
PERFORMANCE OF COATED CARBIDE TOOL 
IN LOW SPEED MILLING OF STAINLESS 

STEEL UNDER FLOOD AND MIST 
LUBRICATION 

 
 
 
 
 
 
 

SIOW PING CHUAN 
 
 
 
 
 
 
 

SCHOOL OF ENGINEERING AND 
INFORMATION TECHNOLOGY 

UNIVERSITI MALAYSIA SABAH 
2009 



PERFORMANCE OF COATED CARBIDE TOOL 
IN LOW SPEED MILLING OF STAINLESS 

STEEL UNDER FLOOD AND MIST 
LUBRICATION 

 
 
 
 

SIOW PING CHUAN 
 
 
 
 

THESIS SUBMITTED IN FULFILMENT FOR 
THE DEGREE OF MASTER OF ENGINEERING 

 
 
 
 

SCHOOL OF ENGINEERING AND 
INFORMATION TECHNOLOGY 

UNIVERSITI MALAYSIA SABAH 
2009 



UNIVERSITI MALAYSIA SABAH 
BORANG PENGESAHAN STATUS THESIS 

JUDUL: PERFORMANCE OF COATED CARBIDE TOOL IN LOW SPEED MILLING 
OF STAINLESS STEEL UNDER FLOOD AND MIST LUBRICATION 

IJAZAH: SARJANA KEJURUTERAAN 

SAYA: SIOW PING CHUAN   SESI PENGAJIAN:2009-2010 

Mengaku membenarkan tesis (LPSM/Sarjana/ Doktor Falsafah) ini disimpan di 
perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut: 

1. Tesis adalah hak milik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk

tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan

pertukaran antara institusi pengajian tinggi.
4. Sila tandakan ()

SULIT (Mengandungi maklumat yang berdarjah keselamatan 
atau kepentingan MALAYSIA seperti yang termaktub di 
dalam AKTA RAHSIA RASMI 1972) 

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan 
oleh organisasi/badan di mana penyelidikan dijalankan) 

TIDAK TERHAD 

__________________________ 
(TANDATANGAN PUSTAKAWAN) 

__________________________ 
Nama Penyelia 

_______________________ 
(TANDATANGAN PENULIS)  

Tarikh:_________________ 

Tarikh:_________________ 



 ii 

DECLARATION 
 
 
I hereby declare that the material in this thesis is my own except for quotations, 
excerpts, equations, summaries and references, which have been duly 
acknowledged. 
 
 
 
10 August 2009    ___________________________ 
       Siow Ping Chuan 
       PK20078216 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iii 

CERTIFICATION 
 
NAME  : SIOW PING CHUAN 

 
MATRIX NO. : PK20078216 

 
TITLE  : PERFORMANCE OF COATED CARBIDE TOOL IN  

LOW SPEED MILLING OF STAINLESS STEEL UNDER 
FLOOD AND MIST LUBRICATION 

 
DEGREE : MASTER OF ENGINEERING  

(MECHANICAL ENGINEERING) 
   

VIVA DATE : 03 June 2010   
 
 
 

DECLARED BY 
 
 
 
 

SUPERVISOR 
ASSOC. PROF. DR. WILLEY LIEW YUN HSIEN  (      ) 

 
 
 
 

CO- SUPERVISOR 
PROF. DR. MEDISETTI MADHUSUDAHNA RAO  (      ) 
 
 
 
 
 
 



 v 

ABSTRACT 
 

PERFORMANCE OF COATED CARBIDE TOOL IN LOW SPEED MILLING OF 
STAINLESS STEEL UNDER FLOOD AND MIST LUBRICATION 

 
Most of the research works on the milling of stainless steel in the past were carried 
out at cutting speeds of higher than 100 m/min and had reported that the optimum 
speeds for milling steel were in the range of 100 m/min to 150 m/min. In some 
cases, milling at low speeds is inevitable. Some solid end-mill tools used to produce 
small features such as pockets and slots have a diameter of less than 2 mm. If a 
tool with diameter of 2 mm is used, milling cannot be performed at speeds higher 
than 100 m/min if the machine employs a spindle with a maximum rotational speed 
of less than 16,000 rpm. However, many milling machines use spindles with 
rotational speeds much less than this value. The aim of the work described in the 
dissertation is to provide an improved understanding of the performance of AlN/TiN 
nano-coated solid carbide ball nose end-mill tool in milling stainless steel at low 
speed (below 100 m/min) under conventional flood and mist lubrication condition. 
The tool wear behaviour and the morphology of the surface finish obtained under 
different lubrication conditions were examined. In particular, the effect of the 
hardness of the workpiece, helix angle of the cutting tool and the effectiveness of 
mist and flood lubrication in low-speed milling of stainless steel were investigated. 
The machining were carried out at the cutting speed of 50 m/min and 88 m/min, 
depths of cut of 0.2 mm and 0.4 mm and feeds rate of 0.04 mm/tooth, 0.01 
mm/tooth and 0.004 mm/tooth. The machining tests were performed on STAVAX 
(modified AISI 420 stainless steel) with the hardness of 35 and 55 HRC using 
Okuma milling machine under conventional flood and mist lubrication conditions. 
Abrasion, chipping and catastrophic failure are the wear modes encountered during 
machining under flood lubrication condition. The abrasive wear and the likeliness of 
the cutting tool to chip and fail prematurely increased with an increase in the 
hardness of the workpiece and a reduction in the helix angle of the tool.  Small 
quantity of natural oil sprayed in mist form was effective in reducing the tool wear 
and severity of abrasion wear, and preventing catastrophic failure. Throughout the 
entire duration of machining of 35 and 55 HRC of stainless steel under mist 
lubrication condition, the cutting edge of the 25° and 40° helix angle tools only 
suffered small-scale edge chipping and abrasive wear. The ductility of the 
workpiece had significant influence on the surface finish of the workpiece. In 
particular, it was found that in milling STAVAX with a hardness of 55 HRC, despite 
the tool was being subjected to a more severe wear, the surface finish was more 
superior than that of the workpiece with the hardness of 35 HRC.  
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ABSTRAK 
 
Kebanyakan kerja memesin keluli yang dilaporkan sebelum ini dijalankan dengan 
kelajuan pemesinan yang melebihi 100 m/min dan kelajuan optima untuk mengisar 
keluli (milling steel) adalah antara 100 m/min hingga 150 m/min. Dalam 
sesetengah kes, mengisar (milling) di kelajuan rendah adalah tidak dapat dielakkan. 
Sesetengah pisau pengisar hujung padat (solid end-mill tool) yang digunakan untuk 
membuat poket, lubang dan celah yang kecil mempunyai diameter yang kurang 
daripada 2 mm. Jika pisau pengisar dengan diameter 2 mm digunakan, proses 
mengisar tidak dapat dijalankan pada kelajuan yang lebih tinggi daripada 100 
m/min jika gelendong mesin mengisar itu berputar pada kelajuan maksimum yang 
kurang daripada 16,000 rpm. Adalah didapati bahawa banyak mesin pengisar 
mempunyai gelendong yang berputar dengan kelajuan yang lebih kurang daripada 
nilai ini. Tujuan kerja dalam disertasi ini adalah untuk memberi pertambahan 
pemahaman prestasi pisau pengisar karbida yang bersalut dalam mengisar keluli 
tahan karat pada kelajuan yang perlahan (di bawah 100 m/min) dalan keadaan 
pelinciran banjir dan kabus semburan (flood and mist spray). Mekanisma kehausan 
pisau pengisar and mofologi kekemasan permukaan di bawah situasi yang berbeza 
akan dikaji. Kepengaruhan kekerasan bahan kerja, sudut heliks pisau pengisar and 
keberkesanan pelinciran banjir and kabus semburan akan diselidik. Kerja 
pengisaran dijalankan pada kelajuan 50 m/min dan 88 m/min, kedalaman 
pemotongan 0.2 mm dan 0.4 mm, dan penyaluran bahan (feed rate) 0.04 mm/gigi, 
0.01 mm/gigi, dan 0.004 mm/gigi. Ujian-ujian pengisaran dijalankan di atas bahan 
kerja STAVAX (keluli tahan karat yang diubahsuai AISI 420) degan kekerasan 35 
dan 55 HRC dengan menggunakan mesin pengisar Okuma di dalam keadaan 
pelinciran banjir and kabus semburan. Lelasan (abrasion), penyerpihan (chipping) 
dan kegagalan (failure) adalah ciri-ciri yang ditemui semasa pemesinan di dalam 
keadaan pelinciran banjir. Lelasan dan kemungkinan pisau pemotong untuk 
menyerpih dan gagal bertambah dengan peningkatan dalam kekerasan bahan kerja 
dan pengurangan sudut heliks alat pemotong. Kuantiti kecil minyak semula jadi 
yang disembur dalam bentuk kabus adalah berkesan untuk mengurangkan 
kehausan pisau pengisar dan keterukan lelasan, dan mencegah kegagalan pisau 
pemotong. Sepanjang tempoh memesin bahan kerja 35 dan 55 HRC keluli tahan 
karat (HRC-SS) di dalam keadaan peliciran kabus semburan, pisau pengisar yang 
bersudut heliks 25° dan 40° sudut heliks hanya dikenakan penyerpihan dan lelasan 
yang berskala kecil. Kemuluran bahan kerja mempunyai pengaruh yang penting 
kepada kemasan permukaan kerja. Khususnya, adalah didapati dalam pengisaran 
55 HRC-SS, walaupun kehausan pisau pengisar menjadi lebih teruk, kemasan 
permukaan adalah lebih baik berbanding dengan pengisaran 35 HRC-SS. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
1.1 Background 
Nowadays, science and technology plays a very important role in manufacturing 
and production. Studies have been carried out to improve the advance technologies 
and manufacturing methods such as machine tool design, controller system, tool 
holding devices, and tooling technology which has significant impact on the quality 
of the products. The introduction of the computer aid design and computer aid 
manufacturing (CAD/CAM), such as computer numerical controlled (CNC) milling 
and turning (Chevrier et al., 2003; Mansour & Abdalla, 2002; Toh, 2004) had a 
deep impact to the engineering industry.  

 
Milling is a widely employed material removal process for different materials, 

and it is characterized by high material removal rate (Reddy & Rao, 2006). The 
major difficulties encountered in the milling process are the tool wear and surface 
finish. During the cutting process, tool wear is caused by the mechanical and 
chemical interaction between the tool, workpiece and environment (Attanasio et al., 
2006; Sokovic et al., 2001). This includes the relative motion between tool-chip and 
tool-workpiece, and the chemical reactions induced between tool-coolant during the 
cutting process. Nevertheless, the tool wear in end-milling is also dependent on the 
length of the sliding contact between the tool and the workpiece. As the length of 
the sliding contact between the tool and the workpiece decreases in proportion to 
the increases of the feed rate, the tool wear is expected to be reduced (Rahman et 
al., 2003). Tool wear affects the dimension accuracy and surface quality of the 
milled surface (Kumar et al., 2006). Flank wear is the predominant wear in the 
determination of tool wear and tool life, where most of the researchers described 
the tool wear in term of flank wear and by measuring the flank wear. In milling, 
both tool wear and the surface finish are two important factors in evaluating the 
performance of cutting tool.  
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Generally there are two types of wear, i.e. mechanical wear and chemical 
wear (Sokovic et al., 2001). Abrasive wear, chipping and fracture are examples of 
mechanical wear. Chemical wear is the thermo-chemical wear resulting from 
chemical interaction between the tool, workpiece and environment such as diffusion 
wear. Figure 1.1 shows the occurrence of different types of chemical and 
mechanical wear. 

 

 
 

Figure 1.1: Schematic diagram showing the location of different types 
of wear taking place  

Source: Sokovic et al., (2001) 
 
 The milling condition depends on the cutting environment, cutting 
parameters, cutting tool and workpiece (Ema & Davies, 1989; Korkut & Donertas, 
2007; Richetti et al., 2004; Stanford et al., 2007; Tsao & Hong, 2002; Tzeng, 2007). 
Hence, research is essential to determine the optimum cutting conditions. 
Recommendations from manufacturers should only be used as a guide because 
better cutting conditions for a specific situation can only be found through research 
(Richetti et al., 2004). Various methods had been explored to improve the tool life 
and surface finish. These include the use of different cutting parameters, 
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geometries of tool, types of cutting fluids, and coating material on the tool 
(Rahman et al., 2003). 
 

The cutting of metal is the major metal shaping process in the production of 
engineering components (Sokovic et al., 2001). Steel is one of the most common 
materials (metal) in the world and a major component in constructions, buildings, 
infrastructure, tools, ships, automobiles, machines and appliances (Wikipedia, 
2009). Stainless steel has good mechanical and chemical properties, and it plays an 
extremely important role in the engineering industry. The machining of stainless 
steel materials generally gives short tool life, limited metal removal rate, large 
cutting forces and high power consumption. These could be attributed to the high 
temperature strength, rapid work-hardening during machining and reactivity with 
the tool materials at high cutting speed (Lin, 2002). Short tool life and poor surface 
finish are the two main problems encounter in machining stainless steel, which 
generally regarded as difficult-to-machine material (Shao et al., 2007). 
 
 
1.2 Metal Cutting Process  
In machining, chip formation takes place by a process of intense plastic shearing in 
a region known as the primary deformation zone, as shown in figure 1.2. This zone 
extends from the tool cutting edge to the junction between the surface of the chip 
and workpiece. The chip has a freshly created clean surface and, as it flows up to 
the tool rake face, it is subjected to very high normal stress. Under these conditions, 
strong adhesion occurs between the nascent chip and the tool and this chip can 
results an additional shear in the region of the chip adjacent to the tool face known 
as the secondary shear zone. In practice, the primary shear zone is often idealized 
as a plane, called the shear plane. The angle of the inclination of the shear plane to 
the direction of cutting is called the shear angle (Liew, 2004). 
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Figure 1.2: Schematic geometry of orthogonal cutting 
Source:  Liew (2004) 
 
 Over the secondary shear contact region, regions of both sticking and 
sliding friction occur. Over this part of the contact, the normal stress rises steeply 
to a maximum value at the cutting edge (figure 1.3). Deformation occurs in the 
lower layers of the chip material and the real contact area approaches the apparent 
area. The frictional stress is constant and independent of the normal stress, and 
equal to the bulk shear flow stress of the chip material. Over the remainder of the 
contact, at some distance away from the cutting edge, sliding friction occurs in 
which the coefficient of friction is constant. In this region, relative motion between 
the chip and the tool occurs at the interface between the contacting asperities 
(Liew, 2004). 
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