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ABSTRACT

This study aims to explore the potential of implementing a multi-objective dynamic
optimizer to acquire regular optimization on nonlinear characteristic of batch
manufacturing process. The idea is proposed in an effort of accessing the
functionality and practicability of the dynamic optimizer for the purpose of precision
optimization. As such, yield productivity of maximizing the desired product while
minimizing the undesired by-product could be improved. Traditionally, a fixed
temperature profile has been identified and assumed as ‘nominal optimized’ for
manufacturers to follow. Whether the process is fully optimized under inconsistent
internal heat liberation, external environmental variations, model mismatches and
process uncertainties remains as a challenging topic. In practice, the commercial
batch process plant are often utilized to handle numerous production with different
varieties of specific products and thus it is rarely being classified as dynamically
optimized. This thesis investigates different approaches of integrating hybrid
adaptable intelligent algorithms to accommodate the concept of precision
optimization via simulated models of industry-scale and pilot-scale. The dynamic
changes causing the need of dynamic modelling for a better dynamic optimization
will be catered via a specifically formulated fitness function. With nowadays high end
computation ability, revolutionary changes of implementing precision measurement
is expectable and applicable to obtain expensive products. Central to precision
manufacturing is artificial intelligence as this thesis presents the performance
characteristics of tuning-based, rule-based, learning-based and evolutionary-based
algorithms. Performance analyses are presented to validate how significant of the
dynamic optimization based on the product molarity surpasses the existing
conventional prescribed temperature approach. Various algorithms are designed,
formulated and computed in MATLAB and then embedded to a real-time
programmable microcontroller. The results indicate that the proposed algorithm is
able to improve the percentage of yield by at least 10-15% under physical properties
variation which could be a vital tool in the future era of precision manufacturing
industries.



ABSTRAK

ALGORITMA KECERDASAN ADAPTIF UNTUK OPTIMASI PRESTASI
BAGI DYNAMIK PROSES PEMBUATAN BERKELOMPOK

Kajian ini bertujuan untuk meneroka potensi pelaksanaan pengoptimasi dinamik
pelbagai objektif untuk memperolehi pengoptimuman kerap ke atas ciri-Ciri proses
tidak linear dalam pembuatan kimia secara kelompok. Idea ini dicadangkan sebagai
usaha mengakses kebolehgunaan pengoptimasi dinamik bagi tujuan pengoptimuman
tepat. Dengan itu, kecekapan untuk memperolehi maksimum hasil produk diingini
dengan minimum produk sampingan tidak diingini boleh ditambahbaikan. Sexara
tradisinya, profil suhu sasaran telah dikenalpasti dan diambil sebagai pendekatan
pengoptimuman nominal’ untuk dipatuhi. Samada proses dioptimumkan sepenuhnya
di bawah pembebasan tenaga haba tidak konsisten, perubahan persekitaran luaran,
ketidakpadanan model dan ketidaktentuan proses kekal sebagai satu topik yang
mencabar. Dalam praktikal, loji proses kelompok komersial sering digunakan untuk
mengendalikan pelbagai jenis produk di mana ia jarang diklasifikasikan sebagai
proses dinamik yang telah dioptimumkan. Tesis ini mengkaji pendekatan yang
berbeza mengintegrasikan hibrid algoritma pintar penyesuaian diri  untuk
menampung konsep pengoptimuman ketepatan melalui simulasi model bagi reaktor
kelompok pelbagai skala. Perubahan dinamik memeriukan pemodelan dinamik untuk
pengoptimuman dinamik lebih baik boleh diperolehi melalui rumusan fungsi
kecergasan secara khusus. Dengan keupayaan pemprosesan yang cekap pada masa
kini, revolusi untuk pengukuran tepat dapat dijangka dan digunakan bagi penghasilan
produk mahal. Keutamaan dalam pengeluaran tepat adalah kecerdasan buatan di
mana tesis ini menyiasat ciri-ciri prestasi penentuan, peraturan asas, pembelajaran
dan evolusi algoritma. Analisis prestasi dibentangkan bagi pengesahan kepentingan
pengoptimuman dinamik berdasarkan kepekatan produk melebihi cara konvensional
mematuhi profil tetap. Algoritma direka, dirumus dan dikira melalui MATLAB serta
terbenam pada pengawal dalam talian secara praktikal. Keputusan menunjukkan
algoritma yang dicadang mampu meningkatkan peratusan hasil 10-15% melalui
variasi fizikal akan menjadi alat penting bagi industri pembuatan ketepatan dalam
era masa depan.
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