STRATIGRAPHY AND SEDIMENTOLOGY OF KLIAS PENINSULA, SABAH

DAYANG NOR ASYILLA BINTI ABANG ABDULLAH

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITY MALAYSIA SABAH 2014

PUMS 99:1

UNIVERSITI MALAYSIA SABAH

BORANG PI	ENGESAHAN TESIS
JUDUL :	
IJAZAH :	
SAYA :	SESI PENGAJIAN :
(HURUF BESAR)	
Mengaku membenarkan tesis *(LPSM/Sarjana/Dokto Sabah dengan syarat-syarat kegunaan seperti berikut:	r Falsafah) ini disimpan di Perpustakaan Universiti Malaysia -
 Tesis adalah hak milik Universiti Malaysia Saba Perpustakaan Universiti Malaysia Sabah diben Perpustakaan dibenarkan membuat salinan t tinggi. 	ah. Iarkan membuat salinan untuk tujuan pengajian sahaja. esis ini sebagai bahan pertukaran antara institusi pengajian
4. Sila tandakan (/)	mat yang berdarjah keselamatan atau kepentingan Malaysia
seperti yang termaktu TERHAD (Mengandungi maklu mana penyelidikan di	ıb di AKTA RAHSIA RASMI 1972) mat TERHAD yang telah ditentukan oleh organisasi/badan di jalankan)
TIDAK TERHAD	Disahkan oleh:
 (TANDATANGAN PENULIS) Alamat Tetap:	(TANDATANGAN PUSTAKAWAN)
 	(NAMA PENYELIA) TARIKH:
Catatan: *Potong yang tidak berkenaan. *Jika tesis ini SULIT dan TERHAD, sila lampirkan sur menyatakan sekali sebab dan tempoh tesis ini perlu *Tesis dimaksudkan sebagai tesis bagi Ijazah Dokto bagi pengajian secara kerja kursus dan Laporan Pro	at daripada pihak berkuasa/organisasi berkenaan dengan u dikelaskan sebagai SULIT dan TERHAD. r Falsafah dan Sarjana Secara Penyelidikan atau disertai ıjek Sarjana Muda (LPSM).

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

17 July 2014

Dayang Nor Asyilla binti Abang Abdullah PS 2010-8217

CERTIFICATION

- NAME : DAYANG NOR ASYILLA BINTI ABANG ABDULLAH
- MATRIC NO. : **PS 2010-8217**
- TITLE : STRATIGRAPHY AND SEDIMENTOLOGY OF KLIAS PENINSULA, SABAH
- DEGREE : MASTER OF SCIENCE (GEOLOGY)
- VIVA DATE : 07 JULY 2014

ACKNOWLEDGEMENT

With the name of Allah, for under His mercy and blessings, I have the willing to start everything and the determination to finish this thesis.

First of all, I would like to deeply thank my supervisor, Prof. Dr. Sanudin Haji Tahir for his guidance and knowledge throughout the completion of this thesis. You are priceless and irreplaceable. To other lecturers; Associate Prof. Dr. Baba Musta, Mdm. Hjh. Hennie Fitria, Mr Junaidi Asis and Mr Mohamed Ali Yusof, thank you for the suggestions to further improve this thesis.

Deepest appreciation to Mr. Jalaludin Majalip, Mr. Sanin Awang, Mdm. Arshalina Victoriano, Ms Lyssa Badimin, Mr. Farhan, Mr. Azli and Ms. Mala for their assistance during my time on the laboratory.

Special thanks to Danish Kilus and Masnizah Salleh for their patience, time and support. No word can't express how grateful I am to have both of you throughout this journey. I also would like to thank Cassidy Aloh, Shahrul Bahro, Muhammad Abdullah and Fauziah Hanis for their help during the fieldwork.

UNIVERSITI MALAYSIA SABAH

To my parents; Abang Abdullah Abang Haron and Nazlina Sahari, thank you so much for the love and for always being there for me. To my siblings; Doliana, Norehan and Zulkarnain, thank you for the support and help. I love all of you so much. To my uncle and aunt; Wan Sekeran and Roslinah Mahmud, thank you for everything. And again, to you; the owner of my heart, thank you for every single thing you did for me. I love you.

Thank you to anyone whom I didn't stated, I took the blame for every flaw in this thesis and I am grateful for every help given to me. Wassalam.

ABSTRACT

The sedimentary rocks of Klias Peninsula consist of five formations. The oldest formation is the Crocker Formation (Upper Eocene to Lower Miocene) which has two lithologic units; the thick sandstone beds interstratified with thin sandstone and shale unit and the sandstone interbedded with shale unit. Second formation is the Temburong Formation (Lower Oligocene to Lower Miocene). It has one lithologic unit which is the thick shale interstratified with thin sandstone beds unit. Next is the Setap Shale Formation (early Middle Miocene). It has one lithologic unit which is the thick shale interstratified with thin siltstone and limestone unit. The fourth formation is the Belait Formation (Upper Miocene). It also has one lithologic unit which is the crossbedded sandstone, shale and conglomerates unit. The youngest formation is the Liang Formation. The lithologic unit for this formation is the thick conglomerates unit. The Crocker Formation is proven to have interfingering contacts with the Temburong Formation while the Belait Formation overlain the Setap Shale Formation unconformably and the Liang overlain the Belait Formation unconformably. In Formation terms of sedimentology, there are twelve lithofacies on Klias Peninsula. There are four lithofacies for the Crocker Formation which are the $T_a - T_e$ beds, $T_b - T_e$ beds, $T_c - T_e$ T_e beds and $T_d - T_e$ beds. The Temburong Formation has one lithofacies which is the T_e beds. The lithofacies for the Setap Shale Formation is the interbedded shale with thin siltstones. There are five lithofacies for the Belait Formation which are the basal conglomerate, the hummocky crossbedded sandstone, the swaleyhummocky crossbedded sandstone, the swaley crossbedded sandstone interbedded with thick mudstone and the swaley crossbedded sandstone. Liang Formation has one lithofacies which is the graded conglomerate. There are six facies associations in Klias Peninsula which are the channel – levee association, the lobe – migrating lobe association, the basin plain association, the inner shelf association, the shallow marine association and the fluvial unit association. The Crocker and Temburong formations have been deposited at the deep marine environment, the Setap Shale and Belait formations have been deposited at the shallow marine environment and the Liang Formation has been deposited at the fluvial environment.

ABSTRAK

STRATIGRAFI DAN SEDIMENTOLOGI SEMENANJUNG KLIAS, SABAH.

Batuan sedimen di Semenaniung Klias terdiri daripada lima formasi. Formasi tertua adalah Formasi Crocker (Eosen Atas hingga Miosen Bawah) yang terdiri daripada dua unit litologi; unit lapisan batu pasir tebal berselanglapis dengan batu pasir nipis dan syal dan unit batu pasir berselanglapis dengan syal. Formasi kedua adalah Formasi Temburong (Oligosen Bawah hingga Miosen Bawah). Formasi ini mempunyai satu unit litologi iaitu unit syal tebal berselanglapis dengan lapisan batu pasir nipis. Seterusnya adalah Formasi Syal Setap (awal Miosen Tengah). Formasi ini mempunyai satu unit litologi iaitu unit syal tebal berselanglapis dengan batu lodak nipis dan batu kapur. Formasi keempat adalah Formasi Belait (Miosen Atas). Formasi ini juga mempunyai satu unit litologi iaitu unit batu pasir berlapisan silang, syal dan konglomerat. Formasi termuda ialah Formasi Liang. Unit litologi bagi formasi ini adalah unit konglomerat tebal. Formasi Crocker terbukti mempunyai hubungan berjejari dengan Formasi Temburong manakala Formasi Belait menindih Formasi Setap Syal secara tidak selaras dan Formasi Liang menindih Formasi Belait secara tidak selaras. Dari segi sedimentologi, terdapat dua belas litofasies di Semenanjung Klias. Terdapat empat litofasies bagi Formasi Crocker iaitu lapisan $T_a - T_e$, lapisan $T_b - T_e$, lapisan $T_c - T_e$ dan lapisan $T_d - T_e$. Formasi Temburong mempunyai satu litofasies iaitu lapisan T_e. Litofasies bagi Formasi Syal Setap adalah selang lapis syal dengan batu lodak nipis. Terdapat lima litofasies bagi Formasi Belait jaitu konglomerat dasar, batu pasir berlapisan silang jenis hummocky, batu pasir berlapisan silang jenis swaley - hummocky, selang lapis batu lumpur tebal dengan batu pasir berlapisan silang jenis swaley dan batu pasir berlapisan silang jenis swaley. Formasi Liang mempunyai satu litofasies iaitu konglomerat bergred. Terdapat enam asosiasi fasies di Semenanjung Klias iaitu asosiasi alur – tetambak, asosiasi cuping – cuping migrasi, asosiasi dataran lembangan, asosiasi laut cetek dan asosiasi unit sungai. Formasi Crocker dan Formasi Temburong telah diendapkan di sekitaran laut dalam, Formasi Syal Setap dan Formasi Belait telah diendapkan di sekitaran laut cetek dan Formasi Liang telah diendapkan di sekitaran sungai.

LIST OF CONTENTS

TITL	E		i
DECI	ARATIO)N	ii
CERT	IFICAT	ION	iii
ACK	NOWLED	GEMENT	iv
ABS	RACT		v
ABS	TRAK		vi
LIST	OF CON	TENTS	vii
LIST	OF TAB	LES	xiv
LIST	OF FIGL	JRES	xvi
LIST	OF PHO	TOGRAPHS	xx
LIST	OF PHO	TOMICROGRAPHS	xxv
LIST	OF PLAT		xxix
CHAI	PTER 1:	INTRODUCTION	
1.1	Researc	h Background	1
1.2	Researc	h Objectives UNIVERSITI MALAYSIA SABAH	2
1.3	Researc	h Importance	2
1.4	Researc	h Area	3
	1.4.1	Location	3
	1.4.2	Climate of the Research Area	7
	1.4.3	Population of the Research Area	7
	1.4.4	Economic Activity and Land Uses	8
1.5	Researc	h Limitations and Problems	8
CHAI	PTER 2:	METHODOLOGIES	
2.1	Introduc	ction	11
2.2	Early St	age Researches	11
2.3	Material	s	13
2.4	Fieldwork Researches 1		

2.4 Fieldwork Researches

2.5	Laboratory Researches			
	1.5.1	14		
	1.5.2 Petrographic Analyses of the Thin Sections			
	1.5.3	Grain Size Analyses	17	
	1.5.4 Fossils Extraction		19	
	1.5.5	Scanning Electron Microscopy (SEM)	20	
2.6	Interpretations and Analyses Processes			
2.7	Dissertation Writing			

CHAPTER 3: LITERATURE REVIEW

3.1	Introdu	ction		22
	3.1.1	Tect	onic Framework of the Research Area	22
	3.1.2	Histo	prical Geology of the Research Area	24
		a.	Upper Eocene until Early Lower Miocene	24
	AT	b.	Early Lower Miocene until Early Middle Miocene	25
	()	c.	Early Middle Miocene until Late Miocene	25
ß		d.	Pliocene	25
Z		e.	Quaternary	25
3.2	Historica	al Dev	elopment of Stratigraphical Terminology and	26
	Lithostra	atigra	phic Units of the Klias Peninsula	
3.3	Stratigra	aphy F	Researches of the Study Area	29
3.4	Sedimer	ntolog	y Researches of the Study Area	30
	3.4.1	Rock	CUnits of the Research Area	30
		a.	Crocker Formation	31
		b.	Temburong Formation	32
		с.	Setap Shale Formation	34
		d.	Belait Formation	35
		e.	Liang Formation	36
3.5	Structur	al Geo	blogy of the Research Area	36

CHAPTER 4: STRATIGRAPHY OF KLIAS PENINSULA

4.1	Introduction	38
4.2	Crocker Formation	38

	4.2.1	Introduction	38
	4.2.2	Type Section and Type Locality	40
	4.2.3	Stratigraphic Relations	41
	4.2.4	Formation Boundary	42
	4.2.5	Fossils and Age	43
	4.2.6	Regional Variations and Correlations	45
	4.2.7	Stratigraphic Sequence and Distribution	46
4.3	Temburong	g Formation	52
	4.3.1	Introduction	52
	4.3.2	Type Section and Type Locality	52
	4.3.3	Stratigraphic Relations	52
	4.3.4	Formation Boundary	53
	4.3.5	Fossils and Age	54
	4.3.6	Regional Variations and Correlations	55
	4.3.7	Stratigraphic Sequence and Distribution	55
4.4	Setap Shal	e Formation	58
E	4.4.1	Introduction	58
Z	4.4.2	Type Section and Type Locality	59
1	4. <mark>4.</mark> 3	Stratigraphic Relations	59
	4.4.4	Formation Boundary RSITI MALAYSIA SABAH	60
	4.4.5	Fossils and Age	62
	4.4.6	Regional Variations and Correlations	63
	4.4.7	Stratigraphic Sequence and Distribution	65
4.5	Belait Form	nation	68
	4.5.1	Introduction	68
	4.5.2	Type Section and Type Locality	68
	4.5.3	Stratigraphic Relations	68
	4.5.4	Formation Boundary	69
	4.5.5	Fossils and Age	70
	4.5.6	Regional Variations and Correlations	70
	4.5.7	Stratigraphic Sequence and Distribution	71
4.6	Liang Form	nation	75
	4.6.1	Introduction	75

	4.6.2	Type Section and Type Locality	75
	4.6.3	Stratigraphic Relations	77
	4.6.4	Formation Boundary	77
	4.6.5	Fossils and Age	78
	4.6.6	Regional Variations and Correlations	78
	4.6.7	Stratigraphic Sequence and Distribution	79
4.7	Discussion		82

CHAPTER 5: SEDIMENTOLOGY OF KLIAS PENINSULA

5.1	Introduction	n	85
5.2	Crocker For	mation	89
	5.2.1	Field Observations	89
	5.2.2	Rock Units and Lithofacies	90
		a. Lithofacies C1: The $T_a - T_e$ Beds	91
	AT I	b. Lithofacies C2: The $T_b - T_e$ Beds	93
	g	c. Lithofacies C3: The $T_c - T_e$ Beds	96
ß		d. Lithofacies C4: The $T_d - T_e$ Beds	99
Z	5.2.3	Facies Associations	102
L		a. Lithofacies Association I (LA I): The Channel	102
	ABA	- Levee Association TIMALAYSIA SABAH	
		b. Lithofacies Association II (LA II): The Lobe –	104
		Migrating Lobe Association	
	5.2.4	Sedimentary Environment	106
		a. Channel	107
		b. Lobe	107
		c. Migrating Lobe	107
		d. Levee	107
	5.2.5	Grain Size Analyses	108
		a. Lithofacies C1: The $T_a - T_e$ Beds	108
		b. Lithofacies C2: The $T_b - T_e$ Beds	111
		c. Lithofacies C3: The $T_c - T_e$ Beds	115
	5.2.6	Petrographic Analyses and Sandstone's Provenance	118
		a. Lithofacies C1: The $T_a - T_e$ Beds	119

			i. Detrital Mineralogy	120
			ii. Authigenic Material	121
		b.	Lithofacies C2: The $T_b - T_e$ Beds	122
			i. Detrital Mineralogy	123
			ii. Authigenic Material	125
		с.	Lithofacies C3: The $T_c - T_e$ Beds	126
			i. Detrital Mineralogy	127
			ii. Authigenic Material	127
		d.	Lithofacies C4: The $T_d - T_e$ Beds	129
5.3	Temburon	g Forma	ation	130
	5.3.1	Field	Observations	130
	5.3.2	Rock	Units and Lithofacies	131
	5.3.3	Facies	s Associations	134
	5.3.4	Sedim	nentary Environment	135
5.4	Setap Shal	e Form	ation	136
	5.4.1	Field	Observations	136
Æ	5.4.2	Rock	Units and Lithofacies	137
Z	5.4.3	Facies	s Associations	141
1	5. <mark>4.</mark> 4	Sedim	nentary Environment	143
	5.4.5	Petro	graphic Analyses SITI MALAYSIA SABAH	143
5.5	Belait Form	nation		144
	5.5.1	Field	Observations	144
	5.5.2	Rock	Units and Lithofacies	145
		a.	Lithofacies B1: The Basal Conglomerate	145
		b.	Lithofacies B2: The Hummocky	149
			Crossbedded Sandstone	
		c.	Lithofacies B3: The Swaley – Hummocky	153
			Crossbedded Sandstone	
		d.	Lithofacies B4: The Swaley Crossbedded	157
			Sandstone Interbedded with Thick	
			Mudstone	
		e.	Lithofacies B5: The Swaley Crossbedded	161
			Sandstone	

5.5.3	Facie	es Associations	165
5.5.4	Sedir	mentary Environment	170
	a.	Inner Shelf	170
	b.	Shoreface	170
5.5.5	Grair	n Size Analyses	171
	a.	Lithofacies B2: The Hummocky	171
		Crossbedded Sandstone	
	b.	Lithofacies B3: The Swaley – Hummocky	174
		Crossbedded Sandstone	
	c.	Lithofacies B4: The Swaley Crossbedded	178
		Sandstone Interbedded with Thick	
		Mudstone	
	d.	Lithofacies B5: The Swaley Crossbedded	181
		Sandstone	
5.5.6	Petro	ographic Analyses and Sandstone's Provenance	186
19th			
/ 💻	a.	Lithofacies B2: The Hummocky	186
		Crossbedded Sandstone	
Lev M		i. Detrital Mineralogy	187
	S/	ii. Authigenic Material AVSIA SARAH	188
	b.	Lithofacies B3: The Swaley – Hummocky	188
		Crossbedded Sandstone	
		i. Detrital Mineralogy	190
		ii. Authigenic Material	190
	c.	Lithofacies B4: The Swaley Crossbedded	192
		Sandstone Interbedded with Thick	
		Mudstone	
		i. Detrital Mineralogy	193
		ii. Authigenic Material	194
	d.	Lithofacies B5: The Swaley Crossbedded	196
		Sandstone	
		i. Detrital Mineralogy	197
		ii. Authigenic Material	19

5.6	Liang	Formation	200
	5.6.1	Field Observations	200
	5.6.2	Rock Units and Lithofacies	201
	5.6.3	Facies Associations	204
	5.6.4	Sedimentary Environment	206
5.7	Paleod	current Analyses	207
	a.	Lithofacies C1	208
	b.	Lithofacies C2	208
	c.	Lithofacies C3	208
	d.	Lithofacies B2	208
	e.	Lithofacies B3	208
	f.	Lithofacies B4	209
	g.	Lithofacies B5	210
5.8	Sands	tone Provenance	211
5.9	Depos	itional Phases	213
	a.	Phase One	214
ß	b.	Phase Two	215
Z	с.	Phase Three	215
8	d.	Phase Four	215
	e.	Phase Five UNIVERSITI MALAYSIA SABAH	215
	f.	Phase Six	216

CHAPTER 6: CONCLUSIONS

6.1	Introduction	217
6.2	Stratigraphy of the Research Area	217
6.3	Sedimentology of the Research Area	218
6.4	Sandstone Provenance and Depositional Environment of the	222
	Research Area	
6.5	Suggestions	222

REFERENCES

223

LIST OF TABLES

		Page
Table 1.1	The chosen localities of the Klias Peninsula for every formation	5
Table 2.1	Interpretation for the value of standard deviation (Folk, 1980)	18
Table 2.2	Interpretation for the value of skewness (Folk, 1980)	19
Table 2.3	Interpretation for the value of kurtosis (Folk, 1980).	19
Table 3.1	Stratigraphy of Labuan and Klias Peninsula (Modified after Heybroek and Crew, 1954 in Wilson & Wong, 1964)	27
Table 5.1	Quantitative Terms Used in Description of Stratification (Boggs, 2001) and Cross-stratification (McKee and Weir, 1953)	86
Table 5.2	Grain size distribution of Lithofacies C1 of the Crocker Formation (Sample C1a)	109
Table 5.3	Grain size distribution of Lithofacies C1 of the Crocker	110
Table 5.4	Summary result for grain size analysis of the Lithofacies C1 (classification is based on Folk, 1980)	111
Table 5.5	Grain size distribution of Lithofacies C2 of the Crocker Formation (Sample C2a)	112
Table 5.6	Grain Size Distribution of Lithofacies C2 of the Crocker Formation (Sample C2b)	113
Table 5.7	Summary result for grain size analysis of the Lithofacies C2 (classification is based on Folk, 1980)	114
Table 5.8	Grain Size Distribution of Lithofacies C3 of the Crocker Formation (Sample C3a)	115
Table 5.9	Grain size distribution of Lithofacies C3 of the Crocker Formation (Sample C3b)	116
Table 5.10	Summary result for grain size analysis of the Lithofacies C3 (classification is based on Folk, 1980)	117

Table 5.11	Comparison of the grain size parameters between	118
	Lithofacies C1, C2 and C3	
Table 5.12	Grain Size Distribution of Lithofacies B2 of the Belait	172
	Formation (Sample B2a)	
Table 5.13	Grain Size Distribution of Lithofacies B2 of the Belait	173
	Formation (Sample B2b)	
Table 5.14	Summary result for grain size analysis of the Lithofacies B2	174
	(classification is based on Folk, 1980)	
Table 5.15	Grain Size Distribution of Lithofacies B3 of the Belait	175
	Formation (Sample B3a)	
Table 5.16	Grain Size Distribution of Lithofacies B3 of the Belait	176
	Formation (Sample B3b)	
Table 5.17	Summary result for grain size analysis of the Lithofacies B3	177
	(classification is based on Folk, 1980)	
Table 5.18	Grain Size Distribution of Lithofacies B4 of the Belait	178
- AN	Formation (Sample B4a)	
Table 5.19	Grain Size Distribution of Lithofacies B4 of the Belait	179
Z X	Formation (Sample B4b)	
Table 5.20	Summary result for grain size analysis of the Lithofacies B4	180
	(classification is based on Folk, 1980)	
Table 5.21	Grain Size Distribution of Lithofacies B5 of the Belait	181
	Formation (Sample B5a)	
Table 5.22	Grain Size Distribution of Lithofacies B5 of the Belait	182
	Formation (Sample B5b)	
Table 5.23	Summary result for grain size analysis of the Lithofacies B5	183
	(classification is based on Folk, 1980)	
Table 5.24	Comparison of grain size analyses for Lithofacies B2, B3, B4	184
	and B5	

LIST OF FIGURES

		Page
Figure 1.1	Location of the Klias Peninsula in Sabah map which is at the western part of Sabah	3
Figure 1.2	Base map of the research area showing the area of the stations that are used for mapping purposes.	4
Figure 1.3	Topography map of the study area	6
Figure 2.1	The methodologies used for this research	12
Figure 2.2	Provenance diagram used in this research, modified after	
	Dickinson <i>et. al.</i> (1983)	16
Figure 3.1	The tectonic setting of Sabah with respect to the regional	23
	area which shows the opening of the South China Sea,	
	modified from Tan & Lamy (1990)	
Figure 3.2	Probable stratigraphy of Labuan Island and Padas Valley	28
	area as proposed by Wilson and Wong (1964)	
Figure 4.1	Lithostratigrapic column of the Klias Peninsula. Modified	39
RA	after Sanudin & Baba (2007)	
Figure 4.2	Guideline used for lithologs. Modified after Selley (1978)	40
Figure 4.3	Litholog for the Menumbok section	48
Figure 4.4	Litholog for (a) the Tanjung Aru section and (b) Mansud	50
	section	
Figure 4.5	Litholog for the Berangkok section	57
Figure 4.6	Litholog for the Tempurong section	67
Figure 4.7	Lithologs for every section of the Belait Formation	76
Figure 4.8	Litholog for the Kuala Penyu section	81
Figure 5.1	Proposed geological map of the Klias Peninsula; five	87
	lithostratigraphic units existed which are the Crocker	
	Formation, the Temburong Formation, the Setap Shale	
	Formation, and the Belait Formation and the Liang	
	Formation (in descending age), modified from Yin (1985)	
Figure 5.2	Cross section for Klias Peninsula	88

Figure 5.3	Naming for some lithofacies used in this research. Modified	89
	after Bouma (1962)	
Figure 5.4	Sedimentary log of Lithofacies C2 situated at Jalan Tanjung	95
	Aru - Mansud which represented the Crocker Formation	
Figure 5.5	Sedimentary log of Lithofacies C2 situated at Jalan Tanjung	95
	Aru - Mansud which represented the Crocker Formation	
Figure 5.6	Sedimentary log of Lithofacies C1 and C4 situated at	101
	Menumbok which represented the Crocker Formation	
Figure 5.7	The depositional model for the Crocker Formation in the	108
	deep marine environment, modified after Richards &	
	Bowman (1998)	
Figure 5.8	Cumulative weight vs grain diameter graph of Lithofacies	109
	C1 of the Crocker Formation (Sample C1a)	
Figure 5.9	Cumulative weight vs grain diameter graph of Lithofacies	110
A	C1 of the Crocker Formation (Sample C1b)	
Figure 5.10	Cumulative weight vs. grain diameter graph of Lithofacies	112
AY 📕	C2 of the Crocker Formation (Sample C2a)	
Figure 5.11	Cumulative weight vs. grain diameter graph of Lithofacies	113
219	C2 of the Crocker Formation (Sample C2b)	
Figure 5.12	Cumulative weight vs grain diameter graph of Lithofacies	115
	C3 of the Crocker Formation (Sample C3a)	
Figure 5.13	Cumulative weight vs. grain diameter graph of Lithofacies	116
	C3 of the Crocker Formation (Sample C3b)	
Figure 5.14	Diagram showing the naming of sandstones from	129
	Lithofacies C1, C2 and C3, modified after Pettijohn (1975).	
Figure 5.15	Sedimentary log of Lithofacies T1 situated at Kampung	133
	Berangkok which represented the Temburong Formation	
Figure 5.16	The depositional model for the Temburong Formation	136
	which is in the deep marine environment, modified after	
	Richards & Bowman (1998)	
Figure 5.17	Sedimentary log of Lithofacies S1 at Pantai Temburong –	140
	Mansud; representing the Setap Shale Formation	

- Figure 5.18 The depositional model for the Setap Shale Formation on 143 the inner shelf, modified after Richards & Bowman (1998)
- Figure 5.19 Sedimentary log of Lithofacies B1 situated at Pantai 148 Tempurong which represented the Belait Formation
- Figure 5.20 Sedimentary log of Lithofacies B2 situated at Kampung 152 Tempurong which represented the Belait Formation
- Figure 5.21 Sedimentary log of Lithofacies B3 situated at Kampung 156 Jana which represented the Belait Formation
- Figure 5.22 Sedimentary log of Lithofacies B4, also situated at 160 Kampung Jana which represented the Belait Formation
- Figure 5.23 Sedimentary log of Lithofacies B5, also situated at Jalan 164 Batu Luang which represented the Belait Formation
- Figure 5.24 The depositional model for the Belait Formation on the 171 inner shelf and the shoreface, modified after Richards & Bowman (1998)
- Figure 5.25 Cumulative weight vs grain diameter graph of Lithofacies 172 B2 of the Belait Formation (Sample B2a)
- Figure 5.26 Cumulative weight vs. grain diameter graph of Lithofacies 173 B2 of the Belait Formation (Sample B2b)
- Figure 5.27 Cumulative weight vs. grain diameter graph of Lithofacies 175 B3 of the Belait Formation (Sample B3a)
- Figure 5.28 Cumulative weight vs. grain diameter graph of Lithofacies 176 B3 of the Belait Formation (Sample B3b)
- Figure 5.29 Cumulative weight vs. grain diameter graph of Lithofacies 178 B4 of the Belait Formation (Sample B4a)
- Figure 5.30 Cumulative weight vs. grain diameter graph of Lithofacies 179 B4 of the Belait Formation (Sample B4b)
- Figure 5.31 Cumulative weight vs. grain diameter graph of Lithofacies 181 B5 of the Belait Formation (Sample B5a)
- Figure 5.32 Cumulative weight vs. grain diameter graph of Lithofacies 182 B5 of the Belait Formation (Sample B5b)

- Figure 5.33 Diagram showing the naming of sandstones from 200 Lithofacies B2, B3, B4 and B5; modified after Pettijohn, 1975.
- Figure 5.34 Sedimentary log of Lithofacies L1 situated at Hospital Kuala 203 Penyu which represented the Liang Formation
- Figure 5.35 The depositional model for the Liang Formation in the 207 fluvial environment, modified after Richards & Bowman (1998)
- Figure 5.36 Rose diagrams showing the palaeocurrent pattern based on 209 strike-dip of sedimentary structures; (a) is for Lithofacies C1, (b) is for Lithofacies C2 and (c) is for Lithofacies C3
- Figure 5.37 Rose diagrams showing the palaeocurrent pattern based on 210 strike-dip of sedimentary structures; (a) is for Lithofacies B2, (b) is for Lithofacies B3, (c) is for Lithofacies B4 and (d) is for Lithofacies B5
- Figure 5.38 Diagram showing the provenance of sandstone's samples 214 from Lithofacies C1, C2, C3, B2, B3, B4 and B5. Noted that most of the samples are originated from a recycled orogenic. Modified after Dickinson *et. al.* (1983)

UNIVERSITI MALAYSIA SABAH

LIST OF PHOTOGRAPHS

		Page
Photograph 1.1	The land road where the junction between main road	7
	from Beaufort, Kuala Penyu and Menumbok is situated. Car as scale.	
Photograph 1.2	Weathering occurred at an area around Kuala Penyu	9
	which caused difficulties in identifying the lithology.	
	Geologist as scale.	
Photograph 4.1	The interfingering between Crocker Formation and	43
	Temburong Formation which can be seen at	
	Berangkok section. The red line represents the	
	boundary between the two formations. Notebook as	
	scale (Location: 05°28'05.1" N, 115°27'48.7" E)	
Photograph 4.2	Trace fossil of Spirorhaphe which indicates the deep	44
	sea environment. Pen as a scale. (Location:	
	05°25′45.9″ N, 115°26′33.2″ E)	
Photograph 4.3	Thick sandstone beds interstratified with thin	47
- KNA	sandstone and shale at Menumbok section. Geologist	
ABA	as scale. (Location: 05°18'38.0" N, 115°22'07.7" E)	
Photograph 4.4	Sandstone interbedded with thin shale at Tanjung	49
	Aru section. Geologist as scale. (Location:	
	05°27′04.0″ N, 115°26′36.9″ E)	
Photograph 4.5	Shale interbedded with thin sandstone at Mansud	49
	section. Geologist as scale. (Location: 05°25'45.9" N,	
	115°26′33.2″ E)	
Photograph 4.6	Thick shale interstratified with thin sandstone beds	56
	at Berangkok section. Hammer as scale. (Location:	
	05°28′05.1″ N, 115°27′48.7″ E)	
Photograph 4.7	Interbeddings of shale and thin sandstone as seen at	58
	Kampung Kiansom. Compass as scale.	

- Photograph 4.8 The boundary between shale of Setap Shale 62 Formation and conglomerates of Belait Formation which marked by an unconformity. Geologist as a scale. (Location: 05°31′26.8″ N, 115°31′15.1″ E)
- Photograph 4.9 Thick shale interbedded with thin siltstone beds at 66 Tempurong section. Geologist as scale. (Location: 05°31′18.9″ N, 115°31′02.0″ E)
- Photograph 4.10 The boundary between sandstone of Belait 69 Formation and conglomerates of Liang Formation which marked by an unconformity. Book as a scale. (Location: 05°34′37.0″ N, 115°34′12.6″ E)
- Photograph 4.11 Poorly sorted conglomerates at Pantai Tempurong 71 section. Compass as scale. (Location: 05°34′37.0″ N, 115°34′12.6″ E)
- Photograph 4.12 Interbedded sandstone, mudstone and thin beddings 72 of conglomerate at Jalan Tempurong section. Geologist as scale. (Location: 05°31′29.9″ N, 115°31′20.2″ E)
- Photograph 4.13 Swaley crossbedded sandstone interbedded with 73 mudstone at Jana section. Measuring tape as scale.
- Photograph 4.14 Interbedded of planar crossbedded sandstone and 74 thick mudstone at Simpang section. Compass as scale.
- Photograph 4.15 Swaley crossbedded sandstone at Batu Luang 74 section. Pen as scale.
- Photograph 4.16 Conglomerates with coal seams at Kuala Penyu 80 section. Key as scale. (Location: 05°34′37.0″ N, 115°34′12.6″ E)
- Photograph 4.17 The top boundary of this rock succession has already 82 been eroded and the plants has grew. Geologist as scale. (Location: 05°34′37.0″ N, 115°34′12.6″ E)
- Photograph 5.1 Cross lamination on sandstone's bedding. Compass 92 as scale. (Location: 05°18'38.0" N, 115°22'07.7" E)

Photograph 5.2	Weathered sandstone which barely shows the T_a to	92
	T_{e} of Bouma divisions. Compass as scale. (Location:	
	05°18′38.0″ N, 115°22′07.7″ E)	

- Photograph 5.3 Sandstone and shale are generally have the same 94 thickness. Geologist as scale. (Location: 05°27′04.0″ N, 115°26′36.9″ E)
- Photograph 5.4 Repetitions of T_b to T_e which can be seen on the site. 94 Small scale of fault can also be seen. Compass as scale. (Location: $05^{\circ}27'04.0''$ N, $115^{\circ}26'36.9''$ E)
- Photograph 5.5 Claystone interbedded with thin bedded sandstone. 97 Compass as scale. (Location: 05°25′45.9″ N, 115°26′33.2″ E)
- Photograph 5.6 Cross laminations on sandstone's bedding. Lense cap 97 as scale. (Location: 05°25′45.9″ N, 115°26′33.2″ E)
- Photograph 5.7 Parallel laminations on sandstone's bedding. 100 Compass as scale. (Location: 05°18'38.0" N, 115°22'07.7" E)
- Photograph 5.8 Interbedded of shale and thin bedded sandstone of 100 Lithofacies C4 changes into thick sandstone of Lithofacies C1. Geologist as scale. (Location: 05°18'38.0" N, 115°22'07.7" E)
- Photograph 5.9 Thick shale that can be seen on the site. Pencil as 132 scale. (Location: 05°28′05.1″ N, 115°27′48.7″ E)
- Photograph 5.10 Shale and siltstone with no sedimentary structure. 132 Pencil as scale. (Location: 05°28′05.1″ N, 115°27′48.7″ E)
- Photograph 5.11 Interbedded shale with thin siltstones that can be 138 seen on the locality. Geologist as scale. (Location: 05°31′18.9″ N, 115°31′02.0″ E)
- Photograph 5.12 *Phycodes* sp. on siltstone of Setap Shale Formation. 139 Pencil as a scale. (Location: 05°31′18.9″ N, 115°31′02.0″ E)

- Photograph 5.13 *Helminthoida* sp. on fractures of siltstone of Setap 139 Shale Formation. Compass as a scale. (Location: 05°31'18.9" N, 115°31'02.0" E)
- Photograph 5.14 Poorly sorted conglomerate which existed at the 147 locality. Geologist as scale. (Location: 05°31′27.8″ N, 115°31′10.3″ E)
- Photograph 5.15 Sandstone lenses and coal seams inside the 147 conglomerate's bedding. Compass as scale. (Location: 05°31′27.8″ N, 115°31′10.3″ E)
- Photograph 5.16 Sandstone, mudstone and conglomerate beddings 149 that can be seen at the locality. Geologist as scale. (Location: 05°31′29.9″ N, 115°31′20.2″ E)
- Photograph 5.17 Cross stratification on sandstone's bedding that can 151 be observed. Lense's cap as scale. (Location: 05°31′29.9″ N, 115°31′20.2″ E)
- Photograph 5.18 Beddings of mudstone and sandstone at the locality. 154 Geologist as scale. (Location: 05°31′04.3″ N, 115°31′54.7″ E)
- Photograph 5.19 Lenses of sandstone in the bedding of mudstone. 154 Geologist as scale. (Location: 05°31′04.3″ N, 115°31′54.7″ E)
- Photograph 5.20 Beddings of thick mudstone and sandstone at the 159 locality. Geologist as scale. (Location: 05°31′10.0″ N, 115°32′07.1″ E)
- Photograph 5.21 Planar cross stratification on bedding of sandstone. 159 Compass as scale. (Location: 05°31′10.0″ N, 115°32′07.1″ E)
- Photograph 5.22 Beddings of sandstone and mudstone that can be 162 seen on the site. Geologist as scale. (Location: 05°31′29.6″ N, 115°33′05.5″ E)
- Photograph 5.23 Swaley cross stratification on sandstone's bedding. 163 Measuring tape as scale. (Location: 05°31′29.6″ N,