sample}$
- A_{RS} Area of reference standard
- A_{FCS} Area of individual FAMEs compound in the sample.
- C_{is} Concentration of internal standard in reference standard solution.
- C_{iss} Concentration of internal standard in the sample
- C_{RS} Concentration of reference standards in solution
- C Equilibrium constant of adsorption in the first adsorption layer at the measuring temperature.
- d_a Diameter of the particle after air-drying (mm)
- d_f Diameter of the particle while falling (mm)
- d_g Diameter of the particle after gelling (mm)
- d_{max} Maximum diameter passing through a beads centroid (mm)
- d_p Overall particle diameter (mm)
- d_c Diameter of the particle after calcining (mm)
- d_{per} Diameter perpendicular to d_{max} passing through the bead centroid (mm)
- d_T Tip diameter (mm)
- g Gravitational force (m/s⁻²)
- k_a Shrinkage factor of particle after air-drying
- k_c Shrinkage factor of particle after calcining
- k_g Shrinkage factor of particle after gelling

- k_{LF} Liquid lost factor
- k Consistency index (pa.s)
- k Overall size correction factor (mm)
- N_A Avogadro's number
- n Flow behavior index
- Po Saturated vapor pressure of nitrogen
- P Equilibrium pressure
- R Gas constant (8.314 J/mol.K)
- RF_{RS} Response factor of the respective reference standard
- T Reaction temperature
- V_{ads} Amount of adsorbed gas
- V_m Amount of adsorbed gas at one monolayer
- γ Shear rate per second (s⁻¹)
- γ Surface tension (mN/m)
- η Viscosity of the suspension (mPa.s)
- θ Angle between the incoming X-rays and the normal to the reflecting lattice plane.
- λ Wave length of X-rays.
- ρ Density (kg/m³) of the suspensions
- σ Molecular cross sectional area for nitrogen
- τ Shear stress in dyne per cm²

CHAPTER 1

INTRODUCTION

1.1 Research Background

The enormous worldwide use of diesel fuel and the rapid depletion of crude oil reserves have prompted keen interest and exhaustive research into suitable alternative fuel. Currently, attention is focused on human and environmental safety, in relation to the release of hydrocarbons into the environment. Petroleum derivatives contain benzene, toluene, ethylbenzene and xylene isomers the major components of fossil fuel, which are hazardous substances subject to regulations in many parts of the world (Serrano *et al.*, 2006). As a consequence, the demand of green energy is increasingly gaining international attention. When green energy is used, the primary objective is to reduce air pollution, and minimize or eradicate completely any impacts to the environment (Burgess, 1990). Among many possible sources, apparently, biodiesel is a viable alternative energy to conventional diesel fuel, which is of environmental concern and is under legislative pressure to be replaced by biodegradable substitutes.

UNIVERSITI MALAYSIA SABAH

The most common way to produce biodiesel is by transesterification which refers to a catalyzed chemical reaction involving vegetable oil and an alcohol to yield fatty acid alkyl esters (biodiesel) and glycerol (Freedman *et al.*, 1984; Lottero *et al.*, 2006), as shown in Figure 1.1. Triglycerides, as the main component of vegetable oil, consist of three long chain fatty acids esterified to a glycerol structure. When triglycerides react with an alcohol (e.g., methanol), the three fatty acid chains are released from the glycerol skeleton and combine with the methanol to yield fatty acid methyl esters (FAME). Glycerol is produced as a by-product. The transesterification reaction can be carried out using homogeneous, heterogeneous or enzymatic catalysts (Lopez *et al.*, 2005; Dossin *et al.*, 2006; Jenannathan *et al.*, 2008).