PURIFICATION OF LOCAL CLAY FOR CERAMIC MEMBRANE SUPPORT

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2010

PURIFICATION OF LOCAL CLAY FOR CERAMIC MEMBRANE SUPPORT

THIEN SEN FONG

UNIVERSITI MALAYSIA SABAH

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2010

PUMS 99:1

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN TESIS	
JUDUL :	
IJAZAH :	
SAYA :	SESI PENGAJIAN :
(HURUF BESAR)	
Mengaku membenarkan tesis *(LPSM/Sarjana/Dokto Sabah dengan syarat-syarat kegunaan seperti berikut:	r Falsafah) ini disimpan di Perpustakaan Universiti Malaysia -
 Tesis adalah hak milik Universiti Malaysia Saba Perpustakaan Universiti Malaysia Sabah diben Perpustakaan dibenarkan membuat salinan t tinggi. 	ah. Iarkan membuat salinan untuk tujuan pengajian sahaja. esis ini sebagai bahan pertukaran antara institusi pengajian
4. Sila tandakan (/)	mat yang berdarjah keselamatan atau kepentingan Malaysia
seperti yang termaktu TERHAD (Mengandungi maklu mana penyelidikan di	ıb di AKTA RAHSIA RASMI 1972) mat TERHAD yang telah ditentukan oleh organisasi/badan di jalankan)
TIDAK TERHAD	Disahkan oleh:
 (TANDATANGAN PENULIS) Alamat Tetap:	(TANDATANGAN PUSTAKAWAN)
 TARIKH:	(NAMA PENYELIA) TARIKH:
Catatan: *Potong yang tidak berkenaan. *Jika tesis ini SULIT dan TERHAD, sila lampirkan sur menyatakan sekali sebab dan tempoh tesis ini perlu *Tesis dimaksudkan sebagai tesis bagi Ijazah Dokto bagi pengajian secara kerja kursus dan Laporan Pro	at daripada pihak berkuasa/organisasi berkenaan dengan u dikelaskan sebagai SULIT dan TERHAD. r Falsafah dan Sarjana Secara Penyelidikan atau disertai ıjek Sarjana Muda (LPSM).

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

29 NOVEMBER 2010

Thien Sen Fong PK2007-8218

CERTIFICATION

- NAME : THIEN SEN FONG
- MATRIC NO. : **PK20078218**
- TITLE : PURIFICATION OF LOCAL CLAY FOR CERAMIC MEMBRANE SUPPORT
- DEGREE : MASTER OF ENGINEERING (ADVANCED MATERIAL)

VIVA DATE : 8 JULY 2010

Assoc. Prof. Dr. Rosalam Hj. Sarbatly

Signature

ACKNOWLEDGEMENT

I wish to express my sincere appreciation to my thesis supervisor, Associate Professor Dr. Rosalam Hj. Sarbatly of the School of Engineering and Information Technology, Universiti Malaysia Sabah for his continuous encouragement, guidance and critics.

I am also indebted to Universiti Malaysia Sabah (UMS) for providing the financial support (Grant number: FRG107-TK-01/2007) for the research as well as giving me the opportunity to use the equipments .

Lastly, my sincere appreciation also extends to SKTM staff such as Madam Noridah Abbas and Mr. Paul Yohanes who have provided assistance at various occasions. I also wish to express my deepest gratitude to my friend, Terence Jerome Daim for assisting me in the thesis correction.

ABSTRACT

PURIFICATION OF LOCAL CLAY FOR CERAMIC MEBRANE SUPPORT

This research is aimed towards purifying clay from Indah Permai for ceramic membrane use. Conventional methods produce larger than 5 µm kaolin which is not tailored for ceramic membrane use due to the presence of inconsistent particle size and agglomerates. On the other hand, the presence of iron oxides in the raw clay creates a barrier in the pore structure of ceramic membrane. Therefore, particle size reduction and chemical extraction were performed to refine the clay Probe-type ultrasonic technique was found to give the best results. particles. Approximately 90% of its particle size is less than 5 µm. Larger agglomerates were also not found. The ultrasonic treated clay particles were further processed using oxalic acid to remove iron oxides. The reaction parameters such as concentration, pH and temperature were optimized. The optimum conditions required were acid concentration 0.2M, pH 2.5 and temperature 55°C. The corresponding iron oxides removal was 12.55%. 881 cm⁻¹ was not observed in the FTIR spectrum, representing structural iron component was removed from AI-Fe-OH bond. The technological characterizations have shown that the purified clay is predominantly kaolinite, indicating that it can be used as a starting material for fabrication of ceramic membrane support.

ABSTRAK

Tujuan kajian ini adalah untuk menulenkan tanah liat dari Indah Permai bagi kegunaan membrane seramik. Kaedah konvesional menghasilkan size partikel kaolin > 5 µm yang lazimnya tidak sesuai digunakan untuk kegunaan membran seramik disebabkan oleh size partikel yang tidak sekata dan penggumpalan. Di samping itu, kehadiran besi oksida dalam tanah liat mentah membentuk halangan dalam struktur liang membran seramik. Oleh demikian, teknik pengasingan partikel dan pengekstrakan secara kimia telah dilakukan untuk merawat partikel tanah liat. Ultrasonik jenis probe didapati menunjukkan keputusan yang memuaskan. Lebih kurang 90% daripada size partikel adalah kurang daripada 5 µm. Gumpalan yang besar juga tidak dikesan. Partikel tanah liat yang telah dihaluskan seterusnya diproses dengan asid oxalic untuk menyingkirkan besi oksida. Proses parameter seperti kepekatan asid, pH dan suhu dioptimunkan. Keadaan optimal vang diperolehi adalah pada kepekatan asid 0.2M, pH 2.5 dan suhu 55°C. Sebanyak 12.55% besi oksida telah disingkirkan pada keadaan optimal. 881 cm⁻¹ tidak dikesan dalam analisis FTIR. Pemerhatian ini menuniukkan bahawa komponen besi berstruktur telah disingkirkan daripada ikatan Al-Fe-OH. Keputusan analisis juga menunjukkan bahawa tanah liat yang telah diltulenkan adalah terdiri daripada kaolinite. Keputusan ini menunjukkan bahawa tanah liat yang dihasilkan sesuai digunakan sebagai bahan mentah dalam penghasilan sokongan membran seramik.

UNIVERSITI MALAYSIA SABAH

TABLE OF CONTENTS

		Page
TITL	Ε	i
DECL	ARATION	ii
CERT	TFICATION	iii
	1OWLEDGEMENT	iv
ABST	RACT	V
ABST	ΓRAK	vi
TABL	E OF CONTENTS	vii
LIST	OF TABLES	ix
LIST	OF FIGURES	х
LIST	OF ABBREVIATIONS	xii
LIST	OF NOMENCLATURE	xii
LIST	OF GREEK LETTERS	xiv
LIST	OF SYMBOL	XV
CHAF	TER 1: INTRODUCTION	
1.1	Overview	1
	1.1.1 Ceramic membrane Background	2
1.2	Clay Background	4
	1.2.1 Characteristics of Kaolinite	4
1.3	Demand Overview	6
1.4	Kaolin Processing	8
181	1.4.1 Particle Size Reduction Process	9
Z	1.4.2 Chemical Extraction Process	10
1.5		11
1.0	Scope of Works	14
1./	Research Objectives	14 14
1.0	Research Approach	14 1/
		15
2 1	Introduction	15
2.1	Particle Size Reduction	16
2.2	2.2.1. Particle Fracture Mechanism	16
	2.2.2.1 Definition of Clay Particles and Aggregation	18
23	Particle Size Reduction by Mixer Mill	20
2.5	2.3.1 Physics of The Process of Ball Milling	20
2.4	Particle Size Reduction by Ultrasonic	25
	2.4.1 Particle Fracture Mechanism by Cavitation Bubbles	26
	2.4.2 Energy Requirement using Ultrasonic Liquid Processor	29
	2.4.3 Particle Size Reduction using Sonicator Separator	32
2.5	Chemical Extraction	35
	2.5.1 Mechanism of Complexation and Reduction of Iron	38
	2.5.2 Effect of pH, Temperature and concentration on the Iron	40
	Dissolution Rate	-
	2.5.3 Effect of Acid Activation on the Clay structure	43
CHAF	PTER 3: MATERIALS AND METHODS	47
3.1	Introduction	47
3.2	Material Source and Sample Collection	48

3.3	Sample Preparation	48
3.4	Particle Size Reduction Techniques	48
	3.4.1 Mixer Mill	49
	3.4.2 Ultrasonic Liquid Processor	49
	3.4.3 Sonicator separator	50
3.5	Chemical Extraction	50
	3.5.1 Iron removal by Oxalic Acid Treatment	50
3.6	Analytical Techniques	51
	3.6.1 Particle Size Distribution by Particle Size Analyzer	51
	3.6.2 Morphology of the Treated Clay by Scanning Electron	53
	Microscope (SEM)	
	3.6.3 Iron Oxide Content by Atomic Absorption Spectroscopy (AAS)	53
	3.6.4 Crystallinity Analysis by X Ray Diffraction (XRD)	54
	3.6.5 Structural Configuration by Fourier Transform Infrared (FTIR)	55
CHAP	TER 4: RESULTS AND DISCUSSION	56
4.1	Particle Size Reduction Techniques	56
	4.1.1 Particle Size Distribution	
	4.1.2 Morphology of the Treated Clay Particles	67
4.2	Chemical Extraction	72
	4.2.1 Experimental Design	72
	4.2.2 D-Optimal Design	73
	4.2.3 Data Evaluation	74
4.3	Structural Configuration by Fourier Transform Infrared (FTIR)	84
A	4.3.1 Effect of Temperature on the Structural Configuration of the Purified Clay	84
9	4.3.2 Effect of Concentration on the Structural Configuration of	85
121	the Purified Clav	
4.4	Crystallinity Analysis by X Ray Diffraction (XRD)	88
	4.4.1 Chemical Composition of the Purified Clay	88
	4.4.2 Lattice Structure of the Purified Clay	90
	4.4.3 Crystallinity of the Purified Clay	91
СНАР	TER 5: CONCLUSION	95
5.1	Thesis Conclusion	95
5.2	Conclusion	96
5.3	Future Research (Proposed)	97
REFE	RENCES	98

LIST OF TABLES

		Page	
Table 1.1	Different Materials for Ceramic Membrane Support Synthesis	3	
Table 2.1	Methods of Iron Extraction from The Clay using Different 3 Reagents		
Table 2.2 Table 3.1	IR Spectra Assignments of Kaolinite Sample Specifications of Mixer Miller	46 49	
Table 3.2 Table 3.3 Table 3.4 Table 4.1	Instrumental Parameters of Operating AAS5Instrumental parameters of operating XRD5Instrumental Parameters of Operating FTIR5Factors and Levels Examined in the Iron Extraction7		
Table 4.2	Amount of Extractable Iron (ppm) for Concentration, pH and Temperature	75	
Table 4.3	ANOVA Analysis of The Quadratic Model of Iron Oxides 76 Removal from The Treated Clay		
Table 4.4	Chemical Composition of The Untreated Clay and Purified 88 Clay		
Table 4.5	Chemical Composition of The Purified Clay at Different 90 Operating Parameters		
Table 4.6	Specifications of a Unit Cell of Kaolinite Clay	91	
Table 4.7	FWHM Values of 020, 110 and 111 Reflection for The Purified Clay	92	
1 C	UNIVERSITI MALAYSIA SABAH		

LIST OF FIGURES

Figure 1.1	Schematic diagram of membrane function in the filtration	Page 1
Figure 1.2	Schematic diagram of an inorganic membrane : (A) top layer, (B) intermediate layer and (C) porous support (Lindqvist and Lidén, 1997)	2
Figure 1.3 Figure 1.4	Model of kaolinite structure (Alkan <i>et al.</i> , 2005) Geometry of a common unit cell	4 5
Figure 1.5	Planes in a unit cell of kaolinite clay (Sachan and Penumadu, 2007)	5
Figure 1.6	Percentage usage of both local and imported kaolin (Abdel-Khalek, 1999)	7
Figure 1.7	Annual forecast of the demand of kaolin in ceramics and paper industries (British Geological Survey, 2006)	7
Figure 1.8	Flow diagram of conventional soil treatment (Kuhlman and Greenfield, 1999)	8
Figure 1.9	Flow diagram of ceramic membrane layers preparation (Almondoz <i>et al.</i> , 2004)	13
Figure 2.1	Force versus distance on an atomic scale (Rhodes, 2008)	17
Figure 2.2	Aggregation of the clay mineral layers with increasing attraction: (a) single layers, (b) band-type aggregations, (c) compact particles (Bergava and Lagaly 2006)	18
Figure 2.3	Graphical illustration of breakage and aggregation phenomena (Fadda <i>et al.</i> , 2009)	19
Figure 2.4	Schematic diagram showing how ball mill works	20
Figure 2.5	Crack propagation in brittle fracture	22
Figure 2.6	Typical evolution of mass loss rate versus exposure time (Franc and Michel , 2004)	28
Figure 2.7	Principle of the model - (a) stress-strain relationship ; (b) evolution of the strain profile inside the material and of the hardening as a function of the exposure time (Karimi and Leo, 1987)	29
Figure 2.8	Simultaneous breakdown and movement of aggregates in the various sieves under influence of ultrasonic and mechanical vibration	34
Figure 3.1	Flow diagram of research works	47
Figure 3.2	(a) Mixer miller; (b) ultrasonic liquid processor and (c) sonicator separator used for particle separation	48
Figure 3.3	Sequential flow of an automatic measurement when a sample is to be measured	52
Figure 4.1	Particle size distribution of ground particles at 5Hz	58
Figure 4.2	Particle size distribution of ground particles at 10 Hz	58
Figure 4.3	Particle size distribution of ground particles at 15 Hz	59
Figure 4.4	Particle size distribution of ground particles at 20 Hz	59

Figure 4.5	Particle size distribution of ultrasonic treated particles at 20 % amplitude	61
Figure 4.6	Particle size distribution of ultrasonic treated particles at 25 % amplitude	61
Figure 4.7	Particle size distribution of ultrasonic treated particles at 30 % amplitude	62
Figure 4.8	Particle size distribution of ultrasonic treated particles at 35 % amplitude	62
Figure 4.9	Particle size distribution of sonicated particles at 7 % amplitude	63
Figure 4.10	Particle size distribution of sonicated particles at 8 % amplitude	64
Figure 4.11	Particle size distribution of sonicated particles at 9 % amplitude	64
Figure 4.12	Comparison of particle separation techniques with the smallest particle size (μ m) produced	66
Figure 4.13	Scanning electron microscope (SEM) images of ultrasonic treated clay particles at different ultrasonic amplitudes ; (a)20%; (b)25%; (c)30% ; (d)35%	69
Figure 4.14	Scanning electron microscope (SEM) images of sonicated clay particles at different sonication vibration amplitudes - (a) 7% :(b) 8%: (c) 9%	71
Figure 4.15	The studentized residuals versus predicted	77
Figure 4.16	Normal probability plot of residuals versus studentized residuals	78
Figure 4.17	Outlier t versus run order	79
Figure 4.18	Effects of temperature and pH on the amount of dissolved iron	81
Figure 4.19	Effects of concentration and pH on the amount of dissolved iron	82
Figure 4.20	Effects of concentration and temperature on the amount of dissolved iron	83
Figure 4.21	IR spectra of the treated clay at different applied temperatures	85
Figure 4.22	IR spectra of the treated clay at different applied concentrations	87
Figure 4.23 Figure 4.24	Planes in a unit cell of kaolinite Structure transformation of kaolinite clay under acid activation	90 94

LIST OF ABBREVIATIONS

AAS	Atomic Absorption Spectroscopy
Al	Aluminium
Al ₂ O ₃	Alumina
Al ₂ Si ₂ O ₅ (OH) ₄	Kaolinite
$C_2 O_4^{2-}$	Oxalate
EDTA	Ethylenediaminetetraacetic
Fe	Iron
Fe ²⁺	Iron (II)
Fe ³⁺	Iron (III)
FWHM	Full peak width at half maximum peak height
FTIR	Fourier Transform Infrared Spectrometer
HCI	Hydrochloric acid
H_2O_2	Hydrogen peroxide
$H_2C_2O_4$	Oxalic acid
IR	Infrared
LOI	Loss of ignition
М	Mole
Mg	Magnesium
NA	Not available
ml Astrony	Millilitre
OH	Hydroxide
p value	Probability value
RSM	Response Surface Methodology
SEM 🔥 💿	Scanning Electron Microscope
SiO ₂	Silica
SO ₂ -	Sulphate ion
SO ₄ ²⁻	Sulphate ions NIVERSI I MALAYSIA SABAR
St _{def}	Stokes deformation number
Stk	Stokes number
Stk*	Critical value of the Stokes number
Т	Tetrahedral
W	Watt
XRD	X ray diffraction

LIST OF NOMENCLATURE

$\begin{array}{l} A \\ A_{m} \\ A_{o,} \ A_{1} \ , \ A_{2} \\ \mathbf{a} \\ a \\ a \\ a \\ a_{1} \ , \ a_{2} \end{array}$	Concentration variable Amplitude of vibration (m) Pre-exponential factor Crystal unit cell vector in a axis Exponent of <i>a</i> is a measure for attractive force that need to be prevailed in the de-agglomeration process
a _H B	Activity of protons in solution

BpH variablebCrystal unit cell vector in b axis

b ₁ , b ₂	Constant
С	Temperature variable
CL	crack length
°C	Celsius
с	Crystal unit cell vector in c axis
E	Amount of energy dissipated
E	Power
F	Youna's modulus
– Em	Energy density
$\mathbf{F}_{0} = \mathbf{F}_{1} = \mathbf{F}_{2}$	Activation energy
E ₀ , E ₁ , E ₂	Specific energy for de-agglomeration process
⊑v D⊾	Ball size
	Exponent
ρ	Coefficient of restitution for the collision
E E	Maximum surface coverage of protons
H ₇	Hartz
h	Instantaneous height, of the newder
li h	Laver of liquid thicknoss
li h	Layer of inquia trickness
ll _o h	Initial neight
II ₀ F	
T	Flequency
V AL	Constant
	Constant
<u>}</u>	Depth of the hardened layer
- 121 -	
- 2	Light dillon
- 121 1	Hair the length of the crack
	Particle diameter
Me	Metal Cation
in _{Susp}	Mass of the suspension Lind in MinLariota Ordani
m 	Mass flow rate
Ν	Rate for a complete covering of the material surface
n	Number of values in a sample
n	Constant
Р	Power output (W)
Pi	Fluid pressure
Pv	Power input per dispersion volume
Pv	vapour pressure of the fluid
P∞	Sound pressure
R	Gas constant
R	Radius of crack tip or hole
R _{max}	Radius of the bubbles
r _d	Radius of the grinding cylinder
Ī	Surface area
Т	Temperature (K)
Th	Thoma number
t	Time
tr	Residence time
U _c	Collision velocity
u _i	Fluid velocity

V	Volume of the suspension (ml)
v	flow velocity
v	Impact velocity
v _{app}	Velocity of the particle
Vg	velocity component it acquires during its subsequent fall
Vo	Threshold velocity of cavitation erosion
v _t	Tangential velocity of the ball when it leaves the internal wall
W_{cav}	Energy of cavitation
х	Diameter of the particle
х	Distance from the material surface
X_1	Concentration (M)
X 2	рН
X 3	Temperature (°C)
X _m	Maximum breakage of the particles
X _{mean}	Mean particle size
x ₀	Mean particle size of the feed fraction
Y	Expected response
Y _d	Dynamic yield stress of the granule
У	Distance the ball falls prior to impact

LIST OF GREEK LETTERS

pc 🔗	Acoustic impendence
γ	Amplitude of the ultrasonic
ξ	Amplitude of vibration
Ó PL	Angle of reflection
ω	Angular frequency
ω	Angular velocity of the cylinder
$ ho_g$	Average granule density
v'	Ball velocity
α, β, γ	Corner angles
α	Constant parameter for a specific comminution process
β_{\circ}	Constant coefficient
ρr	Density of reactive surface sites on the mineral surface
	$(\text{mol } \text{m}^{-2})$
β_{i}	Estimated model coefficients or regression coefficient
σ	Impact loads of mean amplitude
βi, βj, βij	Interaction coefficient of linear, quadratic and the second order
	terms, respectively
ε_{max}	Maximum strain
θ	Metallurgical parameter which measures the steepness of the
	Nieve
μ	Micro Minimum volue, of portiole porecity
ε_{min}	minimum value of particle porosity
л О	PI (3.142) Dopulation linear correlation coefficient
Ϋ́Υ	Productod value of V
ř	
ρ	

- σ Standard deviation of the population of all possible sample
- means
- έ Strain rate
 γ surface energy
- γ surface energy σ_B Tensile stress
- τ Time interval
- $\sigma_{\rm U}$ Ultimate strength
- ε Velocity of sound
- ε Random error
- μ Viscosity

LIST OF SYMBOL

- ≈ Approximately
- = Equal to
- > Greater than
- < Less than
- ≠ Not equal to
- % Percentage

CHAPTER 1

INTRODUCTION

1.1 Overview

A membrane is a thin film which serves as a selective barrier between two phases. In the action of a driving force (i.e. pressure, concentration, etc), it allows permeable particles in the permeate stream whilst accumulates impermeable particles in the retentate stream. Generally, membranes can be classified into three groups: ceramic, polymeric and biological type. These three types of membranes differ significantly in their structure and functionality. The use of membrane technology has been commonly applied in the existing filtration facilities such as wastewater treatment, food processing (Basso *et al.*, 2009), water purification (van Gestel *et al.*, 2002), gas separation and the like. Figure 1.1 depicts the schematic diagram of membrane function in the filtration process.

Figure 1.1: Schematic diagram of membrane function in the filtration process

In the separation technique, ceramic membrane has been recognized for years as it posseses several advantages like high thermal stability (Kirchner *et al.*, 2008), good selectivity and permeability (Wee *et al.*, 2008), high chemical resistance (Hao *et al.*, 2004) and well defined pore structure (Xomeritakis *et al.*, 1997; Li and Li, 2007).

The fabrication of ceramic membrane conventionally uses limited inorganic materials such as alumina, titania and zirconia, which have a relatively higher cost. Among inorganic materials, kaolin is an inexpensive material that can be utilized and its utilization is still investigated. In this study, kaolin is referred to as purified clay. The attractiveness of this research is the utilization of local clay to produce purified clay for membrane support use. Malaysia, particularly Sabah is endowed in abundance with clay soil, thus paving the way to develop the production of a potential industrial commodity. From the viewpoint of abundant local availability and technical feasibility it will become economical to establish such an industry in Sabah. Moreover, the purified clay on the market now is mostly used for industries such as paper making, paint manufacturing and so on. It is not tailored for ceramic membrane use. Against this current scenario, we took the initiative to produce purified clay from local clay, which can be used as raw material for ceramic membrane support.

1.1.1 Ceramic Membrane Background

The synthesized membrane is a type of inorganic film which made up of three layers. As shown in Figure 1.2, the first layer of the membrane is called the top layer, followed by an intermediate layer and a porous support. The top layer ,the intermediate layer and the porous support has different thickness, typically 1-10 μ m,10-100 μ m and a few millimeters thick ,respectively. Their pore sizes are usually in the range of 2-50 nm, 0.05-0.5 μ m and 1-10 μ m, respectively (Lindqvist and Lidén, 1997).

Figure 1.2: Schematic diagram of an inorganic membrane : (A) top layer, (B) intermediate layer and (C) porous support (Lindqvist and Lidén, 1997)

Among these layers, the porous support is an important layer as it governs the transport property as well as provides structural stability to the fabricated membrane (Wee *et al.*, 2008). In this study, the purified material that we prepared will be used to fabricate the porous support. Therefore, it is important to choose the suitable raw material from the viewpoint of purity and characteristics, in order to produce defect free porous support structure.

Several materials have been used for ceramic membrane support synthesis, as shown in Table 1.1. Basically, the preparation of ceramic membrane is based on the nature characteristics of a suitable starting material. For example, silica element has higher thermal stability and can withstand in the acidity condition whereas alumina element enhances mechanical strength to the ceramic membrane (Wee *et al.*, 2008). Besides that, kaolinite acts as a binder in the green state of ceramic membrane due to its good film forming ability (Dondi *et al.*, 2007). It is also evidenced that kaolinite shows plasticity behavior on the ceramic membrane by shaping homogenous surface (Bouzerara *et al.*, 2006).

Element	Reference
α- alu <mark>mina/ corun</mark> dum	Wee <i>et al.</i> (2008); Ganesh and Ferreira (2009) ;Martín-Ruiz <i>et al.</i> (2009)
γ- alumina	Lamber and Gonzalez (1999); Wee et al. (2008)
Kaolinite	Mohammadi and Pak (2003)
Silica	Kang <i>et al</i> . (1995);Dong <i>et al</i> . (2006)
Titania	van den Berg <i>et al</i> . (2003); Wee <i>et al</i> . (2008)

 Table 1.1: Different Materials for Ceramic Membrane Support Synthesis

1.2 Clay Background

Basically, rocks that are rich in kaolinite are known as china clay or kaolin. In nature, kaolin is an aluminosilicate material enriched with kaolin group minerals such as kaolinite, halloysite, dickite and nacrite (Grim, 1962). Kaolinite is the dominant clay mineral in the kaolin. Its chemical formula is expressed as $Al_2Si_2O_5(OH)_4$. Kaolinite belongs to 1:1 clay minerals. Inside 1:1 clay minerals, the tetrahedral sheets are situated adjacent to the octahedral sheets in the clay minerals with hydrogen bonding. The coplanar tetrahedral sheets and the apical oxygen are bonded to an octahedral second layer containing cations such as Al (II), Fe (III) or Mg (II) (Pérez-Rodríguez *et al.*, 2006).

1.2.1 Characteristics of Kaolinite

A unit cell of kaolinite is a combination of tetrahedral and octahedral layers. It consists of primary elements such as silicate and alumina, with hydroxyl groups present between the layers, as shown in Figure 1.3.

Figure 1.3: Model of kaolinite structure (Alkan *et al.*, 2005)

Typically, two significant hydroxyl groups exist in the kaolinite structure, namely inner surface hydroxyl groups and inner hydroxyl groups (Frost *et al.*, 2002; Pérez-Maqueda *et al.*, 2005). The first one is commonly distributed around the outer of the octahedral layer whereas the latter is situated in the inner plane of the octahedral layer. 3 of 4 hydroxyl elements in kaolinite are situated in the outer layer whilst the remaining one is entrapped inside layers.

Different lattice has different corner angles (α , β , γ) and crystal unit cell vectors (a,b,c) . Figure 1.4 shows the geometry of a basic unit cell of kaolinite. The silica (tetrahedral-bonded) and alumina (octahedral-bonded) inside kaolinite are in the **a** and **b** axis, in the arrangement of atoms in unit cell. They stacked one above along direction of **c**, resulting formation of triclinic frame.

Figure 1.4: Geometry of a common unit cell

Figure 1.5 shows planes in a unit cell of kaolinite clay. The planes in a unit cell of kaolinite are categorized in two groups, namely basal plane and prism plane. The basal plane (i.e. 001,002) refers to the orientation of the particle is perpendicular to Z direction whereas the prism plane (i.e. 020,110) is not oriented in the tangent axis (Sachan and Penumadu, 2007).

Figure 1.5: Planes in a unit cell of kaolinite clay (Sachan and Penumadu, 2007)

1.3 Demand Overview

Kaolin has been and continues to be of the vital industrial material. It can be seen that kaolin has a range of manufacturing applications, which are classified in three significant market areas, namely paper, ceramics and 'performance minerals'. According to British Geological Survey (2006), major kaolin demand is dominated by the paper industry which report for about 70% of total sales. Kaolin performs two different functions in the paper processing. 37% of kaolin is incorporated into the paper body as filler to reduce treatment cost and also to improve the printing characteristics of the paper. In the meantime, 33% of kaolin is used as a coating medium, boosting the surface properties of the paper such as brightness, smoothness, gloss and ink receptivity and the like. The ceramics industry is the second most essential sector, reporting for about 22% of total sales (British Geological Survey, 2006). Main market areas included United Kingdom, France, Italy, Spain, Germany and Asia. Its key function is to confer whiteness to the ceramic body. For this reason, kaolin is mostly used in the manufacturing of vitreous china sanitary ware, tableware, wall tiles, electrical porcelain and glazes. Other uses include act as 'performance mineral'. In the application of 'performance mineral', kaolin performs as fillers in paint, rubber, plastics, adhesives and pharmaceutical.

UNIVERSITI MALAYSIA SABAH

Similarly, Abdel-Khalek (1999) has reported that important market sectors were found related to the manufacturing of paper, sanitary and ceramic products. Figure 1.6 shows the percentage usage of both local and imported kaolin per year (Abdel-Khalek, 1999). The production of kaolin used in ceramic products in 1990 was 441,020 tonnes per year. Out of the total, the kaolin consumption in the cement and aluminosilicate sectors accounted 75%, followed by tiles and ceramics with 18%.

Figure 1.6: Percentage usage of both local and imported kaolin (Abdel-Khalek, 1999)

Figure 1.7 shows annual forecast of the demand of kaolin in ceramics and paper industries (British Geological Survey, 2006). From a total of about 166,345 tonnes in 1997, a total of 146,000 tonnes was utilized in ceramics production. The total demand on kaolin consumption in the year 2000 was reported at about 184,000 tonnes of which 155,000 tonnes was used in ceramics manufacturing and the remaining in paper processing. The increment of kaolin demand indicates the importance of kaolin as a raw material in the paper and ceramic industries.

Figure 1.7: Annual forecast of the demand of kaolin in ceramics and paper industries (British Geological Survey, 2006)