CHARACTERIZATION OF NEWLY ISOLATED PROTEASE PRODUCING MARINE BACTERIA AND EXPRESSION OF A NEUTRAL PROTEASE FROM *Bacillus* sp PPB15 ISOLATED FROM MANGROVES IN SABAH

BIOTECHNOLOGY RESEARCH INSTITUTE UNIVERSITI MALAYSIA SABAH 2012

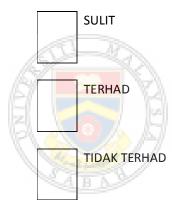
CHARACTERIZATION OF NEWLY ISOLATED PROTEASE PRODUCING MARINE BACTERIA AND EXPRESSION OF A NEUTRAL PROTEASE FROM *Bacillus* sp PPB15 ISOLATED FROM MANGROVES IN SABAH

SHUHADAH MUSTAPHA

THESIS SUBMITTED IN FULLFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

BIOTECHNOLOGY RESEARCH INSTITUTE UNIVERSITI MALAYSIA SABAH 2012

UNIVERSITI MALAYSIA SABAH


BORANG PENGESAHAN STATUS TESIS

JUDUL : CHARACTERIZATION OF NEWLY ISOLATED PROTEASE PRODUCING MARINE BACTERIA AND EXPRESSION OF NEUTRAL PROTEASE FROM *Bacillus* sp PPB15 ISOLATED FROM MANGROVES IN SABAH.

IJAZAH : DOKTOR FALSAFAH

Saya SHUHADAH BTE MUSTAPHA, Sesi Pengajian 2006-2012, mengaku membenarkan tesis Doktor Falsafah ini di simpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis adalah hakmilik Universiti Malaysia Sabah
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/)

(Mengandungi maklumat yang berdajah keselamatan atau Kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

UNIVERSITI MALAYSIA SABAH

Disahkan Oleh,

(Tanda Tangan Penulis)

(Tanda Tangan Pustakawan)

PROF. DATIN SERI PANGLIMA DR. ANN ANTON (Penyelia Utama)

Tarikh : 24 Julai, 2012

PROF. MADYA DR. CLEMENTE MICHAEL WONG VUI (Penyelia Bersama)

PROF. DATUK SERI PANGLIMA DR. KAMARUZAMAN BIN AMPON (Penyelia Bersama)

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equotions, summaries and references, which have been duly acknowledged.

January 2010

Shuhadah bte Mustapha PB20068031

CERTIFICATION

- NAME : SHUHADAH BTE MUSTAPHA
- MATRIC NO. : **PB20068031**
 - TITLE: CHARACTERIZATION OF NEWLY ISOLATED
PROTEASE PRODUCING MARINE BACTERIA
AND EXPRESSION OF NEUTRAL PROTEASE
FROM Bacillus sp PPB15 ISOLATED FROM
MANGROVES IN SABAH
- DEGREE : DOCTOR OF PHILOSOPHY
- VIVA DATE : **14 APRIL 2010**

Prof. Datuk Seri Panglima Dr. Kamaruzaman Bin Ampon

ACKNOWLEDGEMENT

I would like to thank Almighty Allah, the most gracious and the most merciful for having given me the continued endurance, strength and light to guide me throughout this study.

My utmost gratitude goes to my supervisory committee members: Professor Datin Seri Panglima Dr. Ann Anton (Chairperson), Associate Professor Dr. Michael Wong and Professor Datuk Seri Panglima Dr. Kamaruzaman b. Ampon for their guidance, assistance, motivation and constructive opinion during the course of this study.

Special appreciation goes to the Sabah State Government for offering me a scholarship to pursue my education at Ph D level. Without it, I would not even be able to begin with the first step in conducting this thesis.

I wish to thank Dr. Kenneth Rodrigues, Awang Sagaf b. Abu Bakar, Adrian Ng for their advice in the technical area and lab mates, for all their assistance and support. To all the lab assistants in IPB, thanks for your help.

I would also like to thank my family members and in laws, especially to my mother, Hajjah Rahmah Moludang for her undivided love, support and strength that motivated me through.

To my sons, Mohd. Irfan and Shahrul Izzat, and my daughter Nurul Izzah, for all your prayers, patience and understanding, Thank you to the three of you. Most of all, to my loving, supportive, encouraging, and patient husband Dr. Ahemad b. Sade whose tolerance, support and faith have helped me through the duration of this whole thesis, I really appreciate all of what you have done.

Shuhadah bte Mustapha November 2012

ABSTRACT

CHARACTERIZATION OF NEWLY ISOLATED PROTEASE PRODUCING MARINE BACTERIA AND EXPRESSION OF NEUTRAL PROTEASE FROM *Bacillus* sp PPB15 ISOLATED FROM MANGROVES IN SABAH

A total of 112 species of marine bacteria were isolated from the mangrove habitats along the east coast of Sabah, East Malaysia. Eighteen of these isolates were protease producing bacteria (PPB). Molecular identification of these protease producing bacteria based on 16S rDNA was carried out in order to facilitate the identification of the bacterial strains. PPB1, PPB6, PPB11 and PPB13 were identified as *Bacillus cereus* with 99% similarity, whereas PPB3 with 99% similarity with Proteus mirabilis H4320. Strain PPB2, PPB4 and PPB10 have shown similarity with *Bacillus* GIDM. Strain PPB5, PPB7 and PPB18 were identified as *Bacillus megaterium* whereas PPB9 and PPB14 were classified as *Staphylococcus saprophyticus* subsp. *saprophyticus* ATCC 15305. Strain PPB16 and PPB17 have shown that these species were 99% similar to *Bacillus* sp CNJ845PL04. Strain PPB8, PPB12 and PPB15 have shown 99% similarity with *Bacillus* sp 41 KBZ.

Assays for total protein and proteases activity of these isolated PPBs were conducted. Results on the protease activity study showed that *Proteus mirabilis* PPB3, *Bacillus* sp PPB8, *Bacillus* sp PPB15 and *Bacillus megaterium* PPB18 exhibited the highest protease activity with reading of 0.63, 0.61, 0.64 and 0.62 U/ml respectively. These strains grew up to 50°C with a broad pH range between 5 to 7.5. The optimal temperature and pH for growth were 35°C and 5.0 respectively.

A study to determine the effect of various protease inhibitors, namely phenylmethylsulfonylflouride (PMSF), Pepstatin A, E-64 (trans-epoxysuccinyl-Leucylamido(4-guanidino) butane and EDTA on the activity of these proteases clearly indicated the compound E-64 inhibited the protease activity of isolates from *Bacillus* sp strain PPB15 to a significant degree. EDTA and Pepstatin inhibited the protease isolated from *Bacillus megaterium* strain PPB 18. PMSF had no significant effect on the proteases derived from all PPBs. These results implied that the proteases derived from bacterial *Bacillus* sp PPB12, *Bacillus* sp PPB15 and *Bacillus megaterium* PPB18 can be categorized as belonging to the family of acidic mesophilic proteases and metalloprotease mesophilic proteases.

Further characterization of the proteases was carried out by utilising seven different types of *p*-nitroanilide synthetic substrates. Results have shown that the amino acids in the position P_1 have a strong influence on the catalytic activity of proteases. The neutral protease derived from *Bacillus* sp PPB15 indicated preference for Leucine, phenylalanine and arginine at position P_1 and exhibited high activity for Sar-Pro-Arg-pNA dihydrochloride (1.05 Units/ml enzyme) L-Leucine-pNA (0.74 Units/ml enzyme), *N*-Suc-Ala-Ala-Pro-Leu-pNA (0.83 Units/ml enzyme), and *N*-Suc-Gly-Gly-phe-pNA (0.44 Units/ml enzyme). Lower activity was observed when Ala or Gly was the amino acids residues at position P_1 , notably the *N*-Suc-gly-gly-gly-pNA or *N*-Suc-Ala-Ala-PNA. The K_m value for L-

Leucine-pNA and N-Suc-gly-gly-gly-pNA as subsrate were $3.31\mu m$ and $18.50\mu m$, respectively. The corresponding V_{max} value were $78.31\mu M/min$ and $3.58\mu M/min$, respectively.

Two pairs of gene specific primers were designed to target the neutral protease genes of *Bacillus* sp PPB15 and *Bacillus* sp PPB12. PCR generated an amplicon of around 1638bp, which confirmed the identity of a neutral protease B in the genome of *Bacillus* sp PPB15. The protease gene was cloned in to pEXP5-NT vector which was expressed in *E.coli* BL21(DE3) under control of T7 promoter. SDS-PAGE analysis showed a strong neutral protease gene expression after induction by 1 mM IPTG for 5 hrs at 37°C with molecular mass approximately of 62 kDa. Further investigation on the activity of purified protease from recombinant protein (pEXP5NT-*Npr*B) indicated that the protease activity was at 1.3U with the concentration of 0.625 ug.

ABSTRAK

Sebanyak 112 spesis bakteria marin telah dipencilkan daripada habitat ekosistem paya-bakau di sepanjang Pantai Timur Sabah, Malaysia Timur. Lapanbelas daripada isolat merupakan bakteria pengeluar protease. Identifikasi secara molikul terhadap bakteria penghasil protease berdasarkan jujukan 16S rDNA telah dijalankan bagi memudahkan pengenalpastian setiap strain bakteria. PPB1, PPB6, PPB11 and PPB13 telah dikenalpasti sebagai Bacillus cereus dengan 99 % kesamaan, manakala strain PPB3 mempunyai 99% kesamaan dengan strain Proteus mirabilis H4320. Strain PPB2, PPB4 dan PPB10 menunjukkan kesamaan dengan Bacillus sp. GIDM. Tiga strain iaitu PPB5, PPB7 dan PPB18 telah dikenalpasti sebagai Bacillus megaterium manakala strain yang lain seperti PPB9 dan PPB14 dikelaskan dengan Staphylococcus saprophyticus subsp. Saprophyticus ATCC 15305. Strain PPB16 dan PPB17 menunjukkan spesis ini hampir sama dengan homologi sebanyak 99% kepada Bacillus sp CNJ845PL04. Strain PPB8, PPB12 dan PPB15 menunjukkan 99% kesamaan dengan Bacillus sp 41 KBZ.

Analisis jumlah protin dan aktiviti protease telah dijalankan keatas kesemua strain PPB. Hasil kajian ke atas Proteus mirabilis PPB3, Bacillus sp PPB8, Bacillus sp PPB15 dan Bacillus megaterium PPB18 terhadap aktiviti protease menunjukkan akiviti protease yang tertinggi dengan bacaan masing-masing 0.63, 0.61, 0.64 dan 0.62 U/ml. Kesemua strain ini dapat tumbuh sehingga suhu 50°C dan dengan pH di antara 5.0 ke 7.5. Suhu dan pH yang optima bagi tumbesaran adalah masing-masing pada 35°C dan 5.0.

Kajian kesan beberapa jenis perencat protease seperti phenylmethylsulfonylflouride (PMSF), Pepstatin A, E-64 (trans-epoxysuccinyl-Leucylamido(4-guanidino) butane dan EDTA ke atas aktiviti protease ini, menunjukkan bahawa E-64 didapati merencat aktiviti protease Bacillus sp strain PPB15 pada paras yang signifikan. EDTA merencat protease pada strain Bacillus megaterium PPB18. PMSF tidak ada kesan perencatan yang nyata terhadap aktiviti protease daripada kesemua PPB. Hasil kajian ini menunjukkan bahawa protease daripada Bacillus sp PPB12, Bacillus sp PPB15 dan Bacillus megaterium PPB18 dapat di kategorikan berasal daripada keluarga protease mesofilik asidik dan protease mesofilik metalloprotease.

Kajian pencirian lanjut ke atas protease yang dihasilkan telah dijalankan dengan menggunakan tujuh jenis substrat sintetik daripada p-nitroanilide. Hasil kajian telah menunjukkan bahawa asid amino pada kedudukan P₁ mempunyai pengaruh yang kuat terhadap aktiviti katalitik protease. Protease neutral daripada strain Bacillus sp PPB15 menunjukkan kecenderungan kepada subsrat Leucine, Phenylalanine dan Arginine asid amino pada kedudukan P₁ dan menghasilkan aktiviti tertinggi untuk Sar-Pro-Arg-pNA dihydrochloride (1.05 Units/ml enzim) L-Leucine-pNA (0.74 Units/ml enzim), N-Suc-Ala-Ala-Pro-Leu-pNA (0.83 Units/ml enzim), dan N-Suc-Gly-gly-phe-pNA (0.44 Units/ml enzim). Aktiviti rendah diperhatikan apabila Ala atau Gly sebagai residu asid amino pada kedudukan P₁, ini terutamanya bagi N-Suc-gly-gly-gly-pNA atau N-Suc-Ala-Ala-Ala-PNA. Nilai K_m adalah masing-masing 3.31µm dan 18.50µm dengan L-Leucine-pNA dan N-Sucgly-gly-pNA sebagai substrat, manakala nilai V_{max} adalah masing-masing 78.31µM/min dan 3.58µM/min dengan L-Leucine-pNA dan N-Suc-gly-gly-gly-pNA sebagai subsrat.

Dua pasang primer spesifik gen telah direkabentuk bagi memilih gen protease neutral daripada Bacillus sp PPB15. PCR mengamplikasi amplikon pada saiz 1638bp, dimana pengesahan identiti protease B neutral di dalam genom Bacillus sp PPB15. Gen protease diklonkan dalam vektor pengklonan TOPO (pEXP5-NT) dizahirkan dalam E.coli DE3 dibawah kawalan promoter T7. Analisa SDS-PAGE menunjukkan gen protease neutral dizahirkan amat ketara dengan jisim molekul bersaiz 62 kDa setelah induksi dengan 1 mM IPTG selama 5 jam pada suhu 37°C. Protease rekombinan ini ditulenkan, hasil analisa menunjukkan bahawa protease rekombinan menghasilkan aktiviti protease pada 1.3U dengan kepekatan 0.625 ug.

TABLE OF CONTENTS

			PAGE
TITLE			i
DECLA	RATION		ii
CERTI	FICATIO	Ν	iii
ACKNO	WLEDG	EMENT	iv
ABSTR	ACT		V
ABSTR	AK		vi
TABLE	OF CON	TENTS	vii
LIST O	F TABLE	S	XV
LIST O	F FIGUR	ES	xvii
LIST O	FABBRE	VIATIONS	xxiii
СНАРТ	ER 1: IN	TRODUCTION	1
CHAPT	ER 2: LI	TERATURE REVIEW	5
2.1		ve Ecosystem Global distribution VERSITI MALAYSI	A SABAH 5
~	and the state of t	Mangrove-associated flora and fauna	5
2.2	Source	of Enzymes	10
2.3		of Proteases	13
2.4		on and classification of proteases	14
		The Proteolytic Reaction	14
		Classes of Proteases	15
		Protease Inhibitors	21 24
2.5		Simple Versus Complex Proteases tions of proteases	24
2.5		Industrial applications	24
		Proteolytic reactions in industry	27
		Synthesis reactions in industry	31
		Biological Importance of Proteases	32
2.6		engineering of microbial proteases	34
2.7		ce homology	37
2.8		onary relationship of proteases	39
		Acidic Proteases	40
		Neutral Proteases	42
	2.8.3.	Alkaline Proteases	44

CHAPTER 3: THE ISOLATION, SCREENING AND IDENTIFICATION OF SELECTED MARINE BACTERIA

3.1	Introd		49
3.2		al and Methods	51
		Soil Sampling and Bacteria Isolation	51
	3.2.2.	Water Surface Physical Oceanographic Parameters	51
	3.2.3.	Preliminary Screening of Proteolytic activity for	52
		Protease-Producing Bacteria (PPB)	
	3.2.4	Identification of Bacteria Using Conventional	52
		Identification Tests.	
	a.	Morphological Observation	52
	b.	Gram Stain Characteristic	53
	3.2.5	Identification of Bacteria Employing BIOLOG Mircoplate Analysis	53
3.3	Result		
	3.3.1	Isolation and Screening of Pure Cultured Bacteria for	54
		Protease Producer	
	3.3.2	Colony morphology, Gram Reaction and Microscopy	
		Analysis	
A	a.	Colony Morphology	55
152	b.	Gram Reaction	55
147 III	3.3.3		64
P/ 🔚		Phenotypic Characterization	64
3.4	Discus		
	3.4.1		75
		Protease Producer	
12		Gram Staining Reaction	76
	3.4.3	Phenotypic Characterization	-77
3.5	Conclu	ISIONS	80
СНАРТЕ	ER 4 :	MOLECULAR CHARACTERIZATION	
		AND IDENTIFICATION OF THE 18	
		SELECTED PROTEASES PRODUCING	
		MARINE BACTERIA	
4.1	Introd	uction	82
4.2		al and Methods	83

Materi	al and Methods	83
4.2.1	DNA Extraction Using Phenol Chloroform	83
4.2.2	Measurement of DNA Concentration	84
4.2.3	Agarose Gel Electrophoresis of DNA	84
4.2.4	16S rDNA amplification	84
4.2.5	Purification of PCR products	85
4.2.6	Preparation of competent cells	85
4.2.7	Cloning	86
4.2.8	Screening of Transformants Harboring 16S rDNA	86
	Inserts	
4.2.9	Plasmid Extraction from <i>E. coli</i>	87

	4.2.10) Sequencing and Phylogenetic Analysis of 16s rDNA	88
4.3	Result	TS I I I I I I I I I I I I I I I I I I I	
	4.3.1	Genomic DNA extraction of isolates	88
	4.3.2	16S rDNA sequence amplification	89
	4.3.3	Cloning of 16S rDNA fragment from 18 Isolates in	89
		E.coli Using pJET1.2/Blunt Cloning Vector.	
	4.3.4	Analysis of Recombinant DNA pJET1.2 16S rDNA fragment	89
	4.3.5	DNA Verification by Sequencing	89
	4.3.6	Phylogenetic Analysis of 16S rDNA Sequences	95
4.4	Discus	ssion	
	4.4.1	Genomic DNA Extraction of Isolates	108
	4.4.2	16S rDNA sequence amplification	108
	4.4.3	Cloning of 16S rDNA fragment from 18 isolates in	109
		E.coli using pJET1.2/Blunt Cloning Vector.	
	4.4.4	Analysis of Recombinant DNA pJET1.2 16S rDNA	110
		Fragment	
	4.4.5	Phylogenetic Analysis of 16S rDNA Sequences	110
4.5	Conclu	usion	112

CHAPTER 5 : **CHARACTERISATION OF PROTEASES** OF SELECTED MARINE BACTERIA

15		OF SELECTED MARINE BACTERIA	
5.1 5.2	Introdu Materia	uction al and Methods	114 115
a	5.2.1	Quantification of proteolytic activity of Protease Producing Bacteria	115
	533	5.2.2 Preparation media for protease production	115
12		Partial purification of the enzyme Determination of time course study of protease	115 116
	5.2.4	activity	110
	5.2.5	Protein assay/ Microassay Procedure	116
		Protease Assay	116
	5.2.7	Effects of pH on protease activity of the highest three (3) protease producing bacteria (based on activity)	117
	5.2.8		118
	5.2.9	Effects of protease inhibitors on protease activity of the highest three (3) protease producing bacteria	118
	5.2.10	Protease assays with synthetic substrates on protease activity of the highest protease producing bacteria (<i>Bacillus</i> sp PPB15)	118
	5.2.11	Determination of the kinetic parameters of neutral protease from <i>Bacillus</i> sp PPB15 with hydrolysis of synthetic peptide substrates	119
	5.2.12	Statistical analysis	120

5.3	Result	S	120
	5.3.1	Determination of Proteolytic activity	123
	5.3.2		124
	5.3.3	Effects of temperature and pH on protease activity	125
		for the best three (3) selected strains	
	5.3.4		127
	5.3.5		128
	5.3.6	Kinetic parameters determination with selected	129
		synthetic substrates	
	5.4	Discussion	130
	5.4.1	Protein assay	130
		Comparison of proteolytic activity in 24 h incubation	131
		time	
	5.4.3	Comparison of proteolytic activity in 4.0 h Incubation	132
		time	
	5.4.4	Effects of pH on protease activity	132
	5.4.5	· · · · ·	133
	5.4.6		134
	5.4.7	· · · · · ·	134
		(Substrates specificity)	
	5.4.8		135
ı.	1	substrates	
1/32	5.5	Conclusions	136
1457			
CHAP	FER 6 :	ASSESSMENTS OF GENE ENCODING	
		NEUTRAL PROTEASE FROM SELECTED	
Q.		MARINE BACTERIA STRAIN <i>Bacillus</i> sp	
		PPB15 and <i>Bacillus</i> sp PPB12	
13	Carl guest		
6.1	Charles and the second		138
6.2		al and Methods	140
	-	Bacterial Strains And Growth Conditions	140
		Primer Design and PCR Conditions	140
	6.2.3.	Cloning, Sequencing And Database Analysis Of The	141
		PCR Fragments Of Protease Genes	
	6.2.4	Screening of Transformants Harboring Neutral	142
	6 2 F	Protease Gene Inserts	1 40
6.2		Plasmid Extraction From <i>E. coli</i>	142
6.3	Result	-	
		Design Of The Gene Specific Primers	143
	6.3.2.	Identification Of Discrete Protease Gene Profiles	146
		From <i>Bacillus</i> sp PPB15.	
	6.3.3.	Cloning Of Protease-related Gene Fragments	146
<i>.</i> .	р.	Amplified From The Two Different <i>Bacillus</i> Species	1 40
6.4	Discus		148
		Design Of The Gene Specific Primers	153
	6.4.2.	Identification Of Discrete Protease Gene Profiles	154
	C A C	From <i>Bacillus</i> sp PPB15 and <i>Bacillus</i> sp PPB12	4 6 6
	6.4.3.	Cloning Of Protease-Related Gene Fragments	155

Amplified From The *Bacillus* sp PPB15 And Plasmid Sequencing.

157

6.5 Conclusions

CHAPTER 7: AMPLIFICATION, CLONING AND EXPRESSION OF NEUTRAL PROTEASE GENES FROM *Bacillus* sp PPB15 in *E.coli* TOP10, *E.coli* BL-21 AI[™] AND *E.coli* BL21 STAR[™](DE3) STRAINS

7.1	Introd	uction	159
7.2	Materia	al and Methods	161
	7.2.1	Genomic DNA Extractions	161
	7.2.2	Measurement of DNA Concentration	161
	7.2.3	Agarose Gel Electrophoresis of DNA	162
		Amplification of Neutral Protease Gene (NprB)	162
		Extraction of DNA/NPB gene from Agarose Gel	163
		Cloning of NprB gene into Cloning Vector	164
		Ligation of NprB gene	164
		Preparation of <i>E.coli</i> Competent Cells	165
		Transformation into <i>E.coli</i> TOP 10, <i>E.coli</i> BL-21 AI [™]	165
A.		and <i>E. coli</i> BL21 Star [™] (DE3) strains.	
B	7.2.10	Screening of Transformants Harboring NprB gene	166
677	40404	Inserts./ Analysis of recombinant clones by colony	
S7 L		PCR	
	7.2.11	Plasmid Extraction from <i>E. coli</i>	167
		Construction of Plasmid Expression Vector for	167
PR 63	17	Expressing Recombinant NprB gene	
	7.2.13	Amplification of NprB-ORF	168
N.S.		Ligation and Transformation of NprBORF into	169
-95	1, 12, 46	pEXP5NT-TOPO	-05
	7.2.15	Screening of Plasmids (pEXP5-NT) with NprB-ORF	170
	/12110	Inserts	-/0
	7216	Small scale preparation of plasmid	171
		Induction and Expression of NprBORF in <i>E. coli</i> BL21	172
	,,	Star TM (DE3), <i>E.coli</i> TOP 10, and <i>E.coli</i> BL-21 AI TM	-/-
		strain	
	7.2.18	Purification of NprB	173
		Assay of recombinant protein (pEXPNT-NprB)	174
		Preparation of Sodium Dodecyl Sulphate	174
	,.2.20	Polyacylamide Gel Electrophoresis(SDS-PAGE)	1/1
7.3	Result	and Discussion	176
/.5		PCR Amplification of Neutral Protease Gene from	176
	/.5.1	Bacillus sp. PPB15.	1/0
	7.3.2	•	176
	,	<i>E.coli</i> Using pJET1.2/Blunt Cloning Vector	1/0
	7 3 3	Analysis of Recombinant DNA pJET1.2 nprB	176
	7.3.4	DNA Verification by Sequencing	177
	/.J.T	Dian verneadon by Sequencing	т//

7.3.5	Sub-cloning of Neutral Protease Gene from <i>Bacillus</i> sp PPB15 Into <i>E.coli</i> Using pEXP5NT-TOPO Expression Plasmid	180
7.3.6	Expression of neutral protease gene from <i>Bacillus</i> sp	186
7.3.7	PPB15 In <i>E.coli</i> BL21 Star [™] (DE3). Purification and Assay of recombinant protein (pEXPNT-NprB)	190
7.3.8	Conclusion	191

CHAPTER 8 : CONCLUSIONS

8.1	Overvie	W	193
8.2	Isolatio Bacteria	n, Screening and Identification of Selected Marine	193
8.3		lar Characterization and Identification Of the 18 d Proteases Producing Marine Bacteria (PPB)	195
8.4	Charact	terization of Proteases of Selected Marine Bacteria	196
8.5	Selecte	nents of Gene Encoding Neutral Protease From d Marine Bacteria Strain <i>Bacillus</i> sp PPB15 and sp PPB12	197
8.6	Amplific Genes	cation, Cloning and Expression of Neutral Protease from <i>Bacillus</i> sp PPB15 in <i>E. coli</i> Top10, <i>E.coli</i> BL-21 In <i>E. coli</i> BL21 Star [™] (DE3) Strains	197
67 🗖	Future	Outlook And Suggestions for Future Research	198
REFERE	NCES		200
APPEND	AXI	Agars, Broths and Chemicals preparation	236
APPEND	IX B	Alignment of the closest BLAST match of 18 SABA Isolates and Neutral Protease Gene (<i>Npr</i> B)	243
APPEND	DIX C	CLUSTAL 2.0.12 mutiple sequence alignment of neutral protease gene from 7 Bacillus strains	302
APPEND	DIX D	Chromatogram of bacterial isolates sequences and Neutral Protease Gene Sequences	307

LIST OF TABLES

Table 2.1	Microbial enzymes in mangroves ecosystem	10
Table 2.2a	Source of marine microbial enzymes	12
Table 2.2b	Source of marine microbial enzymes	13
Table 2.3	Classification of exopeptidases by type of reaction catalyzed	16
Table 2.4	Definitions of the protease groups and example of known proteases within each group	19
Table 2.5	Commercial microbial proteases, sources and applications	30
Table 2.6	Cloning, sequencing, and/or expression of protease genes of cDNAs from bacteria sources	36
Table 2.7a	Proteases selected for multiple alignment	46
Table 2.7b	Proteases selected for multiple alignment	47
Table 2.7c	Proteases selected for multiple alignment	48
Table 3.1a	Physiological characteristics of the isolates /Radius of hydrolysis zone (mm) of isolates by Plate assay for protease production	66
Table 3.1b	Physiological characteristics of the isolates /Radius of hydrolysis zone (mm) of isolates by Plate assay for protease production	67
Table 3.2 a	Characteristics of the eighteen (18) Protease Producing Bacteria	68
Table 3.2 b	Characteristics of the eighteen (18) Protease Producing Bacteria	69
Table 3.3a	Substrates utilized as carbon sources by 18 strains determined by Biolog microplate assays	70
Table 3.3b	Substrates utilized as carbon sources by 18 strains as determined by Biolog microplate assays	71

Table 3.3c	Substrates utilized as carbon sources by 18 strains as determined by Biolog microplate assays	72
Table 3.3d	Substrates utilized as carbon sources by 18 strains as determined by Biolog microplate assays	73
Table 3.3e	Substrates utilized as carbon sources by 18 strains as determined by Biolog microplate assays	74
Table 4.1a	Summary of BLAST result of the full 16S rDNA sequences	96
Table 4.1b	Summary of BLAST result of the full 16S rDNA sequences	97
Table 5.1	Partial purification of neutral protease produces by protease producing bacteria, <i>Bacillus</i> sp PPB12, <i>Bacillus</i> sp PPB15 and <i>Bacillus</i> sp PPB4. Each value represents means \pm SD (n=3)	122
Table 5.2	Hydrolytic activity of protease derived from <i>Bacillus</i> sp PPB15 128 with various synthetic peptide substrates	128
Table 5.3	Kinetic parameters of the neutral protease from 130 Bacillus sp PPB15 with two types of synthetic substrates	130
Table 6.1	Summary of the PCR primer sets used to amplify fragment of neutral protease gene in <i>Bacillus</i> sp PPB15 and <i>Bacillus</i> sp PPB12	145
Table 6.2	Summary result of BLASTn of nucleotide to protein of neutral protease	150
Table 6.3	Summary result of BLASTx of amino acid to protein of neutral protease	151
Table 6.4	Summary result of BLASTn of nucleotide to protein of 1.4 kb and 1.5 kb fragment isolated from <i>Bacillus</i> sp PPB15 using primer PF1 and PR1	152
Table 7.1	Solution for preparation of resolving gel (A) and solutions for 4.5% stacking gel (B)	175

LIST OF FIGURES

Figure 2.1	General mechanism for the enzymatic hydrolysis of a peptide substrate	15
Figure 2.2	Schematic representation of the proteinase-substrate complex with six binding sites. Cleavage occurs between amino acid residues P1 and P1'	17
Figure 2.3	Generalized downstream purification scheme as often applied to the production of bulk industrial enzymes	26
Figure 3.1	Location of sampling sites (Tawau and Lahad Datu). Source of maps Department of Forestry, Sabah, Borneo	56
Figure 3.2	(A) showed the clearing zone at 0 mm, (B) showed clearing zone at 5-15 mm and (C) showed the clearing zone at >15 mm	57
Figure 3.3a	Physical characteristic of colony morphology (under stereo microscope) & gram staining (under light microscope) of 18 isolates on nutrient agar (i) PPB1 (ii)PPB2 (iii) PPB3; incubation at 37°C	58
Figure 3.3b	Physical characteristic of colony morphology (under stereo microscope) & gram staining (under light microscope) of 18 isolates on nutrient agar (i)PPB4 (ii)PPB5 (iii) PPB6; incubation at 37°C	59
Figure 3.3c	Physical characteristic of colony morphology(under stereo microscope)& gram staining (under light microscope) of 18 isolates on nutrient agar (i) PPB7 (ii)PPB8 (iii) PPB9; incubation at 37°C	60
Figure 3.3d	Physical characteristic of colony morphology(under stereo microscope) & gram staining (under light microscope) of 18 isolates on nutrient agar (i) PPB10 (ii) PPB11 (iii) PPB12 ; incubation at 37°C	61
Figure 3.3e	Physical characteristic of colony morphology(under stereo microscope) & gram staining (under light microscope) of 18 isolates on nutrient agar (i) PPB13 (ii)PPB14 (iii) PPB15;incubation at 37°C	62

Figure 3.3f	Physical characteristic of colony morphology & gram staining (under light microscope) of 18 isolates on nutrient agar (i) PPB16 (ii) PPB17 (iii) PPB18; incubation at 37°C	63
Figure 4.1a	The total genomic DNA of the PPB1 (1), PPB2 (2), PPB3(3), PPB4(4), PPB5(5), PPB6(6), PPB7(7) and 1kb ladder(M) (Promega) on 1% of agarose gel	90
Figure 4.1b	The total genomic DNA of the PPB8(1), PPB9(2), PPB10(3), PPB11(4), PPB12(5), PPB13(6), PPB14(7) and 1kb ladder(M) (Promega) on 1% of agarose gel	91
Figure 4.1c	The total genomic DNA of the PPB15(1), PPB16(2), PPB17(3), PPB18(4) and 1kb ladder(M) (Promega) on 1% of agarose gel	91
Figure 4.2a	The 16S rDNA fragment of isolates on 1.2% agarose gel. 1kb ladder(M) (Promega), PPB1(1), PPB2(2), PPB3(3), PPB4(4), PPB5(5), PPB6(6), PPB7(7), PPB8(8), PPB9(9)	92
Figure 4.2b	The 16S rDNA fragment of isolates on 1.0% agarose gel. 1kb ladder(M) (Promega), PPB10 (1), PPB11(2), PPB12(3), PPB13(4), PPB14(5), PPB15(6), PPB16(7), PPB17(8) and PPB18(9)	92
Figure 4.3a	Colony PCR fragments of transformants on 1.0 % of agarose gel. 1kb ladder(M) (Promega), PPB1 (1), PPB2(2), PPB3(3), PPB4(4), PPB5(5), PPB6(6), PPB7(7), PPB8(8) and PPB9(9).	93
Figure 4.3b	Colony PCR fragments of transformants on 1.0 % of agarose gel. 1kb ladder(M) (Promega), PPB10 (1), PPB11(2), PPB12(3), PPB13(4), PPB14(5), PPB15(6), PPB16(7), PPB17(8) and PPB18(9)	93
Figure 4.4a	Fragment of recombinant pJet1.2 with 16S Rdna insert on 1% of agarose. 1kb ladder(M) (Promega), PPB1 (1), PPB2(2), PPB3(3), PPB4(4), PPB5(5), PPB6(6) and 1kb ladder(M) (Promega)	94
Figure 4.4b	Fragment of recombinant pJet1.2 with 16S rDNA insert On 1% of agarose. 1kb ladder(M) (Promega), PPB7(1), PPB8(2), PPB9(3), PPB10(4), PPB11(5), PPB12(6) and 1kb ladder(M) (Promega)	94

Figure 4.4c	Fragment of recombinant pJet1.2 with 16S rDNA insert on 1% of agarose. 1kb ladder(M) (Promega), PPB13 (1), PPB14(2), PPB15(3), PPB16(4), PPB17(5), PPB18(6) and 1kb ladder(M) (Promega)	95
Figure 4.5	Phylogenetic tree constructed using 16S rDNA sequences from 18 isolates of Sabah mangrove protease producing bacteria using Neighbour-Joining method	98
Figure 4.6a	Identifications of 18 isolates using molecular method and biolog system	99
Figure 4.6a	Identifications of 18 isolates using molecular method and biolog system	100
Figure 4.6a	Identifications of 18 isolates using molecular method and biolog system	101
Figure 4.6b	Identifications of 18 isolates using molecular method and biolog system	102
Figure 4.6b	Identifications of 18 isolates using molecular method and biolog system	103
Figure 4.6c	Identifications of 18 isolates using molecular method and biolog system	104
Figu <mark>re</mark> 4.6c	Identifications of 18 isolates using molecular method and biolog system	105
Figure 4.6c	Identifications of 18 isolates using molecular method and biolog system	106
Figure 4.6c	Identifications of 18 isolates using molecular method and biolog system	107
Figure 5.1	Protein assay for the 18 selected strains of protease producing marine bacteria. Value represents mean \pm SD	121
Figure 5.2	Standard curve for determination of total protein 121 concentration using BSA. Value represents mean \pm SD (n=3)	121
Figure 5.3	Proteolytic activity of marine bacteria (18 selected PPBs) Incubation was done at 37°C within 0-24 h sampling period and 4 h interval	123

Figure 5.4	Time course for proteolytic activity of marine bacteria (18 selected PPBs). Incubation was done at 37°C within 0-4 h sampling period with 0.5 h interval.	124
Figure 5.5	Protease activity from <i>Bacillus megaterium</i> PPB18, <i>Bacillus</i> sp PPB12 and <i>Bacillus</i> sp PPB15 at different pH. Incubation was done at 37°C with 4 h incubation time	125
Figure 5.6	Protease activity from <i>Bacillus megaterium</i> PPB18, <i>Bacillus</i> sp PPB12 and <i>Bacillus</i> sp PPB15 at different temperature. Incubation was done at 30°C, 35°C, 40°C, 45°C and 50°C with 4 h incubation time	126
Figure 5.7	Effects of enzyme inhibitors on protease produced from the <i>Bacillus</i> sp PPB15, <i>Bacillus</i> sp PPB12 and <i>Bacillus</i> <i>megaterium</i> PPB18. Incubation was done at 37°C for 4 h and each inhibitor was added to the protease and incubated at 4°C for 20 min. Each value represents mean \pm SD	127
Figure 5.8	Effects of synthetic substrate (L-Leucine-pNA) concentration (mM) on reaction rate of protease (Lineweaver-Burk plot).	129
Figure 5.9	Effects of synthetic substrate (N-Suc-Gly-Gly-Gly-pNA) concentration (mM) on reaction rate of protease (Lineweaver-Burk plot)	129
Figure 5.10	Selection of neutral protease producing bacteria and characterization of its enzyme	137
Figure 6.1a	Alignment of the 5' region from Neutral Protease gene from <i>Bacillus subtillis and Bacillus cereus</i> with result of phylogenetic tree of <i>npr</i> gene	144
Figure 6.1b	Alignment of the 5'PF2 region from nprB sequences of the three <i>Bacillus cereus npr</i> gene. The primers in the red fonts represent primer PF2 and PR2	145
Figure 6.2	Amplification of fragment using PF1 and PR1 from isolate <i>Bacillus</i> sp PPB 15. Lane 1: Marker 1kb ladder (Promega, USA). Lane 2: PCR product encoding non specific fragment	147
Figure 6.3	Amplification of fragment using PF12 and PR2 from isolate <i>Bacillus</i> sp PPB 15. Lane 1: Marker 1kb ladder (Promega, USA). Lane 2: PCR product encoding neutral protease gene (<i>npr</i> B)	148

Figure 6.4	Sequence of fragment neutral protease B gene from <i>Bacillus</i> sp PPB 15.	149
Figure 6.5	Sequence of none protease gene of fragment size 1.4kb from <i>Bacillus</i> sp PPB 15	152
Figure 6.6	Sequence of none protease gene of fragment size 1.5kb from <i>Bacillus</i> sp PPB 15	152
Figure 7.1	Genomic DNA of <i>Bacillus sp</i> PPB15 isolated from mangroves soil. Lane 1 : DNA Marker, Lane 2 : Genomic DNA of <i>Bacillus</i> sp PPB15	178
Figure 7.2	PCR amplification of a full length neutral protease gene of <i>Bacillus sp</i> PPB15 isolated from mangroves soil. Lane 1: DNA Marker, Lane 2 :PCR product of neutral protease gene from <i>Bacillus</i> sp PPB 15	179
Figure 7.3	Map of the construct pJET1.2/Blunt -NprB plasmid isolated from <i>E.coli</i> , harboring the neutral protease gene from <i>Bacillus</i> sp PPB 15	180
Figure 7.4	PCR colony analysis of Plasmid pJET1.2/Blunt -NprB pEXP5NT-TOPO containing <i>Bacillus</i> sp PPB 15 neutral protease gene from <i>E. coli</i> Top 10 BL21 Star [™] (DE3) transformant.	181
Figure 7.5	PCR colony analysis of Plasmid pEXP5NT-TOPO containing <i>Bacillus</i> sp PPB15 neutral protease gene from BL21 Star [™] (DE3) transformant	182
Figure 7.6	Map of construct and cloning site for pEXP5NT-TOPO- NprB plasmid isolated from <i>E. coli</i> BL21 Star [™] (DE3)	183
Figure 7.7	PCR amplification from plasmid pEXP5NT-TOPO isolated from BL21 Star [™] (DE3) using FNPBORF and RNPBORF primers	184
Figure 7.8	Result of the sequence of neutral protease gene encoding mature peptide inframe with cloning site (in yellow fonts), polyhistidine region (purple fonts) and TEV recognition site (purple fonts)	188
Figure 7.9	The positive result of qualitative protease producing activity that based on the formation of halo zone around the pellet (P) and supernatant (S) of transformant of protein recombinant	189

Figure 7.10	SDS-PAGE analysis of extracted <i>Bacillus</i> sp PPB15	189
	neutral protease enzyme/ protein from <i>E. coli</i> BL21	
	Star [™] (DE3) strains containing recombinant pEXP5NT-	
	NprB plasmid	

Figure 7.11Protease activity of NprB; Purified recombinant protein191of plasmid pEXP5NT NprB191

