PHOTOCATALYTIC REMOVAL OF METHYLENE BLUE USING IMMOBILIZED TRANSITION METALS DOPED TITANIUM DIOXIDE ON GLASS AND GRANULAR ACTIVATED CARBON

SCHOOL OF SCIENCE AND TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2009

PHOTOCATALYTIC REMOVAL OF METHYLENE BLUE USING IMMOBILIZED TRANSITION METALS DOPED TITANIUM DIOXIDE ON GLASS AND GRANULAR ACTIVATED CARBON

KANG LING BAO

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF SCIENCE AND TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2009

PUMS 99:1

UNIVERSITI MALAYSIA SABAH

BORANG PI	ENGESAHAN TESIS
JUDUL :	
IJAZAH :	
SAYA :	SESI PENGAJIAN :
(HURUF BESAR)	
Mengaku membenarkan tesis *(LPSM/Sarjana/Dokto Sabah dengan syarat-syarat kegunaan seperti berikut:	r Falsafah) ini disimpan di Perpustakaan Universiti Malaysia -
 Tesis adalah hak milik Universiti Malaysia Saba Perpustakaan Universiti Malaysia Sabah diben Perpustakaan dibenarkan membuat salinan t tinggi. 	ah. Iarkan membuat salinan untuk tujuan pengajian sahaja. esis ini sebagai bahan pertukaran antara institusi pengajian
4. Sila tandakan (/)	mat yang berdarjah keselamatan atau kepentingan Malaysia
seperti yang termaktu TERHAD (Mengandungi maklu mana penyelidikan di	ıb di AKTA RAHSIA RASMI 1972) mat TERHAD yang telah ditentukan oleh organisasi/badan di jalankan)
TIDAK TERHAD	Disahkan oleh:
 (TANDATANGAN PENULIS) Alamat Tetap:	(TANDATANGAN PUSTAKAWAN)
 	(NAMA PENYELIA) TARIKH:
Catatan: *Potong yang tidak berkenaan. *Jika tesis ini SULIT dan TERHAD, sila lampirkan sur menyatakan sekali sebab dan tempoh tesis ini perlu *Tesis dimaksudkan sebagai tesis bagi Ijazah Dokto bagi pengajian secara kerja kursus dan Laporan Pro	at daripada pihak berkuasa/organisasi berkenaan dengan u dikelaskan sebagai SULIT dan TERHAD. r Falsafah dan Sarjana Secara Penyelidikan atau disertai ıjek Sarjana Muda (LPSM).

DECLARATION

I hereby declare that this thesis does not incorporate, without acknowledgement; and that the materials in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

Date: 12/05/2010

KANG LING BAO PS05-001-019

CERTIFICATION

- NAME : KANG LING BAO
- MATRIC NO. : **PS05-001-019**
- TITLE
 : PHOTOCATALYTIC REMOVAL OF METHYLENE BLUE USING

 IMMOBILIZED TRANSITION METALS DOPED TITANIUM

 DIOXIDE ON GLASS AND GRANULAR ACTIVATED CARBON
- DEGREE : MASTER OF SCIENCE (INDUSTRIAL CHEMISTRY)
- VIVA DATE : 28th DECEMBER 2009

DECLARED BY

1. SUPERVISOR Prof. Dr. Marcus Jopony

ACKNOWLEDGEMENT

First and foremost, I would like to express my deepest gratitude and appreciation to my supervisor, Prof. Dr. Marcus Jopony and ex-supervisor, Mr. Moh Pak Yan for their patient, all the advices, guidance and support that given in this research work that led to completion of this thesis. I learned a lot, without advices and comments, this thesis will not be as it is.

And special thanks also to my Co-supervisor, Assoc. Prof. Dr. How Siew Eng for her support and advices.

To other Industrial Chemistry lecturers - Dr. Loumie @ Noumie Surugau, Assoc. Prof. Dr. Suhaimi Md. Yasir, Dr. Md. Lutfor Rahman, Dr. Sazmal Effendi Arshad, Mr. Collin G. Joseph, I will be indebted to all of you. The knowledge I gain from you all have shaped me to be different person from I am.

Big thanks also to SST laboratory assistants Mr. Sani Gorudin, Mr. Samudi Suraj, Mr. Mohd. Racyheidy Abd. Rashid, Mr. Mohd. Yusri Jasli, Mrs. Norazima Norbin, thank you for your assistant in the laboratory works and lending the laboratory apparatus.

There are many more names that I don't mention but in some way or other have contributed much to the making of this thesis, whoever they are, I am so ever so grateful for their contribution.

ABSTRACT

PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE USING IMMOBILIZED TRANSITION METALS DOPED TITANIUM DIOXIDE ON GLASS AND GRANULAR ACTIVATED CARBON

Photocatalytic degradation of methylene blue (MB) dye in aqueous solution using metal-doped titania (TiO₂) under UV-A light and in the presence of H₂O₂ were investigated The photocatalysts used were single metal-doped TiO₂ (i.e. Cr³⁺-TiO₂, Cu^{2+} -TiO₂, Fe³⁺-TiO₂, Mo⁵⁺-TiO₂, and V⁵⁺-TiO₂) and dual metal-doped TiO₂ (i.e. Cr³⁺, Mo⁵⁺-TiO₂, Cr³⁺, V⁵⁺-TiO₂, Cu²⁺, Mo⁵⁺-TiO₂, Cu²⁺, V⁵⁺-TiO₂, Fe³⁺, Mo⁵⁺-TiO₂ and Fe^{3+} , V^{5+} -TiO₂) coated on Pyrex-glass tubes, and single metal doped-TiO₂ (i.e. V^{5+} -TiO₂) coated on granular activated carbon (GAC). All the catalysts were prepared in the lab and the doping/coating was done according to sol-gel dip-coating method. For comparison, undoped TiO₂ coated on Pyrex-glass tube and GAC were also studied. The reactions were carried out in a photo-reactor. Subsamples of the dye solution was withdrawn at specific time intervals and its absorbance was measured at λ_{max} = 665 nm using a UV-Vis spectrophotometer. The resultant dye degradation was presented as % dye removed and comparisons were made for its values at 120 minutes. The results showed that the degradation of MB using these titaniaassisted systems increased with reaction time. Equilibrium, however, was not attained within 120 minutes. Amongst the single metal-doped TiO₂ systems only V^{5+} -TiO₂ produced greater degradation of MB compared with the undoped TiO₂. The other single metal-doped TiO₂ systems (Mo⁵⁺-TiO₂> Fe³⁺-TiO₂ \approx Cr³⁺-TiO₂ \approx Cu²⁺-TiO₂) produced much lower degradation compared to undoped TiO₂. For dual metal-doped TiO₂ systems, the degradation efficiency followed the order: Cu^{2+}, V^{5+} - TiO_2 > $Fe^{3+}, V^{5+}-TiO_2$ > $Cr^{3+}, V^{5+}-TiO_2$ > $Cr^{3+}, Mo^{5+}-TiO_2 \approx Fe^{3+}, Mo^{5+}-TiO_2 \approx Cu^{2+}, M$ TiO₂. Only Cu^{2+} , V^{5+} -TiO₂ produced greater degradation of MB compared with the undoped TiO₂. However, it's efficiency was lower than V^{5+} -TiO₂ but higher than Cu²⁺-TiO₂. Meanwhile the V⁵⁺-doped and undoped TiO₂ catalysts coated on GAC did not exhibit significant photoactivity. The removal of MB from solution by both systems was of similar magnitude to that of due to adsorption by GAC and was about 2x less efficient compared with V^{5+} -TiO₂ and TiO₂ coated on Pyrex-glass tubes. All the above reactions fitted well with pseudo-first-order kinetics according to the Langmuir-Hinshelwood model. Overall, among the systems investigated, photocatalytic degradation of MB is most efficient when V^{5+} -doped TiO₂ coated on an inert support, namely Pyrex-glass tubes, was used.

ABSTRAK

Degradasi fotopemangkinan pewarna metilena biru (MB) dalam larutan akueous telah dikaji dengan menggunakan titania (TiO₂) didopkan dengan logam dalam kehadiran sinaran UV-A dan juga H₂O₂. Fotomangkin yang digunakan adalah TiO₂ yang didopkan dengan logam tunggal (i.e. Cr³⁺-TiO₂, Cu²⁺-TiO₂, Fe³⁺-TiO₂, Mo⁵⁺- TiO_2 , and V^{5^+} - TiO_2) dan TiO_2 didopkan dengan dwilogam (i.e. Cr^{3^+} , Mo^{5^+} - TiO_2 , $Cr^{3+}, V^{5+}-TiO_2, Cu^{2+}, Mo^{5+}-TiO_2, Cu^{2+}, V^{5+}-TiO_2, Fe^{3+}, Mo^{5+}-TiO_2 and Fe^{3+}, V^{5+}-TiO_2) dan$ disalutkan pada tiub kaca Pyrex, dan TiO₂ yang didopkan dengan logam tunggal (i.e. $V^{\delta+}$ -TiO₂) dan disalutkan pada butiran karbon teraktif (GAC). Kesemua fotomangkin ini telah disediakan di dalam makmal dan pendopan/penyalutan dilakukan secara kaedah sol-gel dip-coating. Sebagai perbandingan, TiO₂ tanpa dopan yang disalutkan pada tiub kaca Pyrex dan GAC juga turut dikaji. Tindak balas degradasi ini telah dijalankan dalam satu reaktor-foto. Subsampel larutan pewarna dikeluarkan pada jangka masa yang tertentu dan serapannya diukur pada $\lambda_{max}=$ 665 nm dengan menggunakan spektrofotometer UV-Vis. Degradasi pewarna diberikan sebagai % penyingkiran pewarna dan perbandingan nilai dilakukan pada 120 minit. Hasil yang diperolehi menunjukkan bahawa degradasi MB bagi sistemsistem titania ini meningkat dengan masa tindak balas. Walau bagaimanapun, keseimbangan tidak tercapai dalam masa 120 minit. Di antara sistem-sistem TiO₂ vang didopkan dengan logam tunggal, hanya $V^{\delta+}$ -TiO₂ menghasilkan degradasi MB yang lebih tinggi berbanding dengan TiO_2 tanpa dopan. Sistem-sistem TiO_2 yang didopkan dengan logam tunggal yang lain (Mo^{5+} -TiO₂> Fe³⁺-TiO₂ \approx Cr³⁺-TiO₂ \approx Cu²⁺- TiO_2) menunjukkan degradasi yang lebih rendah berbanding dengan TiO_2 tanpa dopan. Bagi sistem-sistem TiO₂ yang didopkan dengan dwilogam, keberkesanan degradasi adalah mengikut urutan: Cu²⁺, V⁵⁺-TiO₂> Fe³⁺, V⁵⁺-TiO₂> Cr³⁺, V⁵⁺-TiO₂> $Cr^{3+}, Mo^{5+}-TiO_2\approx$ *Fe³⁺,Mo⁵⁺-TiO₂≈* $Cu^{2+}, Mo^{5+}-TiO_2.$ $Cu^{2+}, V^{5+}-TiO_2$ Hanya men<mark>ghasilkan degr</mark>adasi MB yang lebih tinggi berbanding dengan TiO₂ tanpa dopan. Walau bagaimanapun, keberkesanannya adalah lebih rendah daripada V^{δ^+} -TiO₂ tetapi lebih tinggi daripada Cu²⁺-TiO₂. Sementara itu, fotomangkin TiO₂ yang didopkan dengan $V^{\delta+}$ dan TiO₂ tanpa dopan disalutkan pada GAC tidak menunjukkan aktiviti-foto yang signifikan. Penyingkiran MB dari larutan oleh kedua-dua sistem mempunyai magnitud yang sama dengan yang disebabkan oleh jerapan GAC, dan keberkesanannya adalah 2x lebih rendah berbanding dengan V^{δ^+} -TiO₂ and TiO₂ yang disalutkan pada tiub kaca Pyrex. Kinetik tindak balas diperolehi di atas mematuhi tertib tindak balas pseudo pertama mengikut model Langmuir-Hinshelwood. Secara keseluruhannya, degradasi fotopemangkinan MB dengan menggunakan sistem titania adalah paling berkesan apabila TiO₂ didopkan dengan V^{δ^+} dan disalutkan pada bahan sokong lengai, yang mana tiub kaca Pyrex telah digunakan.

TABLE OF CONTENTS

TITLE DECLARATIC CERTIFICAT ACKNOWLEI ABSTRACT ABSTRAK TABLE OF CO LIST OF TAB LIST OF FIG LIST OF APP ABBREVIAT	ON ION DGEME ONTEN BLES URES PENDIC IONS A	ENT IT CES AND SYMBOLS	i iii iv vi vii xii xv xvi xvi
CHAPTER 1:	INTR	ODUCTION	1
	1.1	An Overview of Advanced Oxidation Processes in	1
		Wastewater Treatment	
	1.2	Wastewater Treatment by Metal Doped-Titania-	3
		Assisted Oxidation Process	_
	1.3	Objectives of the Research	5
Al-	1.4	Scope of Study	6
CHADTED 2	ITTE		7
CHAPTER 2.	2 1	Dves	7
	2.1	Dye-Containing Wastewaters	10
2	2.2	2.2.1 Characteristics	10
121 110		2.2.2 Environmental and health impacts	10
		2.2.3 Environmental regulations	11
NAT.	2.3	Treatment Technologies for Dye-containing	12
	Pass.	Wastewater	
		2.3.1 Physical methods	12
		2.3.2 Biological methods	13
		2.3.3 Chemical methods	14
	2.4	Advanced Oxidation Processes	14
		2.4.1 General description	14
		2.4.2 General mechanism of AOPs	15
		2.4.3 Photocalalysis	20
	2 5	Z.4.4 AUValilages of AOPS	20
	2.5	2.5.1 Characteristic of titanium dioxide	20
		2.5.1 Characteristic of ittalian dioxide	20
		2.5.3 Preparation of titanium dioxide photocatalyst	23
		2.5.4 Titanium dioxide photocatalysis	25
		2.5.5 Titanium dioxide photocatalysis in the	27
		presence of co-adsorbent	
	2.6	Metal-Doped Titanium Dioxide Photocatalyst and	28
		Photocatalysis	
		2.6.1 Metal-doped titanium dioxide photocatalyst	28

	2.7	2.6.2 2.6.3 Applica 2.7.1 2.7.2 2.7.3 2.7.4	Preparation of metal-doped titanium dioxide Metal-doped titanium dioxide photocatalysis tion of AOPs in Wastewater Treatment Undoped TiO ₂ systems Single metal-doped TiO ₂ systems Multi metal-doped TiO ₂ systems Photocatalytic degradation using TiO ₂ /AC	30 30 33 33 35 37 37
	2.0	2.7.5	Metal-doped TiO ₂ /AC photocatalysis	39
	2.8	Kinetics	s of Photocatalytic Degradation	39
CHAPTER 3:	METH	ODOLO	DGY	42
	3.1	Introdu		42
	3.2	Prepara	ation of Titania Photocatalyst	42
		3.2.1	Preparation of IIO_2 sol	42
		3.2.2	Preparation of metal-doped IIU_2 sol	43
		3.2.3	Preparation of HO_2 thin films	45 45
		3.2. 4 2.2.5	Preparation of TiO costod on granular	45 76
		J.Z.J	activated carbon	υ
		3.2.6	Preparation of metal-doped TiO_2 coated on	46
		0.2.0	granular activated carbon	
A.S.	3.3	Prepara	ation of Methylene Blue Stock Solution and	46
	~3	Workin	g Solutions	
67 00		3.3.1	Preparation of methylene blue stock solution	47
		3.3.2	Preparation of methylene blue working	47
		60	solutions	
	3.4	Charac	terization of TiO ₂ Photocatalysts	47
	3.5	Photo-r	reactor	48
1 Stallar		3.5.1	Photo-reactor setup	48
AB	D.	3.5.2	Photocatalytic degradation experimental design	49
	3.6	Prelimi	nary Degradation Experiments (Type A	50
		Experin	nents)	
	3.7	Photoc	atalytic Degradation of MB by Single Metal-	51
		Doped	TiO ₂ (Type B Experiments)	
	3.8	Photoc	atalytic Degradation of MB by Dual metal-	51
		doped	TiO ₂ (Type C Experiments)	
	3.9	Photoc	atalytic Degradation of Methylene Blue by	52
			Dated on GAC	гэ
		5.9.1	(Type D Experiments)	52
		392	Photocatalytic degradation of MB by	53
		51512	TiO_2/GAC (Type E Experiment)	55
	3.10	Photoc	atalytic Degradation of Methylene Blue by	53
		Metal-D	Doped TiO ₂ Coated on GAC (Type F	
		Experin	nent)	
	3.11	Evaluat	tion of MB Degradation	54
		3.11.1	Measurement of MB absorbance	54
		3.11.2	Degradation of MB	54

	3.11.	3 Kinetics of MB degradation	56
CHAPTER 4:	RESULTS A	ND DISCUSSION	57
2	4.1 Intro	duction	57
2	4.2 TiO ₂ S	Sols and Catalysts	57
	4.2.1	SEM micrographs of TiO ₂ photocatalysts	62
	4.2.2	XRD diffractograms of coated GAC	66
	4.2.3	BET surface area	69
2	1.3 Degra	adation of MB (Preliminary Experiments)	70
2	1.4 Photo	catalytic Degradation of MB using Single	73
	Metal	-doped TiO ₂	
4	1.5 Photo	catalytic Degradation of MB using Dual Metal-	77
	dope	d TiO ₂	
2	4.6 Photo on G/	catalytic Degradation of MB using TiO ₂ Coated	82
	4.6.1	Removal of MB using GAC systems	82
	4.6.2	Removal of MB using TiO ₂ /GAC systems	84
2	4.7 Photo TiO ₂ (catalytic Degradation of MB using Metal-doped	86
CHAPTER 5:	CONCLUSI	ON	89
REFERENCES			91
APPENDICES	R .		109
R LO	KA.	UIVIS	

UNIVERSITI MALAYSIA SABAH

LIST OF TABLES

Table 2.1	Wavelengths of visible spectrum with relevant complementary colour	7
Table 2.2	Types of chromophores with its structures	8
Table 2.3	Types of auxochromes with its structures	9
Table 2.4	Characteristics of dye-containing textile wastewater	10
Table 2.5	Discharge standards for sewage and industrial wastewater effluents	12
Table 2.6	Common AOPs for water and wastewater treatment	15
Table 2.7	Oxidation potential of several chemical oxidants	16
Table 2.8	Bulk properties of TiO ₂	21
Table 2.9	Band gap energy of selected semiconductors	22
Table 2.10	Examples of research of TiO ₂ photocatalysis	34
Table 2.11	Fundamental research of single-metal-doped TiO ₂ systems	36
Table 2.12	Fundamental research of TiO ₂ /AC photocatalyst	38
Table 2.13	Kinetic Studies for photocataytic degradation of dyes	41
Table 3.1	Amount of metal salts/oxides used in single metal-doped $\ensuremath{\text{TiO}_2}$ sol	44
Table 3.2	Amount of metal salts/oxides used in dual metal-doped $\ensuremath{\text{TiO}_2}$ sol	45
Table 3.3	Experimental design for the photocatalytic degradation of MB	50
Table 3.4	Experimental design for TiO ₂ /GAC and M-TiO ₂ /GAC	52
Table 4.1	Observed peaks for anatase phase of TIO ₂ , GAC, TiO ₂ /GAC and V ⁵⁺ -TiO ₂ /GAC samples	67
Table 4.2	BET parameters of selected GAC samples	70
Table 4.3	Rate constants of preliminary systems	73

Table 4.4	Rate constants of single metal-doped TiO ₂ systems	77
Table 4.5	Rate constant of dual-metal-doped TiO ₂ systems	81
Table 4.6	Rate constant of GAC systems	84

LIST OF FIGURES

Figure 2.1	Structure of methylene blue	10
Figure 2.2	Photoexcitation of photocatalyst and $e_{CB}^{-}-h_{VB}^{+}$ pairs' reaction on the surface of photocatalyst	17
Figure 2.3	Electrochemical potential of some relative semiconductors	22
Figure 2.4	Photochemical activation of TiO_2/UV and the formation of TiO_2(e_{CB}^{-} - h_{VB}^{+}) pairs	25
Figure 2.5	Schematic diagram of the adsorption of pollutant to TiO_2/AC	28
Figure 3.1	Generalized flowchart of metal-doped TiO_2 sol preparation	43
Figure 3.2	Generalized flowchart of preparation of TiO_2 thin film	46
Figure 3.3	Photo-reactor setup	49
Figure 3.4	UV-spectrum of MB at wavelength of 400 - 800 nm	54
Figure 3.5	Calibration graph of MB	55
Figure 4.1	TiO ₂ sol	58
Figure 4.2	Single metal-doped TiO ₂ sols, a) Cr^{3+} -TiO ₂ , b) Cu^{2+} -TiO ₂ , c) Fe ³⁺ -TiO ₂ , d) Mo ⁵⁺ -TiO ₂ , e) V ⁵⁺ -TiO ₂	58
Figure 4.3	Dual metal-doped TiO ₂ sols, a) Cr^{3+} , Mo^{5+} -TiO ₂ , b) Cr^{3+} , V^{5+} -TiO ₂ , c) Cu^{2+} , Mo^{5+} -TiO ₂ , d) Cu^{2+} , V^{5+} -TiO ₂ , e) Fe^{3+} , Mo^{5+} -TiO ₂ , f) Fe^{3+} , V^{5+} -TiO ₂	59
Figure 4.4	Pyrex-glass tubes, a) blank, b) coated with TiO_2	59
Figure 4.5	Single metal-doped TiO ₂ coated on Pyrex-glass tubes, a) Cr^{3+} -TiO ₂ , b) Cu^{2+} -TiO ₂ , c) Fe ³⁺ -TiO ₂ , d) Mo ⁵⁺ -TiO ₂ , e) V ⁵⁺ -TiO ₂	60
Figure 4.6	Dual-metal-doped TiO ₂ coated on Pyrex-glass tubes, a) Cr ³⁺ -Mo ⁵⁺ -TiO ₂ , b) Cr ³⁺ -V ⁵⁺ -TiO ₂ , c) Cu ²⁺ -Mo ⁵⁺ -TiO ₂ , d) Cu ²⁺ -V ⁵⁺ -TiO ₂ , e) Fe ³⁺ -Mo ⁵⁺ -TiO ₂ , f) Fe ³⁺ -V ⁵⁺ -TiO ₂	60
Figure 4.7	GAC and coated GAC samples: (a) GAC, (b) TiO ₂ /GAC, (c) V^{5+} -TiO ₂ /GAC	61

Figure 4.8	SEM micrographs of TiO ₂ thin film - (a) 200x, (b) 750x, and (c) 3500x magnification	63
Figure 4.9	SEM micrographs of V^{5+} -TiO ₂ thin film - (a) 200x, (b) 750x, and (c) 3500x magnification	64
Figure 4.10	SEM micrographs of (a) GAC, (b) TiO ₂ /GAC, and (c) V ⁵⁺ - TiO ₂ /GAC	65
Figure 4.11	XRD diffractogram of anatase phase of TiO_2	66
Figure 4.12	XRD diffractogram of GAC	66
Figure 4.13	XRD diffractogram of TiO ₂ /GAC	67
Figure 4.14	XRD diffractogram of V ⁵⁺ -TiO ₂ /GAC	67
Figure 4.15	Adsorption-desorption isotherm of (a) GAC, (b) TiO ₂ /GAC, and (c) V^{5+} -TiO ₂ /GAC	69
Figure 4.16	% dye removed obtained for the preliminary experiments (A1= H_2O_2 ; A2= H_2O_2/UV ; A3= TiO_2 ; A4= TiO_2/H_2O_2 ; A5= TiO_2/UV ; A6= $TiO_2/H_2O_2/UV$)	71
Figure 4.17	Pseudo-first order kinetic plots of Type A experiments	73
Figure 4.18	% dye removed obtained for the single metal-doped TiO ₂ experiments (B1= TiO ₂ /H ₂ O ₂ /UV; B2= Cr ³⁺ -TiO ₂ /H ₂ O ₂ /UV; B3= Cu ²⁺ -TiO ₂ /H ₂ O ₂ /UV; B4= Fe ³⁺ -TiO ₂ /H ₂ O ₂ /UV; B5= Mo ⁵⁺ -TiO ₂ /H ₂ O ₂ /UV; B6= V ⁵⁺ -TiO ₂ /H ₂ O ₂ /UV)	74
Figure 4.19	Pseudo-first order kinetic plots of single metal-doped TiO_{2} systems	76
Figure 4.20	% dye removed obtained for the dual metals-doped TiO ₂ experiments C1= Cr ³⁺ ,Mo ⁵⁺ -TiO ₂ /H ₂ O ₂ /UV; C2= Cr ³⁺ ,V ⁵⁺ -TiO ₂ /H ₂ O ₂ /UV; C3= Cu ²⁺ ,Mo ⁵⁺ -TiO ₂ /H ₂ O ₂ /UV; C4= Cu ²⁺ ,V ⁵⁺ -TiO ₂ /H ₂ O ₂ /UV; C5= Fe ³⁺ ,Mo ⁵⁺ -TiO ₂ /H ₂ O ₂ /UV; C6= Fe ³⁺ ,V ⁵⁺ -TiO ₂ /H ₂ O ₂ /UV)	78
Figure 4.21	Comparison of % dye removed of MB obtained for single metal-doped TiO_2 (Type Bs Experiment) and dual-metal-doped TiO_2 (Type Cs Experiment) systems at 120 minutes	79
Figure 4.22	Pseudo-first order kinetic plots of dual-metal-doped TiO_2 systems	81

Figure 4.23	Comparison of pseudo-first order kinetic rate constants between single metal-doped TiO_2 (Type Bs Experiment) and dual-metal-doped TiO_2 (Type Cs Experiment)	82
Figure 4.24	% dye removed obtained for the GAC experiments (D1=GAC; D2= GAC/H ₂ O ₂ /UV)	83
Figure 4.25	Pseudo-first order kinetic plots of GAC systems	83
Figure 4.26	% dye removed obtained for TiO ₂ /GAC experiment (D2= GAC/H ₂ O ₂ /UV; D3= TiO ₂ /H ₂ O ₂ /UV; E1 = TiO ₂ /GAC/H ₂ O ₂ /UV)	85
Figure 4.27	Pseudo-first order kinetic plots of TiO $_2$ /GAC systems	86
Figure 4.28	% dye removed obtained for the V ⁵⁺ -TiO ₂ /GAC experiment (D2= GAC/H ₂ O ₂ /UV; D4= V ⁵⁺ -TiO ₂ /H ₂ O ₂ /UV; E1 = TiO ₂ /GAC/H ₂ O ₂ /UV; F1 = V ⁵⁺ -TiO ₂ /GAC/H ₂ O ₂ /UV)	87
Figure 4.29	Pseudo-first order kinetic of V ⁵⁺ -TiO ₂ /GAC system	88
	DIMS	

UNIVERSITI MALAYSIA SABAH

LIST OF APPENDICES

Appendix A	Calculation of molar of Ti in tetrabutyl orthotitanate, TBOT	109
Appendix B	Amount needed to prepare single metal-doped TiO_{2}	110
Appendix C	Amount needed to prepare dual metal-doped TiO_2	112
Appendix D	Preparation of methylene blue stock solution and working solutions	114
Appendix E	Calculation of 1 x 10^{-3} molL ⁻¹ of initial H ₂ O ₂ concentration	116
Appendix F	Calculation of mesopores distribution	117
Appendix G	Data of Adsorption-desorption of Selected Samples	118
Appendix H	Data of preliminary experiments (Experiment As)	121
Appendix I	Data of single metal-doped TiO_2 experiments (Experiment Bs)	127
Appendix J	Data of dual metal-doped TiO_2 experiment (Experiment Cs)	133
Appendix K	Data of removal of MB by GAC (Experiment Ds)	139
Appendix L	Data of TiO ₂ coated on GAC experiment (Experiment E)	141
Appendix M	Data of $V^{5+}\mbox{-}TiO_2$ coated on GAC experiment (Experiment F)	142

ABBREVIATION AND SYMBOLS

Abs	Absorbance
AC	Activated carbon
AOPs	Advanced oxidation processes
GAC	Granular activated carbon
M-TiO ₂	Metal-doped TiO ₂
TiO ₂ -GAC	TiO ₂ coated on granular activated carbon
M-TiO ₂ -GAC	Metal-doped TiO ₂ coated on granular activated carbon
MB	Methylene blue
MO	Methyl orange
UV	Ultra-Violet
TiO ₂	Titanium dioxide
e _{CB}	Conduction band electron
h _{vB} +	Valence band hole
λ_{max}	Maximum absorbance
k_1	pseudo-first order kinetic rate constant
BET	Brunauer-Emmet-Teller
SEM	Scanning Electron Micrograph
XRD	X-Ray Diffractogram
% removal	Percentage of MB removal

CHAPTER 1

INTRODUCTION

1.1 An Overview of Advanced Oxidation Processes in Wastewater Treatment

Industrial, agricultural and municipal wastewaters can contain either inorganic (e.g. heavy metals, acids) or organic (e.g. dyes, surfactants, oils, pesticides) pollutants, or a combination of both types of pollutants. The composition of wastewaters, however depends on the type of sources. Continuous discharge of untreated or poorly treated wastewaters into the aquatic environment can cause adverse impacts (Sasawsky *et al.*, 2000; Driscoll *et al.*, 2003). Inputs of the pollutants can lead to degradation in water quality besides causing ecological and health impacts. It is therefore necessary to treat these wastewaters to remove the pollutants prior to discharge. In many countries, such discharges need to attain specific standards in accordance with the environmental regulation. In Malaysia, this requirement is specified under the Environmental Quality Act 1974, specifically under the Environmental Quality (Sewage and Industrial Effluents) Regulations 1979.

UNIVERSITI MALAYSIA SABAH

A number of physical, biological and chemical methods are available for wastewater treatment. Advanced oxidation processes (AOPs) is one of the chemical methods. This technique have been widely used to treat organic and inorganic pollutants in wastewater, sludge and air (Fujishima *et al.*, 2000; Tan *et al.*, 2003; Charatterjee and Dasgupta, 2005). AOPs use the combination of powerful oxidizing agents and UV light to photodegrade pollutants (Hsing *et al.*, 2007; Malato *et al.*, 2007). AOPs rely mainly on the formation of reactive and short-lived oxygen containing intermediates such as hydroxyl radicals (HO[•]) and superoxide radicals ($O_2^{\bullet-}$) which are responsible in the decomposition of pollutants (Yang *et al.*, 2004; Haque and Muneer, 2007). The pollutants are degraded into CO₂, water and mineral-end products such as NH₄⁺, NO₃⁻ and SO₄²⁻ (Anpo and Takeuchi, 2003; Konstantinou and Albanis, 2004; Kumar *et al.*, 2005).

Over the years AOPs have undergone significant developments. Starting with the basic process of oxidation in the presence of H_2O_2 and UV, AOPs have evolved to photooxidation involving TiO₂ photocatalyst (Dvoranová *et al.*, 2002; Bahnemann, 2004; Coleman *et al.*, 2005). The TiO₂ photocatalyst used are in the form of suspension (as powdered form) or thin films. Subsequently, metal-doped TiO₂ photocatalysts were introduced. Lately, there have been increasing interests on TiO₂ photocatalyst immobilized on activated carbon adsorbent (Carp *et al.*, 2004; Subramani *et al.*, 2007).

Much of current researches on AOPs are focused on photocatalysis involving TiO₂. In general, TiO₂ is photoactive under UV light shorter than 400 nm (Agustina *et al.*, 2005; Liu *et al.*, 2008). Under this condition, TiO₂ generates electron-hole pairs, namely electron from conduction band (e_{CB}^-) and hole at valence band (h_{VB}^+), which subsequently react with H₂O or O₂ to generate the reactive radicals HO[•], O₂^{•-} and HO₂[•] (Malato *et al.*, 2002; Witmann *et al.*, 2005). Under normal temperature and air pressure, TiO₂ systems in the presence of UV-irradiation could completely degrade most pollutants to harmless compounds (Lu *et al.*, 2008). However, the degradation is more effective in the presence of H₂O₂ (Kiwi *et al.*, 1993; Halmann, 1996; Oppenländer, 2003).

Studies have also been carried out for the photocatalytic degradation process involving single or multi metal-doped TiO₂ (Yang *et al.*, 2002; Arabatzis *et al.*, 2003; Park *et al.*, 2004; Yang *et al.*, 2004b; Liu *et al.*, 2006a). The transition metals with many valencies are most frequently studied. The metal dopants can be p-Type (valencies lower that Ti⁴⁺) or n-Type (valencies higher than Ti⁴⁺). Examples of p-Type dopants include Cu²⁺, Fe³⁺, Ni²⁺ and Zn²⁺ions, whilst n-Type dopants are V⁵⁺, W⁶⁺, Nb⁵⁺ and Mo⁵⁺ ions (Carp *et al.*, 2004; Park *et al.*, 2004; Li *et al.*, 2007c).

TiO₂ photocatalyst was initially used as suspension in slurry systems (Carp *et al.*, 2004). Due to the problem associated with the need of eventual separation by filtration during post treatment, it is now used in the form of thin films (Alam and Cameron, 2001; Gao and Liu, 2005; Yuan *et al.*, 2007). Recently, instead of the

conventional Pyrex-glass tubes, specific adsorbents were used as support for the thin films. Examples of adsorbents include zeolites, silica, alumina, clay and activated carbon (Carp *et al.*, 2004; Moriguchi *et al.*, 2004; Crini, 2006; Li *et al.*, 2007b; Subramani *et al.*, 2007). Studies using activated carbon as support have reported better photocatalytic degradation compared to conventional TiO₂ thin films (EI-Sheikh *et al.*, 2004; Carpio *et al.*, 2005; Liu *et al.*, 2006c; Zhang *et al.*, 2006b; Matos *et al.*, 2007).

The TiO₂ thin film can be prepared according to several methods such as chemical vapour deposition, physical vapour deposition, spray pyrolysis and sol-gel techniques. Each method has it's own advantages and disadvantages (Sonawane *et al.*, 2004, Carp *et al.*, 2004). The sol-gel dip-coating method is one of the preferred sol-gel techniques (Sonawane *et al.*, 2004; Du *et al.*, 2005). Sol-gel techniques normally are lower in equipment cost, and can be used to prepare thin films with good homogeneity and at low process temperature (Dong *et al.*, 2002; Zhou, *et al.*, 2004).

1.2 Wastewater Treatment by Metal Doped-Titania-Assisted Oxidation Process

There have been a number of studies involving wastewater treatment using TiO_2 and metal-doped TiO_2 . Some studies reported that metal-doped TiO_2 produced enhanced photocatalytic degradation of pollutants (Arabatzis *et al.*, 2003; Xu *et al.*, 2004; Yang *et al.*, 2004b; Wu *et al.*, 2006), while some reported poor or reduction in photocatalytic activity (Matos *et al.*, 2001; Kemp and McIntyre, 2006). Similar to undoped TiO_2 , the photocatalytic efficiency of the metal-doped TiO_2 photocatalysts also can be influenced by factors such as type of metal dopant, metal to Ti ratio, solution pH, catalyst's concentration, pollutant type, addition and concentration of oxidant (Lee *et al.*, 2004; Li and Li, 2002a; Li *et al.*, 2005a; Senthilkumaar *et al.*, 2006; Zhu *et al.*, 2006a).

The addition of metal dopant into TiO_2 can modify the morphology, chemical environment and distribution of the TiO_2 thin films (Arroyo *et al.*, 2002). Metal-doped TiO_2 can also exhibit photocatalytic characteristics under visible light, with

25-32% of solar light absorption (Dvoranová *et al.*, 2002; Teoh *et al.*, 2007). However, it is not as effective as under UV light irradiation (Fujishima and Zhang, 2006).

Both *n*-Type and *p*-Type metal dopants can enhance the photocatalytic activity of TiO₂ (Li and Li, 2002b; Park *et al.*, 2004; Yang *et al.*, 2004b; Xin *et al.*, 2007). However, its' photocatalytic efficiency can be influenced by the concentration of metal-dopant (i.e. the metal to Ti ratio). For example, Yang *et al.* (2004b) showed that the photocatalytic degradation rate constant of methyl orange (MO) by molybdenum-doped TiO₂ increased to 0.054 min⁻¹ from 0.028 min⁻¹ with increase in Mo concentration from 0 to 1 mol%. The rate, however, dropped when Mo content exceeded 1 mol% (i.e. 0.03 min⁻¹ at 1.5 mol %). The optimum metal to Ti ratio, however, can vary according to the type of pollutant. For example, the photocatalytic degradation of XRG yellow dye is most effective when 0.40% Fe³⁺⁻ doped TiO₂ was used (Zhu *et al.*, 2006a) while the degradation of methyl orange (MO) is effective using 4% Fe³⁺-doped TiO₂ (Sonawane *et al.*, 2004).

There have been few researches on photocatalysis using multi-metal-doped TiO₂ (Yang *et al.*, 2002; Zhang *et al.*, 2006a; Xu *et al.*, 2008). The synergistic effect between the metal dopants can enhance the photocatalytic efficiency of TiO₂. However, the metal to Ti ratio can significantly affect the efficiency of multi-metal-doped TiO₂. For example, TiO₂ co-doped with Fe³⁺ and Eu³⁺ ions at appropriate ratios, namely 1% Fe³⁺ and 0.5% Eu³⁺, shows superior photocatalysis to degrade chloroform in solution compared to undoped TiO₂ (Yang *et al.*, 2002). Low or excessive ratio of metal dopants, however, can significantly retard the photocatalytic reactivity (Carp *et al.*, 2004).

The addition of oxidants such as H_2O_2 can enhance the photocatalytic activity of metal-doped TiO₂ catalysts (Senthilkumaar *et al.*, 2005; Haque and Muneer, 2007). However, excessive H_2O_2 can decrease the rate of photocatalytic degradation (Fernández *et al.*, 2004; Tryba *et al.*, 2006).

As with undoped TiO₂, most studies on photocatalytic degradation using metal-doped TiO₂ involved the catalyst being coated as thin films on inert supports namely Pyrex-glass, soda lime glass, fiberglass and glass sheets (Sonawane *et al.*, 2004; Du *et al.*, 2005; Thevenet *et al.*, 2005). Unlike undoped TiO₂, there have been only a few reports on catalysis involving metal-doped TiO₂ coated on adsorbent materials such as activated carbon (Zhang *et al.*, 2005a; Sun *et al.*, 2006). For example, Sun *et al.* (2006) reported that Sn(IV)/TiO₂/AC produced greater degradation of Orange G (~2x) as compared with TiO₂/AC. Meanwhile, Zhang *et al.* (2005a) reported that the degradation of methyl orange (MO) using Ag-doped TiO₂/AC is at least 1.25x higher than pure TiO₂ and Degussa P25.

1.3 Objectives of the Research

are:

This research focuses on photocatalytic degradation of an organic pollutant using metal-doped TiO₂ coated on different support materials, namely Pyrex-glass tube and granular activated carbon (GAC). Methylene blue (MB) was used as the simulated/synthetic pollutant in aqueous solution. The objectives of this research

- a) To prepare metal-doped TiO₂ catalyst according to simple sol-gel dipcoating method;
- b) To determine the photocatalytic degradation of MB in the presence of metal-doped TiO₂ coated on Pyrex-glass tube;
- c) To compare MB degradation by metal-doped TiO₂ and undoped TiO₂;
- d) To compare the photocatalytic degradation of MB in the presence of singlemetal-doped TiO₂ and dual-metals-doped TiO₂;
- e) To determine the photocatalytic degradation of MB in the presence metaldoped TiO₂ coated on GAC.

1.4 Scope of Study

This study investigated the photocatalytic degradation of MB by metal-doped TiO₂ in the presence of UV and H₂O₂. The metal-doped TiO₂ were prepared as thin films on Pyrex-glass tubes by sol-gel dip-coating method. The metal dopants used were *n*-Type (Cr³⁺, Cu²⁺, Fe³⁺) and *p*-Type (Mo⁵⁺ and V⁵⁺). The metal-doped TiO₂ catalysts were single-metal-doped TiO₂ (Cr³⁺-TiO₂, Cu²⁺-TiO₂, Fe³⁺-TiO₂, Mo⁵⁺-TiO₂, V⁵⁺-TiO₂) and dual-metal-doped TiO₂ (Cr³⁺-Mo⁵⁺-TiO₂, Cr³⁺-V⁵⁺-TiO₂, Cu²⁺-Mo⁵⁺-TiO₂, Cu²⁺-V⁵⁺-TiO₂, Fe³⁺-Mo⁵⁺-TiO₂, Fe³⁺-V⁵⁺-TiO₂, Mo⁵⁺-V⁵⁺-TiO₂). The photocatalytic degradation was also determined using metal-doped TiO₂ coated as thin films on granular activated carbon, M-TiO₂/GAC, where M-TiO₂ is the metal-doped TiO₂ catalyst (i.e. V⁵⁺-TiO₂) with the best degradation rate obtained in the earlier experiments. Comparison was made with undoped TiO₂, TiO₂-GAC and GAC systems. The performances of these titania assisted systems in photocatalytic degradation of MB in aqueous solution were evaluated based on the changes in absorbance values at $\lambda_{max} = 665$ nm.

UNIVERSITI MALAYSIA SABAH