REMOVAL OF POLLUTANTS IN AMMONIA RICH SYNTHETIC WASTEWATER USING MICROALGAE MEMBRANE BIOREACTOR

FARHANA ABD LAHIN

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH

2014

PUMS 99:1

UNIVERSITI MALAYSIA SABAH

BORANG PI	ENGESAHAN TESIS
JUDUL :	
IJAZAH :	
SAYA :	SESI PENGAJIAN :
(HURUF BESAR)	
Mengaku membenarkan tesis *(LPSM/Sarjana/Dokto Sabah dengan syarat-syarat kegunaan seperti berikut:	r Falsafah) ini disimpan di Perpustakaan Universiti Malaysia -
 Tesis adalah hak milik Universiti Malaysia Saba Perpustakaan Universiti Malaysia Sabah diben Perpustakaan dibenarkan membuat salinan t tinggi. 	ah. Iarkan membuat salinan untuk tujuan pengajian sahaja. esis ini sebagai bahan pertukaran antara institusi pengajian
4. Sila tandakan (/)	mat yang berdarjah keselamatan atau kepentingan Malaysia
seperti yang termaktu TERHAD (Mengandungi maklu mana penyelidikan di	ıb di AKTA RAHSIA RASMI 1972) mat TERHAD yang telah ditentukan oleh organisasi/badan di jalankan)
TIDAK TERHAD	Disahkan oleh:
 (TANDATANGAN PENULIS) Alamat Tetap:	(TANDATANGAN PUSTAKAWAN)
 TARIKH:	(NAMA PENYELIA) TARIKH:
Catatan: *Potong yang tidak berkenaan. *Jika tesis ini SULIT dan TERHAD, sila lampirkan sur menyatakan sekali sebab dan tempoh tesis ini perlu *Tesis dimaksudkan sebagai tesis bagi Ijazah Dokto bagi pengajian secara kerja kursus dan Laporan Pro	at daripada pihak berkuasa/organisasi berkenaan dengan u dikelaskan sebagai SULIT dan TERHAD. r Falsafah dan Sarjana Secara Penyelidikan atau disertai ıjek Sarjana Muda (LPSM).

DECLARATION

I hereby declare that the material in this thesis is on my own except for quotation, excerpts, summaries and references, which have been duly acknowledged.

23 May 2014

Farhana Abd Lahin PK2011-8006

CERTIFICATION

NAME : FARHANA BINTI ABD LAHIN

MATRIC NO : **PK2011-8006**

TITLE : REMOVAL OF POLLUTANTS IN AMMONIA RICH SYNTHETIC WASTEWATER USING MICROALGAE MEMBRANE BIOREACTOR

- DEGREE : MASTER OF ENGINEERING (CHEMICAL ENGINEERING)
- VIVA DATE : 25 JANUARY 2014

DECLARED BY

1. SUPERVISOR

Prof. Ir. Dr. Rosalam Hj. Sarbatly

Signature

ACKNOWLEDGEMENT

All praises to Allah S.W.T for His blessing have given me strength to complete my Master Degree.

My deepest appreciation to my supervisor, Prof. Ir. Dr. Rosalam Hj. Sarbatly for his patience, guidance and high level inspiration from the beginning to the final stage in doing the research work and finally thesis writing. His invaluable advises and comments have guided me throughout this journey.

I also wish to acknowledge the assistance of all the fellow researchers and friends in the Membrane Technology Research Group, Emma Suali, Chiam Chel Ken and Saja Jaafar for sharing their knowledge and valuable experiences. I also would like to extend my appreciation to Mr. Abdullah Tarikim, Mr. Freddy Disuk, Mr. Raysius Modi, Ms. Noor Aemi Dawalih and Mrs. Noridah Abas at School of Engineering and Information Technology, UMS for providing adequate assistance and facilities for my experimental works. My appreciation to MOHE for funding this research through Grants, ERGS0001-TK-1/2011, LRGS/TD/2011/UMP/PG/04 and FRGS0324-TK-1/2013.

To my dearest friends that have supported me, Mohd. Rozaidy Afzan Vilatis, Haszlizah Abd Hamit, Hasnidah Ismail, Azimah Kelvin and Zaida Zahari, thank you for the constant encouragement and advises at much needed times.

My deepest gratitude goes to my beloved family, my father Encik Abd. Lahin Karim and my mother Puan Aripa Aripin, my siblings, Iskandar, Kamarul Azhar, Farhiza and Iqmal for their support and prayers. I dedicate this thesis to my dearest friends and family, hopefully this work will make you proud.

ABSTRACT

An ammonia-urea fertilizer plant with 1.2 million tons of annual production capacity is to be opened in Sabah commencing in 2015. The discharge from this ammoniaurea fertilizer plant will impose a threat to Sabah's natural aquatic ecosystem. An alternative treatment for ammonia-urea fertilizer plant wastewater was researched by using microalgae to utilize the nutrient content and to provide microalgae biomass for other industrial usage. Locally isolated microalgae of Chlorella sp., Scenedesmus dimorphus and Scnedesmus quadricauda were compared in their nutrient removal rate. *Chlorella* sp. displayed highest performance (>55% of NH₃, >15% of PO₄³⁻) after 3 days operation and therefore was incorporated in the microalgae membrane bioreactor treatment system. Sample with high concentration and low concentration were used and two retention time (RT) were applied (2 and 3 days RT). Results show that microalgae are preferable to low concentration (>80% of NH_{3_1} >20% of PO_4^{3-}) compared to the high concentration wastewater feed (<30% of NH_3 , <20% of PO_4^{3-}) for both RT. The highest efficiency was achieved in operation with low concentration wastewater sample in 2 days RT (81.9% of NH₃ and 25.5% of PO₄³⁻ removal). Ultrafiltration membrane was able to simultaneously remove the chemical oxygen demand (COD) (<12 mg/L for low concentration feed) and biological oxygen demand (BOD) (<5 mg/L for low concentration feed) content in the effluent. Low turbidity reading (<6 Fau) was also recorded for all permeate samples. A highest biomass growth rate of 0.512 x 106 cell/mL.day for high concentration sample in batch operation and 0.681 x 10^6 cell/mL.day for the 2 days RT with low concentration feed were attained, showing a high volume biomass production was not achieved.

ABSTRAK

PENYINGKIRAN BAHAN PENCEMAR DALAM AIR SISA SINTETIK KAYA AMMONIA MENGGUNAKAN MIKROALGA MEMBRANE BIOREAKTOR

Pembinaan sebuah kilang baja ammonia yang bakal menghasilkan 1.2 juta tan produk setahun sedang berjalan di Sabah dan dijangka akan siap pada tahun 2015. Dengan adanya kilang tersebut, ekosistem hidupan laut di Sabah akan terancam oleh sisa air buangan. Oleh itu, satu rawatan alternatif bagi merawat sisa air buangan kilang baja ammonia-urea menggunakan mikroalga bagi mengurangkan kandungan nutrien telah dijalankan. Perbandingan kadar penyingkiran nutrien tiga spesis mikroalga tempatan (Chlorella sp., Scenedesmus dimorphus dan Scnedesmus quadricauda) telah dikaji. Chlorella sp. telah menunjukkan kadar penyingkiran tertinggi (>55% bagi NH₃, >15% bagi PO_4^3) selepas 3 hari rawatan dan ianya telah digunakan dalam operasi mikroalga membrane bioreaktor. Dua sampel air buangan dan dua retention time (RT) (2 dan 3 hari) telah dikaji dalam operasi mikroalga membrane bioreaktor. Keputusan menunjukkan, kadar penyingkiran nutrien dalam penggunaan sampel berkepekatan rendah adalah lebih tinggi (>80% bagi NH₃, >20% bagi PO_4^{3-}) berbanding dengan sampel berkepekatan tinggi (<30% bagi NH₃, <20% bagi PO₄³⁻) bagi kedua-dua RT. Kadar penyingkiran tertingggi ialah 81.9% bagi NH₃ dan 25.5% bagi PO₄³⁻ dalam operasi mikroalga membrane bioreaktor dengan sampel air buangan berkepekatan rendah dengan RT 2 hari. Membran ultrafiltration yang digunakan telah sekaligus menyingkirkan kandungan chemical oxygen demand (COD) (<12 mg/L bagi sampel berkepekatan rendah) dan biochemical oxygen demand (BOD) (<5 mg/L bagi sampel berkepekatan rendah). Bacaan kekeruhan air yang rendah (<6 Fau) juga didapati. Kadar pertumbuhan biomas tertinggi 0.512 x 10° cell/mL.hari telah direkodkan dalam operasi batch dan 681 x 10⁶ cell/mL.hari dalam operasi mikroalga membrane bioreaktor bagi sampel berkepekatan rendah dengan RT 2 hari. Ini telah menunjukkan penghasilan biomas yang tinggi tidak dapat dicapai.

TABLE OF CONTENTS

TITLE		Page i
DECL	ARATION	ii
CERT	IFICATION	iii
ACKN	OWLEDGEMENT	iv
ABST	RACT	v
ARST	ΡΛΚ	vi
ADST		VI
TABLE	E OF CONTENTS	vii
LIST	OF TABLES	х
LIST	OF FIGURES	xii
LIST	OF ABBREVIATIONS	xv
LIST	OF SYMBOLS	xvi
LIST	OF APPENDICES	xviii
СНАР	TER 1: INTRODUCTIONNIVERSITI MALAYSIA SABAH	
1.1	Overview	1
1.2	Problem Statement	3
1.3	Objectives	4
1.4	Scope of Study	4
1.5	Thesis Organization	5
CHAP	TER 2: LITERATURE REVIEW	
2.1	 Urea Fertilizer Wastewater as Petrochemical Waste 2.1.1 Urea Fertilizer Industry 2.1.2 Urea Fertilizer Wastewater 2.1.3 Environmental Hazard from Urea Fertilizer Industry a. Ammonia, NH₃ b. Carbon Dioxide, CO₂ c. Urea 	6 7 9 9 9

	2.1.4 2.1.5	Wastewater Regulation in Malaysia Treatment of Urea Fertilizer Wastewater	10 11
2.2	Microa 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7	IgaeVersatility of MicroalgaeWastewater Treatment by MicroalgaeIssues of Microalgae TreatmentRemoval of Nutrients by MicroalgaeMicroalgae Species SelectionMicroalgae Cultivation TechniqueParametric Consideration in Microalgae Cultivationa.Light and Temperatureb.Mixingc.pHd.Nutrient Concentrations	12 13 14 15 15 16 19 20 20 20 22 22 23
2.3	Separa 2.3.1 2.3.2	ation of Microalgae and Treated Water Membrane Filtration Selection Between Microfiltration and Ultrafiltration Membrane	24 27 28
	2.3.3 2.3.4 2.3.5	Membrane Fouling Operating Parameter in Reducing the Effect of Fouling Membrane Cleaning	29 29 30
2.4	Microa	Igae Membrane Bioreactor	32
СНАР	TE <mark>R 3</mark> :	MATERIALS AND METHODS	
3.1	Ammo	nia Rich Synthetic Wastewater	35
3.2	Microa	Igae Species Selection and Culturing	35
3.3	Deterr	nination of Microalgae Species with Highest Removal Rate	37
3.4	Batch	Operation	37
3.5	Microa	lgae Membrane Bioreactor Treatment System Setup	39
3.6	Microa 3.6.1 3.6.2 3.6.3 3.6.4 3.6.5 3.6.6 3.6.7	Igae Membrane Bioreactor Operation Membrane Filter Unit Temperature Carbon Dioxide Supply pH Light Intensity and Cycle Working Volume Membrane Cleaning	41 43 43 43 43 43 43 44 44
3.7	Testec 3.7.1 3.7.2	Variables in Microalgae Membrane Bioreactor Operation Retention Time (RT) Nutrient Initial Concentration	44 44 44
3.8	Experi 3.8.1	mental Procedure and Analytical Methods Determination of Cell Count from Optical Density	45 45

Biochemical Oxygen Demand, BOD	46
Chemical Oxygen Demand, COD	46
Ammonia, NH ₃	47
Phosphate, PO ₄ ³⁻	47
Turbidity	48
	Biochemical Oxygen Demand, BOD Chemical Oxygen Demand, COD Ammonia, NH_3 Phosphate, PO_4^{3-} Turbidity

CHAPTER 4: RESULTS AND DISCUSSION

4.1	Selection of Suitable Microalgae Species by Batch Reactor Operation	49
	4.1.1 Removal of Ammonia, NH_3	49
	4.1.2 Removal of Phosphate, PO ₄ ³⁻	50
	4.1.3 Microalgae Growth Rate	52
	4.1.4 Turbidity	54
	4.1.5 Removal of BOD and COD	55
	4.1.6 pH	58
4.2	Batch Operation	59
	4.2.1 Removal of Ammonia, NH_3 and Phosphate, PO_4^{3-}	59
	4.2.2 Removal of Turbidity, COD and BOD	61
	4.2.3 Microalgae Growth Rate	63
	4.2.4 pH	64
4.3	Microalgae Membrane Bioreactor Treatment Operation	66
4.4	Nutrient Removal for Wastewater Treatment	67
6	4.4.1 Removal of Ammonia, NH ₃	67
	4.4.2 Removal of Phosphate, PO ₄	69
4.5	Performance of Ultrafiltration Membrane Filtration Unit A SABA-	73
4.6	Dual Application of Microalgae Membrane Bioreactor for	79
	Wastewater Treatment and Microalgae Cultivation	
CHAI	PTER 5: CONCLUSION AND RECOMMENDATION	
5.1	Conclusion	81
5.2	Future Research and Recommendations	83

REFERENCES	84
APPENDIX	99

LIST OF TABLES

		Page
Table 2.1:	List of Researched Microalgae for Wastewater Treatment	18
Table 3.1:	Urea Substrate	35
Table 3.2:	Composition of Bold's Basal Medium	36
Table 3.3:	Operating Parameter of Microalgae Membrane Bioreactor	42
Table 3.4:	Synthetic Wastewater Feed Properties	45
Table 4.1:	Average Nutrient Removal and pH value for Microalgae Membrane Bioreactor Operation	68
Table 4.2:	Average Turbidity, COD and BOD Reading in Effluent Sample of Microalgae Membrane Bioreactor Operation	74
Table A.1:	Membrane Characteristic	99
Table B.1:	Growth Rate Reading by Optical Density (OD ₆₈₀) for 3 Microalgae Species	101
Table B.2:	Data of Ammonia, NH ₃ Concentration and Removal Percentage for 3 Microalgae Species	102
Table B.3:	Data of Phosphate, PO4 ³⁻ Concentration and Removal Percentage for 3 Microalgae Species	103
Table B.4:	Data of pH reading for 3 Microalgae Species	104
Table B.5:	Data of Turbidity Reading of Collected Samples for 3 Microalgae Species	105
Table B.6:	Data of BOD Concentration of Collected Samples for 3 Microalgae Species	106
Table B.7:	Data of COD Concentration of Collected Samples for 3 Microalgae Species	107
Table B.8:	Nutrient Concentration and Removal Rate Data in Batch Reactor	108
Table B.9:	Data for Optical Density, pH and Turbidity in Batch Reactor	109
Table B.10:	Data for COD and BOD Concentration and Removal Rate in Batch Reactor	110
Table B.11:	Microalgae Membrane Bioreactor Data of NH_3 Removal Rate in 3 Days RT	111

Table B.12:	Microalgae Membrane Bioreactor Data of NH_3 Removal Rate in 2 Days RT	112
Table B.13:	Microalgae Membrane Bioreactor Data of PO ₄ ³⁻ Removal Rate in 3 Days RT	113
Table B.14:	Microalgae Membrane Bioreactor Data of PO4 ³⁻ Removal Rate in 2 Days RT	114
Table B.15:	Microalgae Membrane Bioreactor Data of COD Removal Rate in 3 Days RT	115
Table B.16:	Microalgae Membrane Bioreactor Data of COD Removal Rate in 2 Days RT	116
Table B.17:	Microalgae Membrane Bioreactor Data of BOD Removal Rate in 3 Days RT	117
Table B.18:	Microalgae Membrane Bioreactor Data of BOD Removal Rate in 2 Days RT	118
Table B.19:	Microalgae Membrane Bioreactor Data of pH, Optical Density and Turbidity in 3 Days RT	119
Table B.20:	Microalgae Membrane Bioreactor Data of pH, Optical Density and Turbidity in 2 Days RT	120
	UNIVERSITI MALAYSIA SABAH	

LIST OF FIGURES

		Page
Figure 2.1:	Schematic Flow of Urea Production Process	8
Figure 2.2:	Schematic Presentation of Microalgae Growth Rate and Nutrient Concentration Versus Time in a Batch Culture	16
Figure 2.3:	The Specific Growth Rate Dependence for a Hypothetical Microalgae for the Optimal N:P Ratio	24
Figure 3.1:	Flow Chart of Research Work	34
Figure 3.2:	Batch Operation Flow Chart	38
Figure 3.3:	Schematic of Microalgae Membrane Bioreactor Treatment	40
Figure 3.4:	Laboratory Scale Microalgae Membrane Bioreactor Setup	41
Figure 4.1:	Comparison of NH_3 Removal by 3 Microalgae Species in Batch Reactor	50
Figure 4.2:	Comparison of PO ₄ ³⁻ Removal by 3 Microalgae Species in Batch Reactor	51
Figure 4.3:	Correlation between Microalgae Cell Count and Optical Density Measurement	52
Figure 4.4:	Comparison Of Growth Rate between 3 Microalgae Species In Batch Reactor	54
Figure 4.5:	Turbidity Reading for Collected Samples in 3 Microalgae Species Tank	55
Figure 4.6:	Comparison of BOD Removal by 3 Microalgae Species in Batch Reactor	56
Figure 4.7:	Comparison of COD Removal by 3 Microalgae Species in Batch Reactor	57
Figure 4.8:	Comparison of pH between 3 Microalgae Species in Batch Reactor	58
Figure 4.9:	Comparison of NH_3 Removal for High and Low Concentration Wastewater Sample in the Control Experiment	60
Figure 4.10:	Comparison of PO ₄ ³⁻ Removal for High and Low Concentration Wastewater Sample in the Control Experiment	60

Figure 4.11:	Turbidity Reading of Collected Samples for High and Low Concentration Wastewater Sample in Control Experiment	61
Figure 4.12:	COD Concentration of Collected Samples for High and Low Concentration Wastewater Sample in Control Experiment	62
Figure 4.13:	BOD Concentration of Collected Samples for High and Low Concentration Wastewater Sample in Control	62
Figure 4.14:	Microalgae Growth Rate by Optical Density Reading at 680 Nm Wavelength	64
Figure 4.15:	pH Comparison Between High Concentration and Low Concentration Wastewater Sample in Batch Operation	65
Figure 4.16:	Comparison of NH ₃ Removal High and Low Concentration Wastewater Sample in Microalgae Membrane Bioreactor for 3 Days RT	68
Figure 4.17:	Comparison of NH ₃ Removal High and Low Concentration Wastewater Sample in Microalgae Membrane Bioreactor for 2 Days RT	69
Figure 4.18:	Comparison of PO ₄ ³⁻ Removal High and Low Concentration Wastewater Sample in Microalgae Membrane Bioreactor for 3 Days RT	71
Figure 4.19:	Comparison of PO ₄ ³⁻ Removal High and Low Concentration Wastewater Sample in Microalgae Membrane Bioreactor for	71
Figure 4.20:	pH Comparison between High and Low Concentration Wastewater Sample in Batch Operation in Microalgae Membrane Bioreactor for 3 Days RT	72
Figure 4.21:	pH Comparison between High and Low Concentration Wastewater Sample in Batch Operation in Microalgae Membrane Bioreactor for 2 Days RT	72
Figure 4.22:	Turbidity Reading of Collected Samples High and Low Concentration Wastewater Sample in Microalgae Membrane Bioreactor for 3 Days RT	76
Figure 4.23:	Turbidity Reading of Collected Samples for High and Low Concentration Wastewater Sample in Microalgae Membrane Bioreactor for 2 Days RT	76
Figure 4.24:	COD Concentration of Collected Samples for High and Low Concentration Wastewater Sample in Microalgae Membrane Bioreactor for 3 Days RT	77

- Figure 4.25: COD Concentration of Collected Samples for High and Low 77 Concentration Wastewater Sample in Microalgae Membrane Bioreactor for 2 Days RT
- Figure 4.26: BOD Concentration of Collected Samples for High and Low 78 Concentration Wastewater Sample in Microalgae Membrane Bioreactor for 3 Days RT
- Figure 4.27: BOD Concentration of Collected Samples for High and Low 78 Concentration Wastewater Sample in Microalgae Membrane Bioreactor for 2 Days RT
- Figure 4.28: Microalgae Growth Rate by Optical Density Reading at 680 80 nm Wavelength in Microalgae Membrane Bioreactor for 3 Days RT
- Figure 4.29: Microalgae Growth Rate by Optical Density Reading at 680 80 nm Wavelength in Microalgae Membrane Bioreactor for 2 Days RT

LIST OF ABBREVIATIONS

ASEAN	Association of South-East Asian Nations
BOD	Biochemical oxygen demand
BOD ₅	5 days Biochemical oxygen demand
С.	Chlorella
COD	Chemical oxygen demand
Conc.	Concentration
DOE	Department of Environment
EQA	Environmental Quality Act
RT	Hydraulic retention time
MBR	Membrane bioreactor
MF	Microfiltration membrane
N:P	Nitrogen to phosphorus ratio
OD ₆₈₀	Optical density at 680 nanometer wavelength
PETRONAS	Petroliam Nasional Berhad
s.	Scnedesmus
Sdn. Bhd.	Sendirian Berhad
sp.	Species
ТМР	Transmembrane pressure
TSS	Total Suspended Solids
UF	Ultrafiltration membrane

LIST OF SYMBOLS

μm	micrometer
cell/mL	cell per mililiter
CO ₂	Carbon dioxide
h	hour
kDa	Kilo Dalton
L	Liter
Мра	Megapascal
mg/L	milligram per liter
W/m ³	Watt per meter cube
N	Nitrogen
P	Phosphorus
H ₂ O	Water
NH3	Ammonia
NH4	Ammonium
NO ₃ -	Nitrate
NO ₂ -	Nitrate
PO ₄ ³⁻	Phosphate
NaOH	Sodium Hydroxide
NaClO	Sodium Hypochlorite
Na ₂ HPO ₄	Disodium phosphate
CaCl ₂	Calcium chloride
MgSO ₄ .7H ₂ O	magnesium sulphate heptahydrate
$Na_2HPO_4.2H_2O$	Disodium hydrogen phosphate dihydrate
FeCl₃	Iron (III) chloride
KH ₂ PO ₄	Potassium hydrogen phosphate

K ₂ HPO ₄	Dipotassium phosphate
CaCl ₂ .2H ₂ O	Calcium Chloride Dihydrate
NaNo ₃	Sodim nitrate
NaEDTA	Disodium EDTA
КОН	potassium hydroxide
FeSO ₄ .7H ₂ O	Ferrous Sulfate Heptahydrate
H ₂ SO ₄	Sulphuric acid
MnC ₁₂ .4H ₂ O	Manganese (II) Chloride Tetrahydrate
ZnSO4.7H2O	Zinc Sulfate Heptahydrate
CuSO ₄ .5H ₂ O	Copper (II) Sulfate Pentahydrate
CO(NO ₃) ₂ .6H2O	Cobalt (II) Nitrate Hexahvdrate

LIST OF APPENDICES

- Appendix A Membrane Characteristic
- Appendix B Experimental Data
- Appendix C List of Publications

CHAPTER 1

INTRODUCTION

1.1. Overview

Sabah the most eastern state of Malaysia is recognized for its natural tropical beauty, a far reaching history and its art culture. Being awarded as the most beautiful diving spot in 2009, its coral reef is best known to be the home of the largest, most varied communities of marine life on earth. Apart from the biological significance, these reefs encompass numbers of exotic islands which have become important centres reserved for marine research and conservation.

Therefore, preserving the vulnerable aquatic ecosystem of which Sabah contains, as well as to avoid depletion of natural resources and implication of unnecessary cost in the future is a fundamental goal. However, achieving this goal has become more challenging, especially with increasing human population, which arises with the demand and necessity for industrialization. Industrial development will essentially lead to industrial by-products and wastes that could potentially impose threat the environment. Among other wastes produced, industrial wastewater is one of the main contributors in water pollution.

To cater the increasing demand in food supplies, the agricultural industry requires fertilizers in good amount and quality. This necessity has called for more fertilizer plants to be constructed in order to cater the escalated demand, not only within Malaysia, but also in the neighbouring countries. However, concerns from these plants in the form of pollution are significant especially the wastewater discharge. In every ton of produced urea, 0.3 tons of wastewater will be formed (Rahimpour *et al.*, 2010a) and it may contain 2-9 wt. % ammonia, 0.8-6 wt. % carbon dioxide and 0.3-1.5 wt. % urea (Ljubica *et al.*, 2010; Rahimpour *et al.*, 2010a). Therefore the fate of Malaysian waterbodies is at stake as the discharge of effluent from the plant is a definite consequence. An efficient wastewater treatment

shall be implemented in order to avoid discharge of polluted wastewater that may endanger the beauty and diversity Malaysian waterbodies.

Over the years, the wastewater treatment sector has been researching and developing various technologies in order to serve the increasing demand in wastewater treatment and to optimize cost of operation. As discussed in several literature, the treatment of wastewater containing high amount of nutrients (urea and ammonia) can be done by biological and chemical means which by using nitrification and denitrification or stripping of ammonia by using hydrolysis. Another method that is vigorously being researched into and highly potential is by using microalgae.

Microalgae and its benefits have been explored all over the world and have been recorded to present significant contributions in many industries. As a photosynthetic microorganism, microalgae has seen to contribute to the production of biofuel, wastewater treatment by nutrient removal primarily nitrogen and phosphorus (Richmond, 2004), removal of CO_2 from industrial flue gas (Yun *et al.*, 1997) and production of other consumer products such as food and food supplements (Harun *et al.*, 2010). Even though nutrient removal can be accomplished via other processes as mentioned in the previous paragraph (biological and chemical), microalgae are able to serve the same objective in a lower net cost by dual objectives in a single cultivation. In cultivation of microalgae in nutrient rich wastewater, the nutrients become feed for the algae, which can become either source of biofuel, a food source for fish or livestock (Kryder, 2001) or even further processed to produce consumer products.

The purpose of this study was to determine the potential in application of microalgae in removing the nutrient content in a synthetic ammonia-urea fertilizer production wastewater as an alternative of the current application of biological and chemical treatment. The experiment combines the microalgae treatment with ultrafiltration membrane as a downstream process to separate the microalgae biomass from treated water to become a microalgae membrane bioreactor.

This project is seen as important as it can contribute to wastewater treatment process intensification for an energy efficient, shorter time and smaller treatment plant scale. This project is also able contribute for a cost minimization as the cultured microalgae can be further used for other purpose such as biofuel production and other consumer products.

1.2. Problem Statement

In fertilizer plants that produces ammonia rich wastewater, there are two common applied wastewater treatments which are using physical and biological treatment. The physical treatment is by using desorption and hydrolysis, involving the decomposition of urea into ammonia and carbon dioxide. It allows recovery of ammonia and urea (Rahimpour *et* al., 2010b; Egyptian Environmental Affairs Agency, 2002). However, the effluent from this treatment will need to be discharged to a sewage system. This is because of the effluent quality of the physical treatment is not enough to be used in utility unit or in other unit. So in order to reuse or discharge this wastewater, residual urea, ammonia and carbon dioxide must be removed (Rahimpour *et al.*, 2010a).

On the other hand, the biological treatment is by using bacterial degradation based on three steps ammoniafication, nitrification and denitrification (Metcalf and Eddy, 2003; Setiadi *et al.*, 1995). This treatment is able to remove almost all of the ammonia content. However, besides the large area and a longtime requirement for the treatment, the aeration cost is very high as the treatment works best in an aerobic condition. Post treatment sludge management is also required and will impose an extra cost for this type of treatment (Singh and Thomas, 2012).

1.3. Objectives

The objective of this project is to investigate the efficiency of the microalgae membrane bioreactor in treatment of wastewater derived from the production of ammonia-urea fertilizer as an alternative of biological and chemical treatment. The specific objectives of the project are;

- i. To identify which microalgae species (*Chlorella* sp., *Scenedesmus quadriqauda*, *Scenedesmus dimorphus*) that has the most efficiency in nutrient removal (NH_3 and PO_4^{3-}) in synthetic ammonia rich wastewater;
- To identify the percentage of nutrient removal by microalgae membrane bioreactor in different concentration of nutrient and short retention time (2 and 3 RT);
- iii. To determine the effectiveness of membrane filtration unit as solid-liquid separation method for microalgae; and
- iv. To identify the potential of using a microalgae membrane bioreactor for dual application of wastewater treatment and microalgae culturing.

1.4. Scope of Study

The efficiency of three microalgae species i.e Chrollera sp., Scenedesmus quadricauda and Scenedesmus dimorphus to remove pollutants from ammonia rich synthetic wastewater was studied in a laboratory scale batch reactor. The percentage removal of ammoniacal nitrogen (NH_3), phosphate (PO_4^{3-}), chemical oxygen demand (COD), biochemical oxygen demand (BOD) and turbidity by each of microalgae species were measured and compared. The species with highest removal rate was incorporated in batch and microalgae membrane bioreactor operation for semi-batch operation. Two different concentrations of the synthetic wastewater were used to study the reaction of microalgae wastewater treatment in different concentration. To determine the potential of using microalgae membrane bioreactor system in a short period, two short retention (RT) time were applied, 2 and 3 days RT. A commercial ultrafiltration membrane with 50kDa molecular cutoff was used to remove microalgae biomass from the treated water to produce clean permeate. The microalgae biomass concentration was also monitored to investigate the potential of dual application of wastewater treatment and microalgae cultivation.

1.5. Thesis Organization

Chapter 1 starts off with a basic overview of the problem of wastewater treatment, especially in the fertilizer industry sector and the potential of using microalgae for treatment. This chapter also covers the problem statement, objectives and scope of work for this study.

Chapter 2 presents the literature review of the ammonia-urea production wastewater and the regulations stated in Malaysia for wastewater discharge. The chapter also explains the nature of microalgae, the nutrient removal by microalgae, cultivation techniques and factors affecting microalgae growth and downstream processing of microalgae cultivation. Finally, the chapter covers the membrane filtration that will be used as the harvesting method in the project.

Chapter 3 presents the materials and methodologies used in conducting the investigation of feasibility in using microalgae as the medium for wastewater treatment that was conducted in a laboratory scale.

Chapter 4 encloses the data obtained during experimental operation followed by the discussion of the efficiency and feasibility of the treatment system.

UNIVERSITI MALAYSIA SABAH

Finally, Chapter 5, conclude the performance and applicability in utilizing microalgae in treatment of ammonia-urea production wastewater. The chapter also concludes of the performance of the entire treatment system as a semi-batch wastewater treatment to be utilized in the industrial scale.