EVALUATION OF RAT OCCURRENCE IN OIL PALM PLANTATIONS USING GIS AND REMOTE SENSING TECHNIQUES

SCHOOL OF INTERNATIONAL TROPICAL FORESTRY UNIVERSITI MALAYSIA SABAH 2012

EVALUATION OF RAT OCCURRENCE IN OIL PALM PLANTATIONS USING GIS AND REMOTE SENSING TECHNIQUES

CHONG CHEE WEY

DEGREE OF MASTER OF SCIENCE

SCHOOL OF INTERNATIONAL TROPICAL FORESTRY UNIVERSITI MALAYSIA SABAH 2012

PUMS 99:1

BORANG PI	ENGESAHAN TESIS
JUDUL :	
IJAZAH :	
SAYA :	SESI PENGAJIAN :
(HURUF BESAR)	
Mengaku membenarkan tesis *(LPSM/Sarjana/Dokto Sabah dengan syarat-syarat kegunaan seperti berikut:	r Falsafah) ini disimpan di Perpustakaan Universiti Malaysia -
	ah. narkan membuat salinan untuk tujuan pengajian sahaja. resis ini sebagai bahan pertukaran antara institusi pengajian
4. Sila tandakan (/)	mat yang berdarjah keselamatan atau kepentingan Malaysia
Charles and Charles	ub di AKTA RAHSIA RASMI 1972) mat TERHAD yang telah ditentukan oleh organisasi/badan di jalankan)
TIDAK TERHAD	Disahkan oleh:
 (TANDATANGAN PENULIS) Alamat Tetap:	(TANDATANGAN PUSTAKAWAN)
 	(NAMA PENYELIA) TARIKH:
menyatakan sekali sebab dan tempoh tesis ini perlu	r Falsafah dan Sarjana Secara Penyelidikan atau disertai

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

1st June 2012

Chong Chee Wey PF2008-8382

CERTIFICATION

- NAME : CHONG CHEE WEY
- MATRIC NO. : **PF2008-8382**
- TITLE : EVALUATION OF RAT OCCURRENCE IN OIL PALM PLANTATIONS USING GIS AND REMOTE SENSING TECHNIQUES
- DEGREE : MASTER OF SCIENCE (FORESTRY)
- VIVA DATE : 25th September 2012

DECLARED BY

- 1. SUPERVISOR Assoc. Prof. Dr. Phua Mui How
- 2. CO-SUPERVISOR Assoc. Prof. Dr. Abdul Hamid Ahmad
- 3. CO-SUPERVISOR ASSOC. Prof. Dr. Hafidzi Mohd Nor

Signature

DR. HAFIDZI BIN MOMD, NOR Jabatan Peslindungan Tumbuhan Universiti Putra Malaysin 43400 UPM Serdang Selangor Darul Bhan Malaysin

ACKNOWLEDGEMENTS

This project was funded by MOSTI, Malaysia (ScienceFund No. 05-01-10-SF0094). I would like to express my deepest gratitude and appreciation to my supervisors Assoc. Prof. Dr. Phua Mui How, Assoc. Prof. Dr. Abdul Hamid Ahmad, and Assoc. Prof. Dr. Hafidzi Mohd Nor for all their advices, guidance and support throughout the research work that led to completion of this thesis. I would like to thank the field assistance rendered, generous cooperation of various parties involved in the course of this study, including FELDA, Sabah Forestry Department, and Tabin Wildlife Reserve.

Chong Chee Wey 1^{st} June 2012

ABSTRAK

PENILAIAN KEHADIRAN TIKUS DI LADANG KELAPA SAWIT DENGAN MENGGUNAKAN TEKNIK GIS DAN PENDERIAAN JAUH

Kerosakan yang disebabkan oleh tikus di ladang kelapa sawit membawa kerugian ekonomi. Dalam kajian ini, faktor-faktor yang mempengaruhi kewujudan tikus telah dikaji dengan menggunakan teknik GIS. 255 ekor tikus telah ditangkap dengan menggunakan perangkap dan kebanyakannya adalah *Rattus rattus diardii*. Di ladang kelapa sawit, species tikus adalah *R. r. diardii, R. argentiventer*, dan *Maxomys whiteheadi*. Di hutan pula, species tikus adalah *R. r. diardii, M. whiteheadi*, dan *M. surifer*. Data tangkapan tikus digabungkan dengan beberapa faktor. Faktor yang mempengaruhi kehadiran tikus telah dikenalpasti melibatkan umur pokok, jarak dari jalan, jarak dari kilang pemprosesan, dan indeks vegetasi NDVI. Persamaan logistik binomial dan multinomial telah dibangunkan untuk meramal taburan tikus di ladang kelapa sawit. Kajian ini teah mengenalpasti kawasan yang tinggi, sederhana, dan rendah kehadiran tikus (Kadar tangkapan 25.35%, Kehadiran tikus di 95.31% lokasi). Sarang burung hantu boleh diletakkan di kawasan tersebut, dan kehadiran tikus di ladang kelapa sawit boleh ditangani dengan lebih berkesan.

ABSTRACT

Rat damage in oil palm plantation brings significant economic losses. In this study, factors that influence rat occurrence were investigated using live trapping and GISbased multicriteria analysis. 255 rats, mostly Rattus rattus diardii were captured using live trapping from nearly two thousands trap-night efforts. In oil palm plantation, rat species captured is R. r. diardii, R. argentiventer, Maxomys whiteheadi. In forest, rat species captured is R. r. diardii, M. whiteheadi, and M. surifer.Rat capture data was examined using several spatial factors. Factors that influence rat occurrence are found to be palm age, distance from road, distance from mill, and Normalized Difference Vegetation Index (NDVI) value. Binomial and multinomial logistic regression models were developed for prediction of rat occurrence area in oil palm plantation; highest rat occurrence (25.35% success rate, 95.31% points with rat) was recorded in replanting area. Identification of high rat occurrence area allow effective placement of barn owl nest box, for addressing rat problems in resource saving and environmental friendly way.

TABLE OF CONTENTS

	Page
TITLE	i
DECLARATION	ii
CERTIFICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRAK	V
ABSTRACT	vi
LIST OF CONTENTS	vii
LIST OF TABLES	х
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xiv
LIST OF SYMBOLS	XV
LIST OF APPENDIX	xvi
CHAPTER 1: INTRODUCTION	1
1.1 Research objectives	2
1.2 Problem statements	2
1.3 Justification	2
CHAPTER 2: LITERATURE REVIEW	3
2.1 Rat and their habitat UNIVERSITI MALA	YSIA SABAH 3
2.1.1 Background	3
2.1.2 Rat in oil palm plantation	4
2.1.3 Rat control method	6
i. Chemical control	6
ii. Physical control	7
iii. Biological control	7
2.2 Live trapping of rats	9
2.3 Daytime resting area of rats	10
2.3.1 Locating rat daytime resting area	10
2.3.2 Calculation of the size of daytime resting are	ea 11
2.4 Evaluation of rat species occurrence in their habitat	13
2.5 Multicriteria analysis	16

2.6	GIS-bas	sed habitat evaluation	17
CHA	PTER 3	: METHODOLOGY	21
3.1	Study s	ite	21
	3.1.1	FELDA plantation	21
	3.1.2	Permai plantation	22
3.2	Data co	llection	25
	3.2.1	Live trapping	25
		i. Systematic sampling	25
		ii. Factors combination map	30
	3.2.2	Radiotracking	31
	3.2.3	Satellite data acquisition	34
		i. GeoEye data	34
		ii. Landsat data	35
		iii. Plantation map	37
		iv. Elevation data	38
3.3	Data ar	nalysis	38
	3.3.1	Satellite image processing	38
	리 [i. Preprocessing and panchromatic sharpening	38
V	18	ii. Normalized Difference Vegetation Index (NDVI)	39
	~4	iii. Object-based classification	39
	3.3.2	Mapping of rat occurrence	43
CHA	PTER 4	: RESULTS	47
4.1	Results	of the overal captures in FELDA and Permai plantations	47
4.2	Daytime	e resting area	50
4.3	Rat occ	urrence	53
	4.3.1	Rat occurrence in FELDA plantation	53
		i. Binomial logistic regression	53
		ii. Multinomial logistic regression	56
	4.3.2	Rat occurrence in Permai plantation	60
4.4	Land co	over map using the GeoEye data	64
	4.4.1	Land cover types	64
	4.4.2	Accuracy assessment for object-based classification	64

4.5	Associat	tion of rat occurrence and land cover type	68
CHA	PTER 5	DISCUSSION	75
5.1	Trap su	ccess rate and rat population	75
5.2	Rat spe	cies composition compared to other studies	80
5.3	Factors	that influence rat occurrence	81
	5.3.1	Age of plantation and NDVI	81
	5.3.2	Proximity to road	83
	5.3.3	Proximity to oil processing mill	84
5.4	Potentia	al use for supporting Integrated Pest Management	84
5.5	Rat con	trol strategies	85
	5.5.1	Forest remnants – to keep or not to keep?	85
	5.5.2	Rodenticide – to use or not?	87
	5.5.3	Barn owl introduction	88
	5.5.4	Placement of barn owl nest box	89
5.6	Further	research	90
	5.6.1	Rat population and behavior	90
	5.6.2	Rodenticide tolerance of <i>R. r. diarddi</i>	90
СНА	PTER 6	CONCLUSION	92
REF	ERENCE		93
APP	ENDIX	UNIVERSITI MALAYSIA SABAH	114

LIST OF TABLES

Table 2.1	Main differences of R. r. diardii, R. argentiventer, and R.	Page 4
	tiomanicus	•
Table 3.1	Trap settings in Permai and FELDA	29
Table 3.2	Transmitter used in radiotracking	32
Table 3.3	Reclassification table for road, river, plantation age, and	45
	oil processing mill	
Table 4.1	Result of live trapping in forest near Permai, Permai and	48
	FELDA plantation	
Table 4.2	Sex of rat captured	49
Table 4.3	Daytime resting area (m ²) of male <i>R. r. diardii</i> in FELDA plantation	50
Table 4.4	Daytime resting area (m ²) of female <i>R. r. diardii</i> in FELDA	51
a t	plantation	
Table 4.5	Daytime resting area (m ²) of male <i>R. r. diardii</i> in Permai	51
	plantation	
Table 4.6	Daytime resting area (m ²) of female <i>R. r. diardii</i> in	51
	Permai plantation	
Table 4.7	Daytime resting area (m ²) of male <i>Maxomys whiteheadi</i> in	52
	forest adjacent to Permai plantation	
Table 4.8	Daytime resting area (m ²) of female Maxomys whiteheadi	52
	in forest adjacent to Permai Plantation	
Table 4.9	Comparison of regression analysis of FELDA plantation	53
Table 4.10	Accuracy matrix for binomial logistric regression of FELDA	56
	plantation	
Table 4.11	Accuracy matrix for binomial logistric regression of FELDA	59
	plantation	
Table 4.12	Comparison of regression analysis of Permai plantation	60
Table 4.13	Accuracy matrix for binomial logistric regression of	61
	PERMAI plantation	
Table 4.14	Error matrix for object-based classification	67

Table 4.15	Users and producers accuracy for object-based	
	classification	
Table 4.16	Kappa statistic for object-based classification	68
Table 4.17	Area (m ²) for each class in area of high, medium andlow	73
	rat occurrence probability	
Table 5.1	Comparison with other studiess	76
Table 5.2	Species composition compared to other studies	82

LIST OF FIGURES

		Page
Figure 2.1	Zink collar on young oil palm	7
Figure 2.2	Minimum convex polygon (MCP)	12
Figure 2.3	Harmonic mean (HM)	12
Figure 2.4	Kernel estimator (KE)	13
Figure 3.1	Location of the FELDA plantation	22
Figure 3.2	Main road marking the border between the Permai	23
	Plantation (left) and the Tabin Wildlife Reserve (right).	
	The road connects Tomanggong and Lahad Datu.	
Figure 3.3	Location of the PERMAI plantation	24
Figure 3.4	Trapping point distribution in FELDA plantation	26
Figure 3.5	The recently cleared PERMAI oil palm plantatation is	27
	adjacent to forest remnants.	
Figure 3.6	Trapping point distribution in PERMAI plantation and	27
	adjacent forest	
Figure 3.7	The process of building factors combination map	30
Figure 3.8	R. r. diardii with transmitter attached	32
Figure 3.9	Estimation of the sample location by using three	33
AB	azimuths UNIVERSITI MALAYSIA SABAH	
Figure 3.10	GeoEye satellite image	34
Figure 3.11	Downloading image from USGS website	35
Figure 3.12	The two Landsat images	36
Figure 3.13	Supervised classification of Landsat image	37
Figure 3.14	Panchromatic sharpening of GeoEye image	39
Figure 3.15	NDVI image created from pan-sharped image	39
Figure 3.16	The process of object-based classification	40
Figure 3.17	Object-based classification	42
Figure 3.18	The process of rat occurrence mapping	46
Figure 4.1	Species captured in forest and oil palm plantation	49
Figure 4.2	Probability of rat occurrence in FELDA plantation by	55
	binomial logistic regression	

Figure 4.3 Probability of rat occurrence in FELDA plantation by		58
	multinomial logistic regression	
Figure 4.4	Probability of rat occurrence in Permai plantation by	63
	multinomial logistic regression	
Figure 4.5	Land cover map from object-based classification	64
Figure 4.6	Reference points were assigned for whole FELDA	66
	planation for accuracy assessment.	
Figure 4.7	Process of determining pattern of rat occurrence area	69
Figure 4.8	Land cover classes in area of high rat occurrence	70
	probability	
Figure 4.9	Land cover classes in area of medium rat occurrence	71
	probability	
Figure 4.10	Land cover classes in area of low rat occurrence	72
	probability	
Figure 4.11	Distribution of area for each class (m ²) in area of high,	73
152-	medium and low rat occurrence probability	
Figure 5.1	Young plantation is covered by mixture of newly planted	83
2	oil palm, grasses, bushes, and these leftover	
Figure 5.2	Rat damage (%) in Permai plantation from January 2009	86
A B	to May 2010 UNIVERSITI MALAYSIA SABAH	

LIST OF ABBREVIATIONS

GIS	Geographic information system	
RISDA	Rubber Industry Smallholders Development Authority	
NDVI	Normalized Difference Vegetation Index	
FFB	Fresh fruit bunch	
IPM	Integrated Pest Management	
USEPA	United States Environmental Protection Agency	
BOP	Barn owl programmes	
DOA	Department of Agriculture	
FELDA	Federal Land Development Authority	
FASSB	FELDA Agricultural Services Sdn. Bhd.	
ТНС	Tetracycline hydrochloride	
МРОВ	Malaysian Palm Oil Board	
PHVA	Population and habitat viability assessment	
MCA ST-	Multicriteria analysis	
USGS	United States Geological Survey	
DEM	Digital elevation model	
OBC	Object-based Classification	
мср	Minimum Convex Polygon	

LIST OF SYMBOLS

g	Gram	
ha	Hectares	
X ²	Chi-square	
R ²	R-square	
m	Meter	
m ²	meter square	
Ρ	Probability	
P(Y)	Probability of rat occurrence	
p	significance level	
К^	Kappa statistic	

LIST OF APPENDIX

Appendix A Details of GeoEye data

CHAPTER 1

INTRODUCTION

The oil palm industry is threatened by the persistence of pest problems, such as the red palm weevil, the rhinoceros beetle and rats (RISDA, 2010). Rat damage in oil palm plantation brings significant economic losses up to RM9700/ha/year, resulting from physical damage to oil palm fresh fruit bunch and the cost of rat control practices involved (Hafidzi & Saayon, 2001). Many plantations relied on rodenticide to control rat. The drawback of rodenticide use is it also consumed by non-target animals such as palm civets or cause secondary poisoning in predators that prey on rat (Naim *et al.*, 2010).

A widely employed environmentally safe approach in controlling rat is by relying on the natural predator, the barn owl (*Tyto alba*) (Hafidzi & Saayon, 2001). Natural propagation of the barn owl by way of provisioning artificial nest boxes started in the oil palm plantation in Malaysia in the 1980's (Duckett & Karuppiah, 1989; Smal, 1989). By and large the placement of the nest boxes in the oil palm plantation was largely random and not based on factors that influence rat density and distribution. As a consequence the nest boxes failed to attract barn owls and achieve optimum occupancy rates. From the point of sustainable agriculture perspective this is wastage of resource allocation and compromises on the effectiveness of the system. To successfully manage rat problem in plantation, it is important to know what are the factors that influence rat occurrence. However, the spatial aspect of rat occurrence has not been sufficiently studied.

Geographic information system (GIS) is suitable in habitat assessment of small mammals, such as foxes (Gerrard *et al.*, 2001), squirrels (Menzel *et al.*, 2006; Pereira & Itami, 1991) and urban rat (Traweger & Slotta-Bachmayr, 2005). In this study, the occurrence of rat and the spatial assessment that influence this in oil palm plantation in Sabah was investigated.

1.1 Research objectives

- To develop a spatial model of rat occurrence in oil palm plantations using GIS and remote sensing techniques.
- 2. To estimate rat occurrence in monoculture plantation and plantation adjacent to forest.

1.2 Problem statements

Despite various studies done on oil palm pest, none of them focus on examining the occurrence of rat using GIS and remote sensing techniques (Darus & Wahid, 2000; Deoras *et al.*, 1972; Liau, 1990; Wood, 1976). Although the barn owl has been introduced for decades, allocation of their nest box is still based on trial and error. The success of the use of the barn owl in controlling rodent pests might rely on deeper ecological settings of the rodents, which in turn influence the function of the owl as a predator. Through this study, the spatial distribution of rats in oil palm plantations and factors that influence it were examined.

1.3 Justification

This study was conducted to support sustainable development of oil palm industry, especially on the using of biological control method. It will bring us more understanding on rat and allow us to deal with rat problem through strategic placement of barn owl nest box. This study will provide an alternative to placement of nest boxes for the barn owl allowing the possibility to further enhance the use of biological control of rat pests in the oil palm plantations.

CHAPTER 2

LITERATURE REVIEW

2.1 Rats and their habitat

2.1.1 Background

In order to effectively handle rat problems, we need more understanding in their behavior and habitat. Rat makes up about 30% of the world mammalian species (Wilson & Reeder, 2005). They are highly adaptive creature and are well distributed all over the world. *Rattus rattus* for example, has a world-wide range and includes subantarctic islands (Pye *et al.*, 1999; Schwarz, 1960). Another common species, *R.norvegicus* has a more northernly distribution (Schwarz, 1960), and dominates cities in temperate regions (Cavia *et al.*, 2009). Subspecies *R. r. diardii* is found in Sabah and the taxonomy is as follows (Payne *et al.*, 1998):

phyllum	: chordata
class	: mammalia
order	rodentia UNIVERSITI MALAYSIA SABAH
suborder	: sciurognathi
family	: muridae
subfamily	: murinae
subspecies	: Rattus rattus diardii
common name	: black rat or house rat

It was reported that rat feed on nuts, plant leaves, stems, seeds, grass and insects (Horskins *et al.*, 1998). A pair of mature rat can produce up to 2000 offspring per year and their infants reach maturity in three to four months (Payne *et al*, 1998; RISDA, 2010). Innes and Skipworth (1983) studied *R.rattus* in New Zealand and found that *R.rattus* has stable home range with irregular shape, appear in different area in different nights, but stayed within their home range.

2.1.2 Rat in oil palm plantation

Rat is a problem in oil palm plantation, either newly planted or matured (RISDA, 2010). They are prevalent in oil palm plantations due to its favorable environment for breeding and taking refuge from predators (Hafidzi, 1995). The most widespread rat species found in oil palm of Peninsular Malaysia is the Malaysian wood rat (*R. tiomanicus*), the Malayan black rat (*R. r. diardii*), and ricefield rat (*R. argentiventer*) (Hafidzi & Saayon, 2001). Their main differences are listed in Table 2.1.

Eighty percent of *R.rattus* diet consists of plant matter (McDonald *et al.*, 1997). They are considered pest in oil palm plantation where they damage the oil palm fruit's bunches and cause stunted growth in both matured and young oil palm seedlings (Hafidzi & Saayon, 2001; Heru *et al.*, 2000). Study of 5372 rat in oil palm plantation showed that 96% of the stomach content is oil palm fruit (Wood & Liau, 1984). The abundance of rat has been found to have direct relationship to crop damage (Brown *et al.*, 2006).

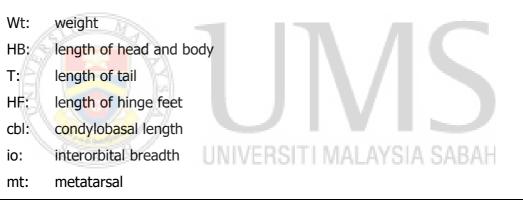

GL AC	Iomanicus		
(La	R. r. diardii	R. argentiventer	R. tiomanicus
Wt (g)	100-200	85-180 A A	/S78-125_BA-
HB (mm)	122-219	140-210	140-188
T (mm)	121-220	130-192	120-181
T/HB	>100%	<100%	75-120%
HF (mm)	32-39	32-36	28-35
Skull: cbl	33.8-42.9	35.1-39.7	34.3-36.9
Skull: io	5.8-7.4	5.6-6.6	5.9-6.5
Skull: mt	6.2-7.0	7.0-7.1	6.0-6.8
Upperparts	Finely grizzled	Pale brown with	Finely grizzled olive-
	olive-brown	brown speckling	brown
Underparts	paler, buffy	Wholly silvery-grey	Pale grey with buffy
	brown with grey		white tips/White
	bases		

 Table 2.1 : Main differences of R. r. diardii, R. argentiventer, and R.

 tiomanicus

Tail	Brownish	Brownish	Dark brownish
Female	10	12	10
mammae			
Ridge on	No	No	Yes
feet			
Black guard	Yes	No	Whole body
hair on rump			
Distinct	Big body size	Mostly subterranean,	Good climbers,
feature		attack young oil palm	dominant (in

Source: A Field Guide to the Mammals of Borneo (Payne *et al.*, 1998)

Newly planted oil palm is vulnerable to rat attacks; rat eat the young tissue which leads to stunted growth and death of the young oil palm (Padilla *et al.,* 1995; RISDA, 2010). In matured oil palm plantations, rat eat fresh fruit of oil palm. Rat also eat oil palm florescence when their population exceeds carrying capacity (RISDA, 2010). Their high adaptability had caused their population to exceed the carrying capacity in oil palm plantation (Hafidzi, 1993; Hafidzi, 1995). It was reported that estimated damage from rat activities can reach 3 ton/ha/year or RM1200/ha/year (Hafidzi & Saayon, 2001). The damage is even more critical in seriously attacked oil palm plantation (RISDA, 2010).

2.1.3 Rat control methods

Rat can be controlled using chemical, physical, or biological control method (RISDA, 2010). The cost of rat control varied with method used and it falls between RM30-RM70/hectare/year (RISDA, 2010).

i. Chemical control

Chemical control by means of rodenticide can be found in various formulations with different active ingredients (RISDA, 2010). There are more than 50 registered formulations of rodenticide registered in Malaysia alone (RISDA, 2010).

Wood (1976, 1984, 1988) suggested a six months interval baiting, while Ho (1996) recommended baiting when rat damage exceeds 5% of the fresh fruit bunch (FFB) (RISDA, 2010). In practice, some plantation modified the system suggested. For example, FELDA oil palm plantation do baiting three times a year, while another oil palm plantation, PERMAI, do baiting when damage exceeds 10% of FFB.

The drawback of rodenticide is rat will develop resistance to them over time after extended usages. There are two types of rodenticide, the first generation anticoagulants and the second generation anticoagulants. The latter was introduced when rat have developed resistance to the former (RISDA, 2010). Currently, the most widely employed first generation rodenticide in Malaysia is warfarin (Naim, 2009). Study also showed that using of rodenticide can only provide short term solution. A study done in 17 farms in United Kingdom showed that rat population can return to 50% of pre-treatment population in just one year (Cowan *et al.,* 2003).

Rodenticide has other drawbacks. Rat has high annual mortality rate and short lifespan, but with an extraordinary high reproductive potential (r-selected life strategy). Thus, the reduction of population by means of rodenticide can only provide short-term effect (Witmer, 2007). In oil palm plantation where food availability is high, rodenticide can be ineffective against rat (Leung & Clark, 2005). Leung & Clark (2005) investigated the effectiveness of baiting in a pig farm in Australia by using several types of commonly applied rodenticide. They concluded