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ABSTRACT 

 

Islands always held special attraction to scientist as model systems in biogeography 

and evolutionary studies. In Sabah, there are about 500 islands with various degree 

of isolation and size, and have experienced different climatic or historical processes. 

These attributes promise high research potential particularly in the field of island 

biogeography. Unfortunately, the up-to-date knowledge about the island biodiversity 

in Sabah is scarce in spite of the fact that Sabah is situated within one of the 

megabiodiversity hotspots. In addition, the geographical, ecological and evolutionary 

factors that shaped the Sabah’s islands biodiversity pattern are yet to be tackled. 

Using land snail as subject, an annotated checklist of land snail from 24 west coast 

islands of Sabah was presented and was explained the effect of island area, isolation 

on species composition and species richness. The phylogeography pattern of selected 

land snail species (i.e. Leptopoma pellucidum) from northwest islands was also 

demonstrated to understand the present genetic distribution and structure, and infer 

underlying historical processes by calibrating the phylogenetic tree with molecular 

clock. A total of 67 land snail species were documented from 24 west coast islands 

of Sabah based on 133 systematic sampling plots, collection database and published 

records. Land snail composition pattern was influenced by both isolation and area. 

The results of this study demonstrated that the species richness on Sabah’s island 

was largely determined by interaction among island area and isolationWith respect 

to phylogeography of L. pellucidum from northwest islands, the results revealed that 

its genetic structure was categorised into three major lineages. Suprisingly, time-

calibrated tree showed that the genetic divergence time does not correspond with 

island isolation due to sea level rising during Last Glacial Maximum. The lineages 

were estimated to have diverged during the middle and late Pleistocene. Earlier 

periodic interglacials and Pleistocene climate fluctuation might caused intra-specific 

divergence. This study reveals biogeography and evolutionary processes of Borneo’s 

island. This study also contribute to island biodiversity management plan as island 

size can be the relevant variable in conserving land snail diversity.   
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ABSTRAK 

 

BIOGEOGRAFI PULAU BAGI SIPUT DARAT DARI PULAU-PULAU DI 

SABAH, MALAYSIA 

 

Pulau merupakan tarikan istimewa kepada saintis sebagai model sistem dalam kajian 

biogeografi dan evolusi. Di Sabah, terdapat kira-kira 500 pulau yang pelbagai saiz, 

jarak dari tanah besar dan mengalami proses iklim atau sejarah geologi yang berbeza. 

Ciri-ciri ini menjanjikan potensi penyelidikan yang tinggi terutamanya dalam bidang 

biogeografi pulau. Walaupun Sabah merupakan salah satu pusat biodiversiti mega, 

pengetahuan terkini mengenai kepelbagaian biologi pulau di Sabah masih terhad. Di 

samping itu, faktor geografi, ekologi dan evolusi yang membentuk kepelbagaian 

biologi di pulau-pulau Sabah masih belum diketahui. Dengan mengambil siput darat 

sebagai subjek kajian, di sini saya memberi senarai semak spesies siput darat dari 

24 pulau di pantai barat Sabah dan menjelaskan peranan saiz pulau, jarak dari tanah 

besar dalam pembentukan komposisi dan kekayaan spesies. Selain itu, corak 

filogeografi siput darat terpilih (iaitu Leptopoma pellucidum) juga ditunjukkan untuk 

memahami struktur genetic dan taburan dengan mengkalibrasikan pokok filogeni 

mengunakan jam molekul. Sejumlah 67 spesies siput darat telah didokumentasikan 

dari 24 pulau di pantai barat Sabah berdasarkan 133 plot sistematik, pangkalan data 

dan rekod yang diterbit sebelum ini. Pola komposisi siput darat dipengaruhi oleh saiz 

pulau dan jarak dari tanah besar. Sementara itu, keputusan menunjukkan bahawa 

kekayaan spesies di pulau Sabah sebahagian besar ditentukan oleh saiz pulau 

danjarak dari tanah besarPokok filogenetik L. pellucidum dari pulau menunjukkan 

bahawa struktur genetik dikategorikan kepada tiga kumpulan geografi utama. Tanpa 

dijangka, masa pencapahan genetik adalah tidak sepadan dengan tempoh 

pengasingan pulau yang disebabkan oleh peningkatan paras laut semasa Maksimum 

Glasial Terakhir (MGT). Pencapahan intra-spesifik dijangka berlaku di antara 

pertengahan dan akhir Pleistosen. Inter-glasia sebelum MGT dan iklim Pleistosen 

yang tidak konsisten mungkin merupakan sebab pencapahan intra-spesifik tersebut. 

Kajian ini telah mendedahkan proses biogeografi dan evolusi di Kepulauan Borneo.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Background of study 

Island biogeography is a study of the geographical distribution patterns and diversity 

of island or isolated organisms in space and time and the underlying forces for such 

patterns. Among a variety of natural geographical features, islands always held 

special attraction to scientist as one of the key model systems in studies of 

biogeography and evolution (Warren et al., 2015) particularly after publications of 

Charles Darwin’s and Wallace's work on the Galapagos island and Malay Archipelago 

(Darwin, 1859; Wallace, 1869). Unique island biotas are shaped under predictable 

processes due to special attributes of island like geographical isolation, relatively 

small size and young geological age (Losos & Ricklefs, 2009). Such circumstances 

allow testing of theories or hypotheses on processes of speciation, taxonomic 

diversity and composition. In particular, the ultimate goal of the island biogeography 

is to decipher the determinants of island biodiversity patterns.  

 

A critical progress in the field of island biogeography is based on a relatively 

simple but comprehensive model by MacArthur and Wilson (1967), namely the 

Equilibrium Theory of Island Biogeography. The theory postulated that island 

biodiversity is shaped through dynamic equilibrium between immigration rate and 

extinction rate. The Equilibrium Theory also postulated that species richness increase 

with island area and decrease with isolation. With the equilibrium theory as a 

paradigm, a spawning number of studies have supported species-area and species-

isolation relationship (Whittaker & Triantis, 2012 and reference therein; Parent, 

2012). Despite the wealth of island biogeography studies, key determinants of island 

biodiversity patterns and how the determinants function are still not fully understood 

and the field requires a new theoretical framework instead of relying on the model 
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proposed half century ago (Brown & Lomolino, 2000). In view of this, continued 

testing of the theories on wide range of organisms from different geographical 

regions are required to provide novel insights into island biogeography.  

 

Beside the island biogeography, island system also serves as the ideal site for 

the study of effect of geographical isolation, paleogeographical event or historical 

climate change on the genetic diversity and genetic distribution of island biotas 

(Bittkau & Comes, 2005). Study of phylogeography and population genetics on island 

biotas allows gaining insights into microevolutionary patterns and its underlying 

processes (e.g. Emerson et al., 1999; Nakamura et al., 2010; Ruedi & Fumagalli, 

1996). Recent advancement on molecular techniques and theories allows 

comprehensive investigations of evolutionary histories of organism such as 

calibration of molecular clock that enables estimation of divergence times (Avise, 

2009; Avise et al., 1987, 1998). Thus, events that responsible for genetic divergence 

can be postulated and enables better understanding on evolution of island biotas. 

 

Land snails are informative model organism for island biogeography (Holland 

& Cowie, 2009) and phylogeography study. Their sedentary behavior and passive 

dispersal ability that prevent them from escaping unfavorable environmental 

conditions allow scientists to track genetic variation patterns that arose in the past 

(Davison, 2002; Pfenninger & Posada, 2002). Moreover, the empty shells are well 

preserved in forest leaf litter which can be used to reveal their present geographical 

distribution. Therefore, the study of land snails can reveal the underlying biodiversity, 

evolutionary processes and biogeography patterns of islands. 

 

Among the mega-biodiversity hotspot regions of the world (Myers et al., 2000; 

Woodruff, 2010), the island of Borneo is the ideal natural laboratory for testing island 

biogeography theories. Borneo is the third largest island in the world (743,330km2) 

and also member of the most geographically complex tropical regions in the world, 

namely the Malay Archipelago (Lohman et al., 2011). West coast of Sabah in northern 

Borneo was extensively connected to Sumatra, Java, Malay Peninsular and Indochina 

compare to northeastern part of Sabah during Last Glacial Maximum (LGM) which is 

about 20,000 years ago and periodic glaciations before LGM for relatively long periods 




