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ABSTRACT 

 

Currently, new renewable energy resources are seek out to substitute fossil fuels in 

the transportation sector in order to tackle the increasing energy demand. 

Bioethanol emerge as a potential option in replacing transportation fuels of 

gasoline. Oil palm empty fruit bunches (EFBs) are one of the promising biomass 

wastes, which can be utilized as a feedstock for the second generation bioethanol 

production. Optimal conditions are required for a cost-efficient bioethanol fuel 

processes from EFBs. Thus, this study aims to optimize the process conditions for 

bioethanol production from EFBs through simultaneous saccharification and 

fermentation (SSF) process using Response Surface Methodology (RSM). This study 

can be divided into two main parts which are the screening of the optimum 

concentration of enzymes and microorganisms and optimization of fermentation 

parameters. In this study, EFBs were treated using sequential acid and alkali 

treatment before being used as substrate. Physical morphologies and structures of 

the EFBs were analyzed using Scanning Electron Microscope (SEM) and Fourier 

Transform Infrared (FTIR). The findings revealed that the pretreatment has 

changed the morphology and EFBs structure by removing silica which act as the 

chemical composition barrier that causes pores formation. In the first part of this 

study, the optimum combination of enzymes and microbes for bioethanol 

production was screened. According to the results, co-cultures of S. cerevisiae and 

T. harzianum combined with Cellulase and β-glucosidase was selected for further 

used in the fermentation steps. This combination produced the highest bioethanol 

concentration determined at 11.76 mg/mL. Under optimal conditions for enzymatic 

saccharification, 4% (w/v) of pretreated EFB was completely hydrolyzed and 

produced 21.14 ± 1.49 mg/mL glucose at 50 ˚C, 150 rpm and 72 hours operating 

conditions. In the second part in this study, Central Composite Design of RSM was 

employed to optimize the SSF process including the fermentation time, 

temperature, inoculum concentration, and pH. It was found that fermentation for 

72 hours duration, 30 ˚C and pH 4.8 of media using 6.79% (v/v) of inoculum 

concentration could produce up to 9.72 mg/mL of bioethanol and 0.46 g/g glucose 

of bioethanol yield with 90.63% conversion efficiency. Fermentation conducted 

under optimum conditions yielded 9.65 mg/mL of bioethanol, 0.46 g/g glucose of 

bioethanol yield and 89.56% conversion efficiency which were in close agreement 

with the model suggested. Overall, this study showed better results for bioethanol 

production as compared to previous research done using EFBs as the feedstocks. 
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ABSTRAK 

 

SIMULTANEOUS SACCHARIFICATION AND FERMENTATION PROCESS OF 

BIOETHANOL FROM PALM OIL EMPTY FRUIT BUNCHES 

 

Pada masa ini, sumber tenaga baru yang boleh diperbaharui untuk menggantikan 

bahan api fosil dalam sektor pengangkutan dicari untuk menangani permintaan 

tenaga yang semakin meningkat. Bioetanol muncul sebagai pilihan yang berpotensi 

untuk menggantikan bahan api pengangkutan petrol. Tandan kosong kelapa sawit 

(EFBs) adalah salah satu daripada sisa biomas yang berpotensi untuk digunakan 

sebagai bahan mentah untuk pengeluaran bioetanol generasi kedua. Keadaan 

optimum diperlukan untuk menghasilkan bioethanol yang kos efektif. Oleh itu, 

matlamat kajian ini adalah untuk mengoptimumkan pengeluaran bioetanol dari 

EFBs melalui proses sakcarifikasi dan penapaian serentak (SSF) menggunakan 

Metodologi permukaan tindakbalas (RSM). Kajian ini boleh dibahagikan kepada dua 

bahagian utama iaitu pemeriksaan optimum enzim dan mikroorganisma serta 

pengoptimuman parameter penapaian. Dalam kajian ini, EFBs dirawat dengan 

menggunakan Pra-rawatan alkali asid berturutan sebelum digunakan sebagai 

substrat. Morfologi dan struktur fizikal EFBs dianalisis menggunakan Mikroskop 

Pengimbasan Elektron (SEM) dan Inframerah Transformasi Fourier (FTIR). Dapatan 

kajian menunjukkan bahawa proses pra-rawatan telah mengubah morfologi dan 

struktur EFBs dengan membuang silika yang bertindak sebagai komposisi kimia 

yang menyebabkan pembentukan liang-liang. Pada bahagian pertama kajian ini, 

gabungan optimum enzim dan mikroorganisma bagi pengeluaran bioetanol telah 

ditapis. Menurut hasil proses penyaringan, kokultur S. cerevisiae dan T. harzianum 

digabungkan dengan enzim selulase dan β-glucosidase dipilih untuk digunakan 

lebih lanjut dalam penapaian proses. Kombinasi ini menghasilkan kepekatan 

bioetanol tertinggi iaitu 11.76 ± 0.79 g/ L bioethanol. Di bawah keadaan optimum 

untuk sakcarifikasi enzimatik, 4% (w/v) EFB yang sudah dirawat, dihidrolisis 

sepenuhnya dan menghasilkan 21.14 ± 1.49 mg/mL glukosa pada 50 ˚C, 150 rpm 

dan 72 jam operasi. Dalam bahagian kedua kajian ini, CCD dalam kaedah RSM 

digunakan untuk pengoptimuman bagi SSF proses termasuk masa penapaian, 

suhu, kepekatan inoulum dan pH. Ia didapati bahawa penapaian selama 72 jam, 30 

˚C dan pH 4.8 media menggunakan 6.79% (v/v) kepekatan inokulum boleh 

menghasilkan 9.72 mg/mL bioetanol, 0.46 g/g glukosa hasil bioetanol dengan 

90.63% kecekapan penukaran. Proses penapaian yang dilakukan menggunakan 

keadaan yang dioptimumkan berjaya menghasilkan 9.65 mg/mL bioetanol, 0.46 g/g 

glukosa hasil bioetanol dan 89.56% kecekapan penukaran  bersesuaian dengan 

jumlah yang diramalkan oleh model CCD. Secara keseluruhannya, kajian ini telah 

menunjukkan hasil yang lebih baik dalam penghasilan bioetanol berbanding dengan 

kajian terdahulu mengunakan buah tandan kosong sebagai sumber utama. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Research Overview 

 

More and more research are done to discover new renewable energy resources due 

to the increasing energy security, global energy demand, industrialized economy 

and continuous growth of world population (Gaurav et al., 2017; Raman and 

Gnansounou, 2014). Hence, research on the biofuels production is done to 

overcome this matter since it can be used as a source of energy to meet the 

world’s increasing energy demand. Biofuels had been one of the candidates among 

the renewable energy resources in replacing fossil fuels in the transportation sector 

(Raman and Gnansounou, 2014). However, its feedstock becomes an issue as it is 

mainly used human-food which causes worldwide dissatisfaction due to a shortage 

of food mainly in developing nations (Alam et al., 2015). To tackle this food versus 

fuel conflict, the focus of biofuels research has changed towards manipulating 

agricultural waste and non-crop resource for example biomass wastes for 

production of bioethanol, and algae and non-edible oil crops for biodiesel (Raman 

and Gnansounou, 2014). Biodiesel and bioethanol are two most important liquid 

biofuels which emerged as a potential option in replacing transportation fuels of 

gasoline and diesel  (Luque et al., 2009). 

 

 Bioethanol is a renewable and sustainable liquid biofuels which can be 

produced locally to meet day to day high-energy sources demand (Sudiyani et al., 

2013). It is a promising renewable energy sources, but it requires a suitable 

technology in order for the conversion is economically feasible (Samsudin and Mat 

Don, 2015). Its production from cellulosic biomass is also rising as one of the 

essential technologies for the production of sustainable renewable fuels for 
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transportation (Sukumaran et al., 2009). In recent years, extensive expansion and 

swift growth of bioethanol have produced a terrific amount of ethanol by-products 

from the fermentation process. Sustainable and renewable bioethanol will limit and 

reduce the usage of fossil fuels. Consequently, bioethanol will soon become fossil 

gasoline substitution or replacement as an alternative and renewable energy (Hanif 

et al., 2016). Prior to that, developments of suitable bioprocesses are needed to 

convert biomass feedstocks into higher value and yield of bioethanol production. It 

is important to reduce its production cost by reducing the feedstock and operational 

cost (Zabed et al., 2017).  

 

 Agricultural and forestry residues (lignocellulosic biomass), and algae are 

potential substrates in terms of availability and cost, however, it faces some 

processing problems as it produce lower yield ethanol with higher production costs 

(Izmirlioglu and Demirci, 2017). Thus, a more valuable feedstock actually comes 

from a biomass waste as it does not involve in the “food versus fuel” conflict, 

cheaper and renewable which can benefit the biofuels industry. Bioconversion of 

the lignocellulosic waste materials to chemical and biofuel also attracts attention as 

they are renewable, low cost, and widespread in nature (Sudiyani et al., 2013). In 

Malaysia, agricultural biomass wastes became very promising alternative resources 

for production of second generation bioethanol (SGB) since agricultural are one of 

the major industries contributed to the economy. Malaysian market for bioethanol is 

larger than the biodiesel market as larger proportion of the transportation vehicle 

runs on gasoline. Thus, promoting and implementing bioethanol production 

effectively is a tactical move for Malaysia to become a self-sufficient country in the 

near future (Tye et al., 2011). Hence, Malaysia has the potential to play a major 

role in the world of biofuels and food market because of its large and growing palm 

oil industry, plus with a strong global demand for palm oil (Gan and Li, 2014).  

 

 Malaysia is one of the growing economies countries in South-East Asia 

which is important for its oil palm industry (Basri et al., 2015). Oil palm industry is 

one of the important agricultural sectors in Malaysia. However, the industry 

contributed to a major biomass waste production, where empty fruit bunches are 

discarded after the oil extraction from the fruit bunches. Every million tonnes of oil 
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palm caused another million tonnes of EFBs to be thrown, as each tonne harvested 

from the palm plantation, 20 % will be the oil while the rest, 80 % became the 

biomass waste (Hassan et al., 2013). Utilization of sustainable and renewable 

energy sources, mainly oil palm wastes, has been improved since it is able to lessen 

the agriculture disposal dilemma in an environmental friendly approach (Al-Zuhair 

et al., 2011). Oil palm biomass is a promising renewable energy source due to 

rising price of crude oil. Therefore, converting oil palm biomass into biofuel is not 

only able to reduce the petrol crisis but also helps to protect the environment by 

reducing CO2 and greenhouse gas emission (Shuit et al., 2009). Hence, EFBs is a 

promising feedstock for bioconversion into bioethanol fuel because it is rich in 

lignocellulosic content, easily accessible and abundant in Malaysia. Bioethanol 

production from oil palm industrial wastes has gained attention not only because of 

the reduced production cost, but also the ethanol production productivity 

(Izmirlioglu and Demirci, 2017). 

 

 Bioethanol production from lignocellulosic biomass requires four main steps: 

physical and chemical pretreatment of the lignocellulosic biomass, enzymatic 

hydrolysis of cellulose to sugars, fermentation of the resulting sugars and 

distillation of ethanol (Kamm and Kamm, 2004). Pretreatment processes are key 

technologies for generating fermentable sugars based on lignocellulosic biomass. It 

is necessary to remove the lignin and hemicellulose contents in EFBs (Kim et al., 

2012). In hydrolysis, enzymes that are mostly employed to degrade the 

polysaccharides are cellulases which can be categorized into three main types 

including β-glucosidase, endo-glucanases and exo-glucanases. Research by Nur 

Atikah et al. (2016) treated the EFBs with combination enzymes of Cellic Ctech2 

and Cellic Htech2 in the enzymatic hydrolysis. Hydrolysis and fermentation process 

can be achieved by several process strategies which include separate hydrolysis 

and fermentation (SHF), and simultaneous saccharification and fermentation (SSF). 

According to Chen et al., the SSF process has other benefits such as reduced 

operation costs, lower enzyme requirement and increased productivity (Chen et al., 

2007). A great number of microorganisms can be used for bioethanol production. S. 

cerevisiae (baker’s yeast) is the most frequently and traditionally used organism in 


