THE IMPACT OF LIGHT POLLUTION ON FLASH RATE AND DURATION OF *Pteroptyx bearni* (COLEOPTERA: LAMPYRIDAE)

INSTITUTE FOR TROPICAL BIOLOGY AND CONSERVATION UNIVERSITI MALAYSIA SABAH 2017

THE IMPACT OF LIGHT POLLUTION ON FLASH RATE AND DURATION OF *Pteroptyx bearni* (COLEOPTERA: LAMPYRIDAE)

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

INSTITUTE FOR TROPICAL BIOLOGY AND CONSERVATION UNIVERSITI MALAYSIA SABAH 2017

PUMS 99:1

UNIVERSITI MALAYSIA SABAH

BORANG PI	ENGESAHAN TESIS
JUDUL :	
IJAZAH :	
SAYA :	SESI PENGAJIAN :
(HURUF BESAR)	
Mengaku membenarkan tesis *(LPSM/Sarjana/Dokto Sabah dengan syarat-syarat kegunaan seperti berikut:	r Falsafah) ini disimpan di Perpustakaan Universiti Malaysia -
 Tesis adalah hak milik Universiti Malaysia Saba Perpustakaan Universiti Malaysia Sabah diben Perpustakaan dibenarkan membuat salinan t tinggi. 	ah. Iarkan membuat salinan untuk tujuan pengajian sahaja. esis ini sebagai bahan pertukaran antara institusi pengajian
4. Sila tandakan (/)	mat yang berdarjah keselamatan atau kepentingan Malaysia
seperti yang termaktu TERHAD (Mengandungi maklu mana penyelidikan di	ıb di AKTA RAHSIA RASMI 1972) mat TERHAD yang telah ditentukan oleh organisasi/badan di jalankan)
TIDAK TERHAD	Disahkan oleh:
 (TANDATANGAN PENULIS) Alamat Tetap:	(TANDATANGAN PUSTAKAWAN)
 TARIKH:	(NAMA PENYELIA) TARIKH:
Catatan: *Potong yang tidak berkenaan. *Jika tesis ini SULIT dan TERHAD, sila lampirkan sur menyatakan sekali sebab dan tempoh tesis ini perlu *Tesis dimaksudkan sebagai tesis bagi Ijazah Dokto bagi pengajian secara kerja kursus dan Laporan Pro	at daripada pihak berkuasa/organisasi berkenaan dengan u dikelaskan sebagai SULIT dan TERHAD. r Falsafah dan Sarjana Secara Penyelidikan atau disertai ıjek Sarjana Muda (LPSM).

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

02 November 2017

Vickly Mobilim MX 1321005 T

CERTIFICATION

NAME : VICKLY MOBILIM

MATRIC NO. : MX 1321005 T

- TITLE : THE IMPACT OF LIGHT POLLUTION ON FLASHING RATE AND DURATION *Pteroptyx bearni* (COLEOPTERA: LAMPYRIDAE)
- DEGREE : MASTER OF SCIENCE (ECOLOGICAL PROCESS)
- VIVA DATE : 09 AUGUST 2017

CERTIFIED BY

ACKNOWLEDGEMENT

First and foremost, I would like to thank God for giving me strength to go through this bumpy journey. His light and love have never failed me. I have encountered numerous failure and disappointment but with the warm words of my parents, sister and brother who always wish me luck, they have given me the force to always go on.

Chasing the firefly alone would be an extreme ambition and mostly tricky but thanks to Dr. Mahadi for his guidance and Kevin Foo who always lend me a hand. He is a good firefly catcher with his signature sweep-net swirling technique! I would like to say thanks to these amazing ITBC staff; Mr. Simon Kuyun, Hong Men Chin "Ah Chin", Maxwell Ginol, Joumin Rangkasan, Azmi Karamah and Alvinus Joseph, for their countless help and favour. Without them, this project will be more challenging.

For my friends, Emanuel Cladius Upin, Florina Anthony, Lawrence Alan Bansa, Ahmad Asnawi Mus, Usran Alibubin, Zaidey Sani, Velan Kunjuraman, Clarice Evey Anjum, Halyena Indan and Majid Khan who share the same drama and dilemma with me, thank you. They are the fun, the fight and the laugh. The yellow.

"Life is a drama, for life without drama, is not life at all." - Arreis

"The drama of life begins with a wail and ends with a sigh." – Minna Antrim

Vickly Mobilim

22 March 2017

ABSTRACT

Fireflies from family Lampyridae (Order: Coleoptera) uses light for mating, as a defence mechanism or to prey others. They emit light via their light organ and only started to flash during the night. However, existence of light pollution may be overwhelming for the communicating firefly and may potentially mute them, making them unable to mate, defend themselves and eat. Hence, light pollution has been rumoured to cause firefly population to dwindle but empirical proof is still lacking especially the direct impact of artificial light to their flash pattern. Therefore this study is trying to investigate the effect of multiple light intensities on the flash rates and flash duration of Pteroptyx bearni firefly, as well as to provide a documentation of Pteroptyx bearni flashing pattern and to find an alternative and cost-effective ways in monitoring their flashing pattern. Firefly samples were taken from Kawang River, Kinarut by using sweep net. Subjects (N = 76) were brought to the laboratory of Institute for Tropical Biology and Conservation and caged in individual Petri dishes, left in a dark room for one hour then recorded using a camcorder (SONY DCR-SX40) before, during (0.05 lux, n = 19; 0.1 lux, n = 20; 0.3 lux, n = 20; 0.5 lux, n = 17) and after light pollution for five minutes respectively. Flash rates and flash duration were extracted from the video data by converting them into image sequences using FFMPEG and transformed into quantitative value using ImageJ. Friedman test with Wilcoxon signed rank test shows that flash rates is lowest during exposure to 0.1 lux to 0.5 lux of light intensity compared to before and after exposure to light. Flash duration, using similar tests, shows that duration shortens when exposed to 0.1 lux to 0.5 lux of light pollution when compared to before exposure. Generalized Estimating Equation (GEE) test on both rates and duration shows temperature and humidity is affecting their flash rates and duration. Pteroptyx bearni flashing pattern is irregular consisting of single and multiple-pulse flash. UNIVERSITI MALAYSIA SABAH

ABSTRAK

KESAN PENCEMARAN CAHAYA TERHADAP KADAR DAN TEMPOH KELIPAN Pteroptyx bearni (COLEOPTERA: LAMPYRIDAE)

Kunang-kunang dari family Lampyridae (Order: Coleoptera) menggunakan kelipan untuk mengawan, melindungi diri dan mencari mangsa. Kelipan dihasilkan melalui organ cahaya dan hanya berkelip pada waktu gelap. Cahaya dari luar berpotensi untuk mengganggu aktiviti kelipan mereka. Oleh itu, pencemaran cahaya amat kerap dirujuk sebagai punca populasi kunang-kunang semakin berkurangan tetapi bukti empirik masih belum cukup terutamanya kesan cahaya terhadap corak kelipan mereka. Oleh itu, kajian ini dijalankan untuk menguji kesan cahaya terhadap kadar dan tempoh kelipan kunang-kunang Pteroptyx bearni pada keamatan yang berbeza, menyediakan dokumentasi corak kelipan kunang-kunang Pteroptyx bearni, dan mencari kaedah alternatif dan kos-berkesan untuk memerhati aktiviti kelipan mereka. Sampel kelip-kelip di ambil dari Sungai Kawang, Kinarut dengan menggunakan sweep net. Subjek (N = 76) dibawa ke makmal Institut Biologi Tropika dan Pemuliharaan kemudian dimasukkan ke dalam piring petri berasingan, kemudian diletakkan di dalam bilik gelap selama satu jam dan kemudian dirakam menggunakan kamkorder (SONY DCR-SX40) sebelum, sewaktu (0.05 lux, n = 19; 0.1 lux, n = 20; 0.3 lux, n = 20; 0.5 lux, n = 17) dan selepas didedahkan kepada pencemaran cahaya, masing-masing selama lima minit. Kadar dan tempoh kelipan diambil dari data video dengan cara menukarkan video tersebut kedalam bentuk urutan imej menggunakan FFMPEG kemudian ditukarkan lagi dalam jumlah kuantitatif menggunakan ImageJ. Ujian statistik Friedman dan Wilcoxon Signed Rank menunjukkan kadar kelipan kunang-kunang pada tahap terendah sewaktu didedahkan kepada pencemaran cahaya pada keamatan 0.1 lux hingga 0.5 lux berbanding sebelum dan selepas pendedahan. Manakala tempoh kelipan kunangkunang semakin pendek apabila didedahkan kepada kecerahan cahaya 0.1 lux hingga 0.5 lux. Ujian statistik GEE menunjukkan wujud kesan suhu dan kelembapan udara terhadap kadar dan tempoh kelipan Pteroptyx bearni. Corak kelipan Pteroptyx bearni adalah tidak tetap dan terdiri daripada kelipan tunggal dan berbilang.

TABLE OF CONTENTS

			Page
TITLE	E		i
DECL	ARATI	ON	ii
CERT	IFICAT	TION	iii
ACKN	IOWLE	DGEMENT	iv
ABST	RACT		v
ABST	RAK		vi
LIST	OF CO	NTENTS	vii
LIST	OF TAE	BLES	xi
LIST	OF FIG	URES	xiii
LIST	OF ABI	BREVIATIONS	XX
LIST	OF SYN	ABOLS	xxii
LIST	OF API	PENDICES	xxiii
СНАР	TER 1:	INTRODUCTION	1
1.12	Thesis	Synopsis	1
1.2	A Flas	h Purpose	2
1.3	Mangr	ove Forest	3
1.4	Knowl	edge Gap	5
1.5	Resea	rch Question	6
1.6	Resea	rch Objectives	6
1.7	Justifi	cation	6
CHAP	TER 2	LITERATURE REVIEW	8
2.1	The m	orphology of <i>Pteroptyx</i> firefly	8
	2.1.1	How many species are there in <i>Pteroptyx</i> genus?	8
	2.1.2	Where they can be found in Malaysia?	10
	2.1.3	The firefly biology, habitat and entotourism	10
2.2	The Fl	ash Factory: Light Production and Flash Control	14
	2.2.1	How Fireflies Produce Light?	15
	2.2.2	How Fireflies Control Their Flash Timing?	17
2.3	The M	easure of Light: How Firefly Flash is Measured?	21

	2.3.1	Light Sensors and Oscilloscope	22
	2.3.2	Audio Data	22
	2.3.3	Manual Technique	23
	2.3.4	Videography and Frame-by-frame Technique	23
	2.3.5	Software	25
2.4	The Fl	ash Language: Term and Description of Flash	26
	2.4.1	What is the term used in describing flash timing?	26
	2.4.2	What is the shape of a firefly flash?	27
2.5	The Fl	ash Pattern: Firefly Flashing Pattern of Multiple Species	29
2.6	The Pu	urpose of Flash: Why Firefly Emit Flash?	30
	2.6.1	Sexual selection: What is preferred by the responder?	34
	2.6.2	Aposematism: How can flash protect fireflies?	37
	2.6.3	Predatory: Why cannibalism happens in firefly?	38
2.7	The Co	ompound Eyes: How insect perceives light?	40
	2.7.1	The microanatomy of firefly ommatidium	42
2.8	Light F	Pollution: How light is polluting?	44
Â	2.8.1	How artificial light alter behaviour?	45
Z	2. <mark>8.2</mark>	How artificial light distort population structure?	46
61	2 <mark>.8.</mark> 3	Firefly and Artificial Light: What do we know so far?	48
СНАР	TER 3:	METHODOLOGY NIVERSITI MALAYSIA SABAH	49
3.1	Device	es and Settings	49
	3.1.1	Recording Device	49
	3.1.2	Light Sensor	49
	3.1.3	PC	49
	3.1.4	Light Pollution Source	50
	3.1.5	Temperature and Humidity	50
	3.1.6	Dark Box	50
	3.1.7	Justification	50
3.2	Experi	ment Preparation and Sample Collection	52
	3.2.1	Device Placement for Light Pollution Treatment	52
	3.2.2	Sample Collection	53
	3.2.3	Justification	55
3.3	Light Pollution Experiment		

	3.3.1 Justification	58
3.4	Video Preparation	61
	3.4.1 FFMPEG	61
	3.4.2 ImageJ	62
	3.4.3 Justification	66
3.5	Flash Extraction	67
3.6	Statistical Analysis	72
CHA	PTER 4: RESULT	73
4.1	Normality Test for Flash Rates and Flash Duration	73
4.2	Effect of Light Pollution on Pteroptyx bearni Flash Rate	77
	4.2.1 Friedman Test and Wilcoxon Signed Rank Test for Flash	82
	Rates	
	4.2.2 Generalized Estimating Equation (GEE) for Flash Rates	84
4.3	Effect of Light Pollution on Pteroptyx bearni Flash Duration	93
	4.3.1 Friedman Test and Wilcoxon Signed Rank Test for Flash	98
	Duration	
ß	4.3.2 Generalized Estimating Equation (GEE) for Flash	100
Z	Duration	
4.4	The Pteroptyx bearni Flashing Pattern	106
CHAI	PTER 5: DISCUSSION LINIVERSITI MALAYSIA SABAH	112
5.1	Baseline Value	112
5.2	Flash Rates of Pteroptyx bearni under Light Pollution	112
	5.2.1 Temperature and Humidity	115
5.3	Flash Duration of Pteroptyx bearni under Light Pollution	116
	5.3.1 Temperature and Humidity	121
5.4	Eye Size	122
5.5	Flashing Pattern of Pteroptyx bearni and methods in analysis	123
	5.4.1 Methods in Analysing Firefly Flashes	124
CHA	PTER 6: CONCLUSION	129
6.1	Conclusion of Study	129
6.2	Limitation and Suggestion for Improvement	130
6.3	Future Direction Result	131
REFE	RENCES	132

APPENDICES

LIST OF TABLES

		Page		
Table 2.1	Pteroptyx fireflies observed and their display tree.	13		
Table 2.2	Pteroptyx fireflies sampled in Malaysia.			
Table 2.3	Example of single-pulse flash fireflies and activity description	32		
	in bracket if any.			
Table 2.4	Example of double-pulse flash fireflies. $NA = not$ available	27		
	from reference.			
Table 2.5	Example of multiple-pulse flash fireflies and activity in	33		
	bracket if any. NA= Not Available from reference.			
Table 2.6	Summary of responder preference on advertiser flash	36		
	character showing certain responder species uses more than			
at t	one character to select prospective advertiser.			
Table 3.1	Video metadata of all 117 videos.	61		
Table 4.1	Normality test for flash rates and flash duration of	75		
	each group using Shapiro-Wilk test.			
Table 4.2	Descriptive statistics of <i>Pteroptyx bearni</i> flash rates (flashes	78		
	per minute) before, during and after light pollution treatment			
	in each group.			
Table 4.3	Friedman test for flash rates for each group to test whether	82		
	there are differences in treatment before, during			
	and after light pollution.			
Table 4.4	Wilcoxon signed rank test flash rates for each treatment pair	84		
	in group A, B, C and D where V is Wilcoxon Statistics.			
	Summary shows flash rates in decreasing order.			
Table 4.5	Group A best independent variables explaining variation in	85		
	flash rates of Pteroptyx bearni (exchangeable correlation			
	structure).			
Table 4.6	Group B best independent variables explaining variation in	85		
	flash rates of Pteroptyx bearni (independence correlation			
	structure).			

- Table 4.7Group C best independent variables explaining variation in85flashratesof*Pteroptyxbearni*(autoregressivecorrelation structure).
- Table 4.8Group D best independent variables explaining variation in86flash rates of *Pteroptyx bearni* (autoregressive
correlation structure).
- Table 4.9Descriptive statistics for temperature data in each group92
- Table 4.10Descriptive statistics for humidity data in each group92
- Table 4.11Descriptive statistics for eye data in each group92
- Table 4.12Descriptive statistics of *Pteroptyx bearni* flash duration (ms)93before, during and after light pollution treatment in each
group.
- Table 4.13Friedman test for flash duration for each group to test99whether there are differences in treatment before, duringand after light pollution.
- Table 4.14Wilcoxon signed rank test flash duration for each treatment100pairin group A, B, C and D where V is Wilcoxon Statistics.Summary shows flash duration in decreasing order.
- Table 4.15
 Group A best independent variables explaining variation in 102 flash duration of *Pteroptyx bearni* (unstructured correlation structure).
- Table 4.16Group B best independent variables explaining variation in102flash duration of *Pteroptyx bearni* (unstructured correlation
structure).
- Table 4.17Group C best independent variables explaining variation in102flash duration of *Pteroptyx bearni* (autoregressive
correlation structure).
- Table 4.18Group D best independent variables explaining variation in103flash duration of *Pteroptyx bearni* (exchangeable correlation
structure).

LIST OF FIGURES

		Page
Figure 1.1	The morphology of flashing pattern where the duration of a start of the first pulse to the start of the second pulse is known as interpulse interval (IPI) and pulse duration is calculated from the start of the flash of a single pulse to the end of the same pulse.	3
Figure 1.2	Heat map showing global light pollution level where colour towards white is more intense and colour	4
Figure 2.1	Composite of <i>Pteroptyx</i> description. (A) Illustration of <i>Pteroptyx valida</i> ; red circle shows the deflexed elytral apices. (B) Illustration of deflexed elytral apices,	9
	ventral view (based on <i>Pteroptyx bearni</i>). (C) Left hind leg, ventral view. (D) Hindleg, anteroventral view (illustrated based on <i>Pteroptyx valida</i>). Blue circles showing MFC. Legend: MFC= metafemoral comb, f = femur, t = trochanter. Note: (A) and (B) are for illustrative purposes only, not suitable for taxonomic references. (C) and (D) scale numbers in mm.	
Figure 2.2	The distribution of Pteroptyx tener in Malaysia.	12
Figure 2.3	Firefly light organ (LO) of (A) male and (B) female <i>Pt</i> . <i>bearni</i> . Red circle shows ventrite 7 (V7) having bipartite LO.	15
Figure 2.4	Cellular anatomy of firefly lantern where the photocytes are grouped in rosette shape with trachea in the middle of the rosette that extends into tracheal end cells and tracheolar cells	18
Figure 2.5	Rosette of the photocyte (PH) encircling the main trachea (MT) which extends into tracheal branch (TB) then further into smaller tracheole (t). Luciferase and luciferin are inside the peroxisome (px). TEC = tracheal	18

	end cell, $tc = tracheolar cell$, $ne = neural$, $N = neuron$.		
Figure 2.6	Type of material used in firefly flash studies carried out 2		
	from 1952-2016.		
Figure 2.7	Flash terminology of single-pulse flash (A) and double-	26	
	pulse flash (B).		
Figure 2.8	Glowing of <i>L. leii</i> during flight.	28	
Figure 2.9	Crescendo of <i>Pt. valida</i> .	28	
Figure 2.10	Flare of <i>L. cinqulata</i> .	28	
Figure 2.11	Flicker of L. japonica during landing.	29	
Figure 2.12	Flash train of <i>Pt. malaccae</i> .	29	
Figure 2.13	Irregular flash of <i>Pt. maipo</i> .	34	
Figure 2.14	Bimodal flash of <i>Pt. ten</i> er.	34	
Figure 2.15	(A) Photuris stealing Photinus from a spider web. (B)	39	
	<i>Photuris</i> devouring <i>Lucidota atra.</i> (C) <i>Phidippus audax</i>		
185	eating field-collected Photuris.		
Figure 2.16	Ommatidium of compound eyes (A) apposition eye and	41	
	(B) superposition eye.		
Figure 2.17	Graphical explanation of light transmission in (A)	43	
219	apposition eye that light from limited angles will be		
	transmitted to the rhabdom due to the extensive		
	pigment and (B) in superposition eye, light at multiple		
	angles will reach the rhabdom due to the limited		
	pigment. Number 1 until 6 is the illustration of different		
	light angles.		
Figure 2.18	Ommatidium of Photuris pennsylvanica showing the	43	
	lens is extensive unlike other ommatidium of		
	superposition type eye.		
Figure 3.1	PASCO High Sensitivity Light Sensor model PS-2176.	51	
	There are three lux scale buttons on the light sensor;		
	0-1 lux, 0-100 lux and 0-10,000 lux.		
Figure 3.2	Kestrel weather station model 4500 was used to	52	
	measure ambient temperature and humidity.		
Figure 3.3	Device placement and settings for the light pollution	53	

experiment. (a) plane view of the device arrangement. (b) side view of the device arrangement. (c) the arrangement of light sensor placed between two Petri dishes inside the dark box where dotted line shows the aperture of the light sensor is placed approximately in line with the middle of the Petri dish.

- Figure 3.4 Ventral abdomen of male *Pt. bearni* showing the median posterior projection (MPP) slightly extended beyond the posterolateral projection (PLP), wide in shape and gently notched. PLP are rounded apically and curved inward in obtuse angle.
- Figure 3.5 Dorsal view of both (A) male and (B) female *Pt. bearni* firefly showing their orange yellow pronotum and brown elytra with pale hue on the lateral margin.
- Figure 3.6 Snapshot of a video recording. The light in the middle, circled in green, is the light from the light sensor. The fireflies were placed on either side of the light sensor. Light from the sensor helps the camcorder to stay focus on the same subject and distance thus yielding a stable video recording.
- Figure 3.7 Firefly eye size is measured using ImageJ. (1) The target photo is imported in ImageJ by going to option File > Open... (2) The scale of image is specified by zooming in on the upper-left corner of the imported image and the scale line is highlighted by using 'Straight' selection tool (red line on image) then (3) the scale of photo is being calibrated by inputting the known distance of the highlighted scale on Analyze > Set Scale... and specify unit of length. (4) After scale is specified, using 'Rectangle' selection tool (red box on image) the eye is selected then (5) measured by selecting the option Analyze > Measure where the results will show the width of the red box and the

60

54

55

57

ΧV

height of the red box in millimetres. The width is the result of the eye size (red arrow).

- Figure 3.8 Interlaced video contain interlaced frames. When undergone deinterlacing process, the top field and bottom field of one frame is separated then the top field only is combined into a single frame and the bottom field only into another frame. Next, the top and bottom field frames are rearranged to form a deinterlaced video or also known as progressive video.
- Figure 3.9 Steps carried out in the macro written in ImageJ. The macro will specify the input folder where the image sequence was saved. A new window open up the first image from the folder and number of ROI is specified. Afterwards, the region of interest (ROI) is highlighted one by one then the ROIs will be saved in the 'ROI Manager'. Lastly, the ROI's measurements were saved in their particular .TSV file in the input folder.

Figure 3.10

Graphs comparison to choose which gray value measurements resembles the firefly flashes. Four image sequences were analyzed and graphs were generated using data from minimum gray value, mean gray value and maximum gray value from each of the images. X-axis of each graphs are the image number (Image 1 until Image 4). It shows that firefly flash start from Image 2 and ends at Image 3. Minimum gray value and mean gray value does not resemble the flashes shown in each images while maximum gray value resembles the flashes as shown in the images. Minimum gray value and mean gray value wrongly represents the flash at Image 1 but maximum gray value deliver perfect resembles on each images.

Figure 3.11 8-bit grey scale where 0 indicates the strongest black and 255 is the strongest white. 66

65

63

64

- Figure 3.12 The firefly flash data structure when imported to Excel. 68
 Red box indicates 13 column for data labels. Frame number is taken from the first green box from column 'B' which is named as 'Label' while the flash data in maximum grey value is in the second green box in column 'G' named as 'Max'.
 Figure 3.13 The number is a six-digit number starting from the fourth character.
- Figure 3.14 The IF functions to detect whether the grey value is 70 higher than or equal to 20. (1) the image number which represents the frame number of the video. (2) gray value that exceeds 20. (3) column N where it returns the frame number from if the value in is higher than or equal to 20. (4) frame number of the start of the flash. (5) frame number of the end of the flash.

72

75

- Figure 3.15 The frame number of the start of the flash (column A) and the end of the flash (column B) is arranged so that the flash duration (column C), flash number (column D), flash rate (column E) and average flash duration (column G) can be calculated.
- Figure 4.1 Normal Q-Q plot for overall flash rates (left) and flash duration (right). The data is not forming straight diagonal line suggesting non-normality.
- Figure 4.2 Normal Q-Q plot of flash rates for each group. The 76 data is not forming straight diagonal line suggesting non-normality.
- Figure 4.3 Normal Q-Q plot of flash duration for each group. The 76 data is not forming straight diagonal line suggesting non-normality.
- Figure 4.4 Flash rates for each group for every treatment; before 79 light pollution, during light pollution and after light pollution.
- Figure 4.5 Flash rates paired samples for group A. (a) Before and 79

	during light pollution pair. (b) Before and after pair. (c)	
	During and after pair.	
Figure 4.6	Flash rates paired samples for group B. (a) Before and	80
	during light pollution pair. (b) Before and after pair. (c)	
	During and after pair.	
Figure 4.7	Flash rates paired samples for group C. (a) Before and	80
	during light pollution pair. (b) Before and after pair. (c)	
	During and after pair.	
Figure 4.8	Flash rates paired samples for group D. (a) Before and	81
	during light pollution pair. (b) Before and after pair. (c)	
	During and after pair.	
Figure 4.9	The observed value of flash rates for every individual in	89
	every group and the value of flash rates in every group	
	based on their respective generalized estimating	
185	equations.	
Figure 4.10	Line plot with mean and error bar of observed value of	90
	flash rates and the GEE model flash rates.	
Figure 4.11	Temperature data for each group.	90
Figure 4.12	Humidity data for each group.	91
Figure 4.13	Eye data for each group. REITIMALAYSIA SARAH	91
Figure 4.14	Flash duration for each group for every treatment;	96
	before light pollution, during and after light pollution.	
Figure 4.15	Flash duration paired samples for group A. (a) Before	96
	and during light pollution pair. (b) Before and after	
	pair. (c) During and after pair.	
Figure 4.16	Flash duration paired samples for group B. (a) Before	97
	and during light pollution pair. (b) Before and after	
	pair. (c) During and after pair.	
Figure 4.17	Flash duration paired samples for group C. (a) Before	97
	and during light pollution pair. (b) Before and after	
	pair. (c) During and after pair.	
Figure 4.18	Flash duration paired samples for group D. (a) Before	98
	and during light pollution pair. (b) Before and after	

pair. (c) During and after pair.

Figure 4.19	19 The observed value of flash rates for every individual in		
	every group and the value of flash rates in every group		
	based on their respective generalized estimating		
	equations.		
Figure 4.20	Line plot with mean and error bar of observed value of	106	
	flash duration and the GEE model flash rates.		
Figure 4.21	Pt. bearni flashing pattern can be found in two	107	
	components; a single-pulse flash (graph a until d) and		
	multiple-pulse flash (graph e to g).		
Figure 4.22	Total count of Pt. bearni flash shape with single-pulse	108	
	flash dominating the overall flashes.		
Figure 4.23	Multiple-pulse flash of subject 44 from group C.	109	
	Numbers on top of the line is the maximum gray value		
185	for the respective point of frame number. For example		
ASK-	in the frame number 6106, the maximum gray value is		
AT L	185 with blue circle on top of it indicates that the first		
	pulse starts at frame number 6106.		
Figure 4.24	Composite of the marked frames as in Figure 4.23. It	110	
	shows how the firefly flashes look like in the respective		
	frames with its maximum gray value measurement.		
Figure 4.25	Multiple-pulse flash shape examples of Pt. bearni. Scale	111	
	bar on top right corner = 40 ms.		

LIST OF ABBREVIATIONS

.tsv or .TSV	-	Tab-separated value
AD	-	Analog-to-Digital
AMP	-	Adenosine Monophosphate
ATP	-	Adenosine Triphosphate
CO ₂	-	Carbon Dioxide
DC	-	Direct Current
f	-	Femur
fpm	-	Flashes per Minute
fps	-	Frame per Second
GEE	-	Generalized Estimating Equation
IPI	-	Interpulse Interval
LBG	-	Lucibufagins
LED	- 0	Light Emitting Diode
LH ₂	- 7	Luciferin
LOZ	-//	Light Organ
MFC	<u> </u>	Metafemoral Comb
mg ²⁺	-5/	Magnesium ion RSITI MALAYSIA SABAH
ms	-	Milliseconds
MT	-	Main Trachea
Ν	-	Neuron
NA	-	Not Available
ne	-	Neural
NO	-	Nitric Oxide
NOS	-	Nitric Oxide Synthetase
O ₂	-	Oxygen
PC	-	Personal Computer
PH	-	Photocyte
РМТ	-	Photomultiplier Tube
рх	-	Peroxisome
QIC	-	Quasi-likelihood under the independence model criterion

RM	-	Ringgit Malaysia
ROI	-	Region of Interest
sec	-	Seconds
sp.	-	Species
t	-	Tracheole (or trochanter for insect leg description)
ТВ	-	Tracheal Branch
tc	-	Tracheolar cell
TEC	-	Tracheal End Cell
TiLIA	-	Time-lapse Image Analysis
V7	-	Ventrite Number 7

LIST OF SYMBOLS

FR	-	Value of flash rates according to GEE model
FD	-	Value of flash duration according to GEE model

