ADSORPTION OF COPPER(II) AND LEAD(II) IONS FROM AQUEOUS SOLUTIONS BY UNMODIFIED OIL PALM SHELL

SCHOOL OF SCIENCE AND TECHNOLOGY UNIVERSITI MALAYSIA SABAH

2012

ADSORPTION OF COPPER(II) AND LEAD(II) IONS FROM AQUEOUS SOLUTIONS BY UNMODIFIED OIL PALM SHELL

CHIA PUI SAN

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF PHILOSOPHY

SCHOOL OF SCIENCE AND TECHNOLOGY UNIVERSITI MALAYSIA SABAH

2012

PUMS 99:1

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN TESIS			
JUDUL :			
IJAZAH :			
SAYA :	SESI PENGAJIAN :		
(HURUF BESAR)			
Mengaku membenarkan tesis *(LPSM/Sarjana/Dokto Sabah dengan syarat-syarat kegunaan seperti berikut:	r Falsafah) ini disimpan di Perpustakaan Universiti Malaysia -		
 Tesis adalah hak milik Universiti Malaysia Saba Perpustakaan Universiti Malaysia Sabah diben Perpustakaan dibenarkan membuat salinan t tinggi. 	ah. Jarkan membuat salinan untuk tujuan pengajian sahaja. esis ini sebagai bahan pertukaran antara institusi pengajian		
4. Sila tandakan (/)	mat yang berdarjah keselamatan atau kepentingan Malaysia		
seperti yang termaktu TERHAD (Mengandungi maklu mana penyelidikan di	ıb di AKTA RAHSIA RASMI 1972) mat TERHAD yang telah ditentukan oleh organisasi/badan di jalankan)		
TIDAK TERHAD	Disahkan oleh:		
 (TANDATANGAN PENULIS) Alamat Tetap:	(TANDATANGAN PUSTAKAWAN)		
 TARIKH:	(NAMA PENYELIA) TARIKH:		
Catatan: *Potong yang tidak berkenaan. *Jika tesis ini SULIT dan TERHAD, sila lampirkan sur menyatakan sekali sebab dan tempoh tesis ini perlu *Tesis dimaksudkan sebagai tesis bagi Ijazah Dokto bagi pengajian secara kerja kursus dan Laporan Pro	at daripada pihak berkuasa/organisasi berkenaan dengan u dikelaskan sebagai SULIT dan TERHAD. r Falsafah dan Sarjana Secara Penyelidikan atau disertai ıjek Sarjana Muda (LPSM).		

DECLARATION

I hereby declare that the materials in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

22 July 2012

Chia Pui San PS2009-8160

VERIFICATION

- NAME : CHIA PUI SAN
- MATRIC NO. : **PS2009-8160**
- TITLE: ADSORPTION OF COPPER(II) AND LEAD(II) IONS FROMAQUEOUS SOLUTIONS BY UNMODIFIED OIL PALM SHELL
- DEGREE : MASTER OF PHILOSOPHY (ENVIRONMENTAL SCIENCE)

DECLARED BY

UNIVERSITI MALAYSIA SABAH

VIVA DATE : 7 NOVEMBER 2012

1. SUPERVISOR Dr Harry Chong Lye Hin

Signature

ACKNOWLEDGEMENT

First of all, I would like to express my deepest gratitude to my supervisor, Dr Harry Chong Lye Hin for his continuous invaluable guidance, advice and suggestions. Without his dedication, help and encouragement, I would not have successfully completed my research.

Next, I would like to acknowledge financial support from UMS Teaching Assistant Scheme to settle tuition fees and to subsidise my living expenses. I would also like to give special acknowledgement to the Ministry of Higher Education for the financial assistance under FRGS Project No. FRG0270-ST-2/2010.

Besides, I am also very grateful to Recyheidy Abd Rashid, Yusri Jasli and Malah Karim for facilitating in instrumental analyses. Last but not least, to my dearest family and friends, I would like to express millions of thankfulness for being supportive along the way that keep me strong to overcome all the unforeseen circumstances.

Chia Pui San 22 July 2012 UNIVERSITI MALAYSIA SABAH

ABSTRACT

ADSORPTION OF COPPER(II) AND LEAD(II) IONS FROM AQUEOUS SOLUTIONS BY UNMODIFIED OIL PALM SHELL

Heavy metals can cause poisoning in living organisms. One of the treatment methods that is economical and environmentally friendly is by adsorption. In this study, the characteristics of adsorbent prepared from spent oil palm shell was analysed and the adsorbent was used for adsorption of Cu(II) and Pb(II) ions. Experiments were conducted through batch adsorption experiments technique to assess the effect of particle size, contact time, agitation rate, dosage, initial adsorbate concentration and initial pH. The residual Cu(II) and Pb(II) ions were detected using atomic absorption spectrometer. The oil palm shell were sieved into various sizes with 27.47% of particles were size 8 < $\chi \le$ 10 mm, 23.26% of particles with size $10 < \chi \le 13$ mm and 21.96% with size $6.5 < \chi \le 8$ mm. The distribution of oil palm shell particles has uniformity coefficient of less than three indicating potential as filter bed material from hydraulic point of view. Adsorption of Cu(II) and Pb(II) ions could occur in absence of agitation, fulfilling the criteria as filter bed material for slow water feeding system. The pH_{pzc} was found to be at pH 4.1 with maximum adsorption occurred between pH 4.1 to pH 6. Adsorption equilibrium was achieved in 480 min in 150 rpm agitation. Adsorption capacity was enhanced with smaller particle size, lower dosage and higher initial adsorbate concentration. Adsorption isotherms were modeled using Langmuir and Freundlich models and Freundlich model fitted the adsorption data well. This suggested multilayer adsorption manner. The maximum adsorption capacity was found to be 1.76 and 3.39 mg/g for Cu(II) and Pb(II) ions, respectively. Four kinetic models employed in this study were intraparticle diffusion model, expression of Boyd, pseudo-first-order model and pseudo-second-order models. The adsorption data fitted into pseudo-second-order model suggesting occurrence of chemisorption. The results showed that oil palm shell is a potential adsorbent for Cu(II) and Pb(II) ions.

ABSTRAK

Logam berat boleh menyebabkan keracunan pada organisma hidup. Salah satu kaedah rawatan yang ekonomik dan mesra alam adalah melalui penjerapan. Dalam kajian ini, ciri-ciri penjerap yang disediakan daripada sisa tempurung kelapa sawit dianalisa dan penjerap tersebut digunakan untuk menjerap ion Cu(II) dan Pb(II). Eksperimen dijalankan melalui teknik ekperimen kelompok untuk menilai kesan saiz zarah, masa sentuhan, kadar goncang, dos, kepekatan awal larutan jerapan dan pH awal. Sisa ion Cu(II) dan Pb(II) dikesan menggunakan spektrometer penyerap atom. Tempurung kelapa sawit ditapis kepada pelbagai saiz dengan 27.47% zarah bersaiz 8 < $\chi \leq$ 10 mm, 23.26% zarah dengan saiz 10 < $\chi \leq$ 13 mm dan 21.96% dengan saiz 6.5 < $\chi \leq 8$ mm. Taburan saiz zarah tempurung kelapa sawit sawit mempunyai pekali keseragaman kurang daripada tiga menunjukkan potensi sebagai bahan penuras dari segi hidraulik. Penjerapan ion Cu(II) dan Pb(II) boleh berlaku tanpa kehadiran goncangan, menepati kriteria sebagai bahan penuras untuk sistem saliran perlahan. Nilai pH_{pzc} didapati berada pada pH 4.1 dengan penjerapan maximum berlaku antara pH 4.1 dan pH 6. Keseimbangan penjerapan tercapai dalam 480 min dengan kadar goncangan 150 rpm. Kapasiti penjerapan meningkat dengan saiz zarah yang lebih kecil, dos yang lebih rendah dan kepekatan awal larutan jerapan yang lebih tinggi. Isoterma penjerapan telah dimodelkan dengan model Langmuir dan Freundlich dan model Freundlich lebih bersesuaian dengan data penjerapan. Ini mencadangkan penjerapan secara multi lapisan. Kapasiti penjerapan maksimum masing-masing adalah sebanyak 1.76 dan 3.39 mg/g untuk ion Cu(II) dan Pb(II). Empat model kinetik yang digunakan dalam kajian ini adalah model difusi intrapartikal, ungkapan Boyd, model tertib pertama pseudo and model tertib kedua pseudo. Data penjerapan sesuai dengan model tertib kedua pseudo mencadangkan kehadiran proses kimia jerapan. Keputusan menunjukkan bahawa tempurung kelapa sawit merupakan potensi penjerap untuk ion Cu(II) dan Pb(II).

LIST OF CONTENTS

			Page
TITL	E		i
DEC	LARATIO	N	ii
VER	IFICATIO	N	iii
ACK	NOWLEDO	GEMENT	iv
ABS	FRACT		V
ABS	TRAK		vi
LIST	OF CONT	TENTS	vii
LIST	OF TABL	ES	ix
LIST	OF FIGU	RES	X
			XII
		SULS	XIII
L131		(EVIATIONS	XV
CHA	PTER 1:	INTRODUCTION	1
1.1	Heavy M	letal Astal Dallutian Casaania in Malausia	1
1.2	Methoda	ietal Pollution Scenario in Malaysia	2
1.5	1 3 1	Chemical Precipitation	07
	132	Ion Exchange	/ 8
	1.3.2	Coagulation	9
	1.3.4	Solvent Extraction	10
ß	1.3.5	Adsorption	11
	1.3.6	Constructed Wetland	13
1.4	Oil Palm	Industry in Malaysia	15
	1.4.1	Applications of Oil Palm Waste	16
1.5	Research	h Objectives	18
	AB	UNIVERSITI MALAYSIA SABAH	
CHA	PTER 2:	LITERATURE REVIEW	19
2.1	Applicati	ion of Oil Palm Waste as Adsorbent	19
2.2	Applicati	ion of Oil Palm Shell as Adsorbent	23
	2.2.1	Removal of Gaseous Pollutants	23
	2.2.2	Removal of Organic Compounds	27
	2.2.3	Removal of Users Matela	28
	2.2.4	Removal of Heavy Metals	29
CHA	PTER 3:	MATERIALS AND METHODS	31
3.1	Reagent	S	31
3.2	Preparat	tion of Adsorbent	32
3.3	Adsorbe	nt Particle Size Distribution	33
ン.4 ファ	Leaching	J TESL	33 22
5.5		eniai Analyses Hoovy Motol Apolysis	33 22
	3.3.1 353	Reavy Methology Study	55 24
	353	Surrace Morphology Sludy Elemental Content Analysis	24 24
	354	Dorosimetry	34
	355	Thermogravimetry Analysis	34
	5.5.5		51

REF APP APP APP	ERENCES ENDIX A ENDIX B ENDIX C	5 A: Supplementary data for Chapter 3 B: Supplementary data for Chapter 4 C: Supplementary graphical data	91 122 126 146
СНА	PTER 5:	CONCLUSIONS	88
	4.4.3 4.4.4 4.4.5	Pseudo-first-order Model Pseudo-second-order Model Mechanism of Adsorption	79 81 85
4.4	Adsorp 4.4.1 4.4.2	tion Kinetics Intraparticle Diffusion Model Expression of Boyd	72 73 76
с.т	4.3.1 4.3.2	Langmuir Isotherm Freundlich Isotherm	62 68
43	4.2.7	Effect of Initial pH	61 62
ß	4.2.5	Effect of Counter Ions	57
	4.2.4	Effect of Dosage	56
	4.2.3	Effect of Agitation Rate	55
	4.2.2	Effect of Contact Time	53
4.2	2 4 2 1	Effect of Particle Size	51
12	4.1.9 Equilib	Distilled Water pH with Oil Palm Shell rium Adsorption Studios	50 51
	4.1.8	Point of Zero Charge	49
	4.1.7	Fourier Transform Infrared Spectrum	47
	4.1.6	Thermogravimetric Analysis	47
	4.1.5	Surface Area and Pore Distribution	46
	4.1.4	Carbon, Hydrogen and Nitrogen Content	46
	4.1.3	Surface Morphology	44
	4.1.1 4 1 2	Heavy Metal Leaching from Adsorbent	41 42
4.1	Adsorb	ent Characterisation	41
СНА	PTER 4:	RESULTS AND DISCUSSION	41
	382	Kinetic Studies	20
3.8		Adsorption Experiments	30
3.7	Determ	hination of Distilled Water pH with Adsorbent	35
3.6	Point o	f Zero Charge Determination	35
	3.5.6	Fourier Transform Infrared Spectroscopy	35

LIST OF TABLES

		Page
Table 1.1	Heavy metal limits in National Water Quality Standards for Malaysia	3
Table 1.2	Heavy metal limits in National Guidelines for Raw Drinking Water from Groundwater (Revised December 2000)	4
Table 1.3	Heavy metal limit in Interim Marine Water Quality Standards	5
Table 1.4	Heavy metal limit in Malaysia Marine Water Quality Criteria and Standards	5
Table 2.1	Recent research on oil palm waste as adsorbent in batch adsorption system	19
Table 2.2	Recent research on oil palm waste as adsorbent in fixed bed system	22
Table 3.1	Chemicals used in this study	31
Table 4.1	Group frequency and functional group assignment of OPS	49
Table 4.2	The monolayer adsorption capacity of unmodified adsorbent derived from various agricultural waste for Cu(II) and Pb(II) ions	67
Table 4.3	Comparison of Langmuir and Freundlich isotherm constants	70
Table 4.4	Summary of constants from intraparticle diffusion model	75
Table 4.5	Summary of constants from expression of Boyd	78
Table 4.6	Summary of constants from pseudo-first-order kinetic model	81
Table 4.7	Summary of constants from pseudo-second-order kinetic model	83

LIST OF FIGURES

		Page
Figure 1.1	Trend of palm oil production from year 1980 to 2011	16
Figure 3.1	Variation of adsorbate pH against adsorbate initial concentration	37
Figure 4.1	Particle size distribution of spent oil palm shell sample	41
Figure 4.2	Particle size sorting curve of spent oil palm shell sample	42
Figure 4.3	Pore size distribution of OPS	46
Figure 4.4	Thermogram pattern of OPS	47
Figure 4.5	The FT-IR spectrum of OPS	48
Figure 4.6	The pH change of OPS as a function of pH _i	50
Figure 4.7	The effect of particle size on the adsorption of Cu(II) and Pb(II) ions by \mbox{OPS}	51
Figure 4.8	The projected amounts of Cu(II) and Pb(II) ions adsorbed according to spent oil palm shell particle size distribution	52
Figure 4.9	The effect of contact time on the adsorption of Cu(II) and Pb(II) ions by OPS	54
Figure 4.10	The effect of agitation rate on the adsorption of Cu(II) and Pb(II) ions by OPS	55
Figure 4.11	The effect of dosage on the adsorption of Cu(II) and Pb(II) ions by OPS	56
Figure 4.12	The effect of initial concentration on adsorption of Cu(II) and Pb(II) ions by OPS	58
Figure 4.13	The effect of counter ions on the adsorption of Cu(II) and Pb(II) ions by \mbox{OPS}	60
Figure 4.14	The effect of initial pH on adsorption of Cu(II) and Pb(II) ions by OPS	62
Figure 4.15	The linearised Langmuir plot for the adsorption of Cu(II) and Pb(II) ions by OPS $% \left(\mathcal{O}_{1}^{2}\right) =0$	63
Figure 4.16	Non-linear Langmuir plot for Cu(II) and Pb(II) ions adsorption onto OPS	65
Figure 4.17	Dimensionless parameter, $R_{\mbox{\tiny L}}$ for the adsorption of Cu(II) and Pb(II) ions onto OPS	66
Figure 4.18	The linearised Freundlich plots for the adsorption of Cu(II) and Pb(II) ions by OPS	69

Figure 4.19	Non-linear Freundlich plots for Cu(II) and Pb(II) ions adsorption onto OPS	70		
Figure 4.20	The adsorption of Cu(II) and Pb(II) ions onto OPS at equilibrium in: (a) low adsorbate concentration, (b) intermediate adsorbate concentration and (c) high adsorbate concentration	72		
Figure 4.21	Intraparticle diffusion plots for the adsorption of Cu(II) and Pb(II) ions by OPS	74		
Figure 4.22	Non-linear intraparticle diffusion plots for Cu(II) and Pb(II) ions adsorption onto OPS	76		
Figure 4.23	The Boyd plots for the adsorption of Cu(II) and Pb(II) ions onto OPS	78		
Figure 4.24	Non-linear Boyd plots for Cu(II) and Pb(II) ions adsorption 7 onto OPS			
Figure 4.25	Linearised pseudo-first-order model plot for adsorption of Cu(II) and Pb(II) ions by OPS			
Figure 4.26	Non-linear pseudo-first-order plot for Cu(II) and Pb(II) ions adsorption onto OPS			
Figure 4.27	Linearised pseudo-second-order model plot for adsorption of Cu(II) and Pb(II) ions by OPS	82		
Figure 4.28	Non-linear pseudo-second-order plot for Cu(II) and Pb(II) ions adsorption onto OPS	84		
Figure 4.29	Non-linear kinetic models plots for Cu(II) and Pb(II) ions adsorption onto OPS	86		
Figure 4.30	Mechanism of adsorption: (a) external mass transfer, (b) film diffusion, (c) intraparticle diffusion and (d) chemisorption onto binding site	87		

LIST OF PHOTOS

		Page
Photo 4.1	The OPS of different particle sizes	44
Photo 4.2	Macrograph of 6.5 < χ \leq 8 mm sized OPS: (a) outer surface and (b) inner surface	45
Photo 4.3	The SEM micrograph of OPS	45

LIST OF SYMBOLS

A _p	Surface area of particle
As	Surface area of sphere
В	Boyd constant (1/min)
С	Adsorption constant (mg/g)
C _e	Adsorbate concentration at equilibrium (mg/L)
Co	Initial adsorbate concentration (mg/L)
Co	Initial adsorbate concentration (mg/L)
Ct	Adsorbate concentration at time t (mg/L)
C _u	Uniformity coefficient
d ₁₀	Diameter of the particle that 10% (w/w) passes the sieve (mm)
d ₆₀	Diameter of the particle that 60% (w/w) passes the sieve (mm)
F	Fraction of solute adsorbed at different time t
k1	Pseudo-first-order rate constant (1/min)
k ₂	Pseudo-second-order rate constant (g/mg min)
K _F	Freundlich adsorption capacity constant
k _{id}	Intraparticle diffusion rate constant (mg/g min ^{1/2})
KL	Energy adsorption constant (L/mg)
n	Freundlich intensity constant
Ø	Diameter (mm)
pH_{f}	Final pH
$\mathbf{p}\mathbf{H}_{i}$	Initial pH
pH_pzc	pH point of zero charge
Qe	Amount of adsorbate adsorbed at equilibrium (mg/g)
$Q_{e\ (cal)}$	Calculated amount of adsorbate adsorbed at equilibrium (mg/g)
Q _m	Maximum amount of adsorbate adsorbed (mg/g)
Qt	Amount of adsorbate adsorbed at time t (mg/g)
R _L	Hall separation factor
t	Time (min)
u	Initial adsorption rate (mg/g min)

- V Volume of adsorbate (L)
- W Mass of adsorbent (g)
- χ Geometrical mean particle size (mm)
- ψ Shape factor

LIST OF ABBREVIATIONS

AAS Atomic absorption spectrometer **BDH** 4-bromoaniline-azo-1,8-dihydronaphthalene-3,6-disodiumsulphate BET Brunauer-Emmett-Teller Fourier transform infrared spectroscopy FT-IR **IUPAC** International Union of Pure and Applied Chemistry MB Methylene blue MG Malachite green MPOB Malaysian Palm Oil Board **OPS** Cleaned dried oil palm shell PEI Polyethyleneimine POME Palm oil mill effluent SEM Scanning electron microscope TGA Thermogravimetry analysis

UNIVERSITI MALAYSIA SABAH

CHAPTER 1

INTRODUCTION

1.1 Heavy Metals

Several elements that are grouped under heavy metal include arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), gold (Au), iron (Fe), lead (Pb), manganese (Mn), mercury (Hg), nickel (Ni), platinum (Pt), silver (Ag) and zinc (Zn) (Ngah and Hanafiah, 2008). Some of these elements are categorised as precious metals such as Au, Pt and Ag. They have economical value especially in jewellery industry. Therefore, they are recovered even from the effluent rather than being discharged to the environment.

Heavy metals in the environment are caused by discharge from mining and smelting activities, battery industry and runoff from agricultural practice (Dong *et al.*, 2010). Heavy metal pollution occur when the level of heavy metal presents exceed the allowable limit. Heavy metal is persistent in nature, whereby it is non-biodegradable (Al-Qodah, 2006). It also possesses tendency to be bioaccumulated in living organisms especially in vital organs such as kidney, bones and liver (Singh *et al.*, 2010).

The presence of some heavy metals in trace amount in diet is essential for human health (Asci *et al.*, 2010). For example, Fe is essential as a component in haemoglobin. Deficiency in Fe can result in anaemia. Other listed essential heavy metals are Cu, Mn and Zn which function together to participate in enzymatic reactions (Yoshihara *et al.*, 2010).

However, excessive exposure to heavy metals can result in toxicity (Xiong *et al.*, 2006). Globally known heavy metal toxicity incidents include Itai-itai disease due to Cd poisoning (Nomiyama *et al.*, 1973; Nogawa *et al.*, 1975; Kawano *et al.*, 1986; Whelton *et al.*, 1997; Inaba *et al.*, 2005) and Minamata disease caused by Hg poisoning (Igata, 1993; Harada *et al.*, 1999; Ekino *et al.*, 2007; Yorifuji *et al.*, 2009). Due to the severity of heavy metal poisoning, it is vital to develop methods to address heavy metal pollution.

1.2 Heavy Metal Pollution Scenario in Malaysia

Three categories of water in Malaysia are river water, groundwater and marine water. In general, heavy metal content in river water complied well with Class III of National Water Quality Standards of Malaysia with the exception to Fe, which only 94% compliance was reported (DOE, 2010). Class III water is suitable for common fishery with tolerant species and livestock drinking. However, extensive treatment is required if it is to be used as water supply. Table 1.1 is a summary of the limits on various heavy metals in National Water Quality Standards of Malaysia.

			Class		
Metal	I (mg/L)	IIA/IIB (mg/L)	III (mg/L)	IV (mg/L)	V (mg/L)
As		0.05	0.4	0.1	
Cd]	0.01	0.01	0.01]
Cr(IV)		0.05	1.4	0.1	
Cr(III)		-	2.5	-	
Cu	sent	0.02	-	0.2	
Fe	or ab	1	1	1	ve IV
Pb		0.05	0.02	5	abo
Mn	ural le	0.1	0.1	0.2	Level
Hg	Natu	0.001	0.004	0.002	
Ni		0.05	0.9	0.2	
Se 🚱		0.01	0.25	0.02	
Ag		0.05	0.0002	-	
Zn	100	5	0.4	2	
Class	Uses				
I	Conservation of natural environment. THALAYSIA SABAH Water Supply I – Practically no treatment necessary. Fishery I – Very sensitive aquatic species.				
IIA	Water Supply II – Conventional treatment required. Fishery II – Sensitive aquatic species.				
IIB	Recreational use with body contact.				
III	Water Supply III – Extensive treatment required. Fishery III – Common, of economic value and tolerant species; livestock drinking.				
IV	Irrigation				
V	None of the above.				

Table 1.1: Heavy Metal Limit in National Water Quality Standards for Malaysia

Source: DOE (2006)

Groundwater on the other hand showed non-compliance to National Guidelines for Raw Drinking Water Quality for heavy metal from 2006 to 2010 with the exception of Cu which showed 100% compliance. At least 60% of non-compliance occurred for Fe within the five years period while for Mn and As, 40% and 30% respectively. Other heavy metals including Hg, Cd, Cr, Pb, Zn and selenium (Se) had shown less than 15% non-compliance (DOE, 2006; DOE, 2007; DOE, 2008; DOE, 2009; DOE, 2010). Table 1.2 summarised the benchmark allowed for heavy metal content in drinking water.

 Table 1.2: Heavy metal limits in National Guidelines for Raw Drinking

 Water from Groundwater (Revised December 2000)

Metal	Benchmark (mg/L)
As	0.01
Cd	0.003
Cr 😒 📎	0.05
Cu	1.0
Fe	0.3
Pb	UNIVERSITI MALAV 0.01 SARAH
Mn	0.1
Hg	0.001
Se	0.01
Zn	3

Heavy metal pollution in marine water showed varying degree of noncompliance with Interim Marine Water Quality Standards (Table 1.3) which was enforced throughout the period from 2004 to 2008 and replaced by Marine Water Quality Criteria and Standards (Table 1.4) from year 2009 onwards.

Metal	Standards (mg/L)
As	0.1
Cd	0.1
Cr	0.5
Cu	0.1
Pb	0.1
Нд	0.001

Table 1.3: Heavy metal limit in Interim Marine Water Quality Standards

Source: DOE (2006)

Table 1.4: Heavy metal limit in Malaysia Marine Water Quality Criteria and Standards

A	Metal	Class 1 (µg/L)	Class 2 (µg/L)	Class 3 (µg/L)	Class E (µg/L)
7	As	3	20 (3)	50	20 (3)
3	Cd	0.5	2 (3)	10	2
0	Cr(VI)	5	10	48	10
1	Cu	1.3 UN	2.9	ALA9/SIA	SAE2.9
	Pb	4.4	8.5	50	8.5
	Hg	0.04	0.16 (0.04)	50	0.5
	Zn	15	50	100	50
	Class	Uses			
	1	Preservation, marine protected areas, marine parks			
	2	Marine life, fisheries, coral reefs, recreational and mariculture			
	3	Ports, oil and gas fields			
	E	Mangroves estuarine and river-mouth water			

* Values in bracket applied for coastal and marine water areas where seafood for human consumption.

Source: DOE (2010)

The non-compliance of Cu, Pb and Cd was reduced from year 2004 to 2008. The percentage of non-compliance was reduced from 15.9% to 6.7% for Cu while for Pb from 29.2% to 15.3% and Cd from 9.1% to 2.8%. The non-compliance level of Hg, As and Cr throughout the same period fluctuated from 7.6% to 18.2%, 0.9% to 1.1% and 0.1% to 2.2%, respectively (DOE, 2006; DOE, 2008).

However, the non-compliance level from year 2009 to 2010 for Cu, Pb, Cd and Cr increased while Hg and As reduced. The highest level of non-compliance was recorded on Cu which was 64.1% of incompliance in coastal water and 62.7% incompliance in estuary water. This was followed by Pb which was 44.4% and 46.6% of incompliance in coastal water and estuary water, respectively (DOE, 2010). Action has to be taken to control and reduce the pollution by Cu and Pb.

As in Sabah, copper mine at Mamut produced Cu, some Au and Ag. This mine operated from year 1975 but ceased in 1999. During its operation, there was massive generation of tailings which were disposed at Lohan Tailing Dam (Mohd. Azizli *et al.*, 1995). This tailings release heavy metals and toxic substances that pose threat to human health (Baba *et al.*, 2010). The mining also resulted in acid mine drainage that was found to consist of Fe (0.1 – 5.4 mg/L), Mn (2.7 – 79.8 mg/L), Cu (2.0 – 47.0 mg/L) and Zn (0.4 – 25.4 mg/L) (Jopony and Tongkul, 2009).

1.3 Methods of Heavy Metal Removal

Due to adverse effects that heavy metal can bring and also to comply with the guideline standard, various methods have been employed to remove heavy metals from polluted water. These methods include chemical precipitation, ion exchange, coagulation, solvent extraction, adsorption and constructed wetland (Dobson and Burgess, 2007; Abdul *et al.*, 2009; Mahmood *et al.*, 2011; Lizama *et al.*, 2011).

1.3.1 Chemical Precipitation

Addition of chemical to separate pollutant from solution through the formation of insoluble solid phase is termed chemical precipitation (Chen *et al.*, 2009). The precipitate is further removed through sedimentation or filtration (Cohen, 2006). Formation of precipitate can occur through charge neutralisation between ions. It can be applied to remove metals, organic and inorganic compounds, suspended solids, fats, oils and greases (Benatti *et al.*, 2009).

Heavy metals can be precipitated through the formation of metal hydroxides, sulfides, phosphates or carbonates. Metal hydroxides formed by the addition of alkaline reagents or hydroxide salts such as calcium oxide (CaO), calcium hydroxide (Ca(OH)₂), magnesium hydroxide (Mg(OH)₂), sodium hydroxide (NaOH) and ammonium hydroxide (NH₄OH). Precipitating agents such as disodium phosphate (Na₂HPO₄), sodium sulphide (Na₂S), sodium hydrosulphide (NaHS), iron sulphide (FeS), sodium bicarbonate (NaHCO₃) and sodium carbonate (Na₂CO₃) on the other side are used to form insoluble metal phosphates, metal sulphides and metal carbonates (Djedidi *et al.*, 2009). Due to lower solubility of metal phosphates, metal sulphides and metal carbonates in acidic environment, these precipitates of metallic sludge have better thickening and dewatering properties (Hille *et al.*, 2005).

Precipitation can be formed through various steps. An example of three possible precipitation reactions in removing Fe using sulphide is shown in Equation 1.1 to 1.3. Reaction in Equation 1.1 dominates in acidic environment while in Equation 1.2 dominates in neutral to alkaline environment. After the formation of $Fe(HS)_2$ in Equation 1.2, the precipitate of $Fe(HS)_2$ condenses to form FeS precipitate by releasing hydrogen sulphide (H₂S) into the solution (Lewis, 2010).

$$Fe^{2+} + H_2S \rightarrow FeS(s) + 2H^+$$
(1.1)

$$Fe^{2+} + 2HS^{-} \rightarrow Fe(HS)_2 (s)$$
 (1.2)

 $Fe(HS)_2 (s) \rightarrow FeS (s) + H_2S$ (1.3)