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ABSTRACT 
 

COEFFICIENT PROBLEMS FOR CERTAIN CLASSES OF ANALYTIC 
FUNCTIONS 

 
This thesis considers A  the class of functions which are analytic in the open 

unit disk  1:  zzD . The subclass of A  consisting of univalent functions  

and normalized by the conditions     0100  ff  is denoted by S . The 

main subclasses of S  includes KCS ,,* and *K  which respectively consists 

of starlike, convex, close-to-convex and quasi-convex functions. This thesis 
also considers a subclass of S , denoted by T , consisting of functions f  

with non negative coefficients. By considering functions Tf  , two new 

subclasses are introduced and properties for functions in these classes are 
studied such as coefficient estimates, growth and extreme points. In this 
thesis, the upper bounds for the Fekete-Szegӧ functional and functional 
derived from the 2nd Hankel determinant are obtained for certain subclasses 

of S . 
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ABSTRAK 
 

Tesis ini mempertimbangkan A  sebagai kelas fungsi yang analisis di dalam 
cakera unit terbuka  1:  zzD . Subkelas bagi A  yang terdiri daripada 

fungsi univalen dan ternormal supaya     0100  ff  dilambangkan 

sebagai S . Subkelas utama bagi S  termasuk KCS ,,* and *K  masing-

masing merupakan fungsi bakbintang, cembung, hampir cembung dan 
kuasi-cembung. Tesis ini juga mempertimbangkan subkelas bagi S , 
dilambangkan sebagai T , terdiri daripada fungsi f  dengan pekali tak 

negatif. Dengan mempertimbangkan fungsi Tf  , dua subkelas 

diperkenalkan dan sifat fungsi bagi kedua-dua kelas dikaji seperti anggaran 
pekali, pertumbuhan dan titik ekstrim. Di dalam tesis ini, batasan atas bagi 
fungsian  Fekete-Szegӧ and fungsian penentu Hankel ke-2 juga diperoleh 
bagi subkelas S . 
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CHAPTER 1 

 

PRELIMINARIES 

 

 

1.1 Introduction 

Geometric function theory is the branch of complex analysis which deals with the 

geometric properties of analytic functions, founded around the turn of the 20th 

century. In spite of the famous coefficient problem, the Bieberbach conjecture that 

was solved by Louis de Branges in 1984 suggests various approaches and 

directions of studies in the geometric function theory. The cornerstone of geometric 

function theory is the theory of univalent functions, but new related topics 

appeared and developed with many interesting results and applications (Bulboacă 

et al., 2012). 

 

This thesis considers A  to be the class of analytic functions in the open unit 

disk  1:  zzD . According to Billing (2010), a function f  is said to be analytic at 

a point z  in the domain E  if it is differentiable not only at z  but also in some 

neighborhood of point z . A function f  is said to be analytic on a domain E  if it is 

analytic at each point of E .  

 

The subclass of A  consisting of univalent functions and normalized by the 

conditions     0100 '  ff , is denoted by S . In Goodman (1975), a function f  

is univalent in domain E  if it provides one-to-one mapping onto its image,  Ef . 

In other words,    21 zfzf   implies that 21 zz  , for Ezz 21 , . Univalent functions 

are also known as ‘Schlicht’ which is German word means simple, the Russian 

refers to such functions as ‘odnolistni’ which means single-sheeted.  

 

If   Szf   then  zf  has a Maclaurin series expansion of the form 

  





2n

n
n zazzf              (1.1) 

where na  is a complex numbers.  
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This thesis also considers subclass of S , denoted by T consisting of functions f  of 

the form 

  





2n

n
n zazzf              (1.2) 

where na  is nonnegative real numbers. The class of T  was introduced by 

Silverman (1975). There are many researchers have studied the class T  such as 

Halim et al. (2005), Owa et al. (2005), Halim et al. (2007), Deng (2007) and 

Chaurasia and Sharma (2010).  

 

The important subclasses of S  include class of starlike functions, *S , class 

of convex functions, C , class of close-to-convex functions, K  and class of quasi-

convex functions, *K .The definitions of KCS ,,*  and *K will be given in the 

following section. 

 

1.2 Starlike and Convex Functions 

In this section, we give the geometrical representation and analytic description of 

functions *Sf  . 

 

Definition 1.1 (Goodman, 1975) A set E  in the plane is said to be starlike with 

respect to 0w  an interior point of E  if each ray with initial point 0w  intersects the 

interior of E  in a set that is either a line segment or a ray. If a functions  zf  

maps D  onto a domain which is starlike with respect to 0w , then  zf  is said to be 

starlike  with respect to 0w . In the special case that  zfw ,00   is a starlike 

functions. 
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An example of starlike domain is shown in Figure 1.1 by its geometrical 

representation. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 1.1: Starlike domain 

Source: Goodman (1975) 

 

The domain shown in Figure 1.1 is starlike with respect to 0w  but it is not starlike 

with respect to the origin. 

 

An analytic description of functions *Sf    is follows. 

 

Theorem 1.1 (Goodman, 1975) Let  zf  be analytic and univalent in the closed 

disk 1: zD . Then,  zf  maps D  onto a region that is starlike with respect to 

0w  if and only if 

 
 

1:,0Re
'














zCz

zf

zzf
R            (1.3) 

The Koebe function is a starlike function (Goodman, 1975). 

Im 

𝑤0 

E
 

Re 
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In 1936, Robertson introduced the concept of starlike functions of order  . 

 

Definition 1.2 (Goodman, 1975) A function  zf  of the form (1.1) is said to be 

starlike of order   in D  if for all Dz  

 
 















zf

zzf '

Re             (1.4) 

for some 10  . 

 

The set of all such functions is denoted by  *S . According to Owa et al. (1986),

    SSSS  *** 0 . 

 

We now give geometrical representation and analytic description of functions Cf  . 

 

Definition 1.3 (Goodman, 1975) A set E  in the complex plane is called convex if 

for every pair of points 1w  and 2w  in the interior of E , the line segment joining 1w  

and 2w  is also in the interior of E . If a functions  zf  maps D  onto a convex 

domain, then  zf  is called convex functions.  
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An example of convex domain is shown in Figure 1.2 by its geometrical 

representation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Convex domain 

Source: Goodman (1975) 

 

An analytic description of functions Cf    is given below. 

 

Theorem 1.2 (Goodman, 1975) Let  zf  be analytic and univalent in the closed 

disk 1: zD . Then,  zf  maps D  onto a convex domain if and only if 

 
 

1:,0
'

1Re
''














 zCz

zf

zzf
R            (1.5) 

The special function  
z

z
zL






1

1
0  is a convex function because it maps D  onto a 

half-plane. 

 

Alexander (1915) implied that Cf   if and only if   *' Szzf  . 

𝑤1 

𝑤2 

Im 

Re 
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Robertson (1936) introduced the concept of convex functions of order  . 

 

Definition 1.4 (Goodman, 1975) A function  zf  of the form (1.1) is said to be 

convex of order   in D  if for all Dz  

 
 

















zf

zzf
'

''

1Re             (1.6) 

for some 10  . 

 

The set of all such functions is denoted by  C . According to Owa et al. (1986), 

    SCCC  0  and     SSC   *  

 

1.3 Close-to-Convex and Quasi Convex Functions 

Another subclass of S  is the class of close-to-convex function introduced by Kaplan 

(1952). 

 

Definition 1.5 (Goodman, 1983) A function  zf  analytic in D  is said to be close-

to-convex in D  (or merely close-to-convex) if there is a function   Cz   and a 

real   such that  

 
 

0Re
'

'















ze

zf
i 

            (1.7) 

Let K  denote the set of all such functions of the form (1.1) that are close-to-

convex in D . 

By Alexander’s Theorem if   Cz  , then   *' Szz   . Hence in Definition 1.5 

we can replace (1.7) by the condition: there is a *S  is such that 

 
 

Dz
ze

zzf
i
















,0Re

'


           (1.8) 

 

The class of close-to-convex can be generalized to close-to-convex of order   type 

  as stated in Noor (1987). 
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Definition 1.6 (Noor, 1987) A function f  analytic in D , normalized by the 

conditions     0100 '  ff , is said to be close-to-convex of order   type   

where 10    and 10  , if and only if there exists a function  *Sg  such 

that, for Dz  

 
 















zg

zzf '

Re             (1.9) 

We denote such a class of functions as   ,K . It is clear that   KK 0,0 . 

According to Noor (1987), this class was introduced by Libera in 1964. 

 

In 1980, Noor and Thomas introduced the class quasi-convex which is denoted by 

*K  as given in definition 1.7. 

 

Definition 1.7 (Noor and Thomas, 1980) Let f  be analytic in D with 

    0100 '  ff . Then f  is said to be quasi-convex in D  if there exists a convex 

functions g  with     0100 '  gg  such that for Dz , 

  
 

Dz
zg

zzf















,0Re

'

''

          (1.10) 

 

The class of quasi-convex can be also generalized to quasi-convex of order   type 

 . 

 

Definition 1.8 (Noor, 1987) A function f  analytic in D , normalized by the 

conditions     0100 '  ff , is said to be quasi-convex of order   type   if and 

only if there exists a function  Cg  such that, for Dz  

  
 
















zg

zzf
'

''

Re           (1.11) 

where 10    and 10  .  

 

We denote such class of functions as   ,*K . Clearly   ** 0,0 KK  . 
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1.4 Functions with Positive Real Part 

Definition 1.9 (Goodman, 1975) The set P  is the set of all functions of the form 

  





1

2
21 11

n

n
n

n
n zczczczczp          (1.12) 

that are analytic in D , where ,, 21 cc  are complex numbers and such that for z  in 

D , 

   0Re zp  

Any function in P  is called a function with positive real part in D . 

 

According to Goodman (1975), the Mӧbius function of the form 

  










1

2
0 21221

1

1

n

nzzz
z

z
zL   

plays a central role in the class P . This function is analytic and univalent in D , and 

it maps D  onto the half plane and shown in Figure 1.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

z
L






1

1
0  

 

Figure 1.3:  Region of half-plane 

Source:  Goodman (1975) 
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Re 
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Here, we state some properties belonging to the class P . 

 

Lemma 1.1 (Cho and Owa, 2003) Let p  be analytic in D  with    0Re zp  and be 

given by    2
211 zczczp  for Dz , then 

 12  ncn  

and 

2
2

2

2

1
2
1

2

cc
c   

 

Lemma 1.2 (Billing, 2010) Let E  be a subset of ℂ × ℂ (ℂ is the complex plane) 

and let  E: ℂ be a complex function. For 2121 , ivvviuuu  ( 2121 ,,, vvuu  

are real), let   satisfy the following conditions: 

 

(i)  vu,  is continuous in E ; 

(ii)   E0,1  and    00,1Re  ; and 

(iii)    0,Re 12  viu  for all   Eviu 12 ,  and such that 
 

2

1 2

2
1

u
v


 . 

 

Let    2

211 zczczp  be analytic in the unit disk D , such that 

     Ezzpzp ',  for all Dz . If  

      Dzzzpzp  ,0,Re '  

then    0Re zp  in D . 

 

Lemma 1.3 (Mehrok et al., 2011) If Pp , then 

     2
1

2
12 42 cxcc            (1.13) 

and 

      zxcxccxcccc
22

1
22

111
2
1

3
13 1424424          (1.14) 

 

 

 


