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ABSTRACT 

Blue carbon refers to the carbon stored and sequestered by coastal vegetated 

ecosystems, for examples, mangroves forest, seagrass meadows and saltmarsh. 

Along with sequestration, the canopy and rhizome system stabilizes a legacy of 

hundreds year of buried sedimentary carbon (C) storage from remineralization. The 

current blue carbon conceptual model estimates C stocks based on the total organic 

carbon content (TOC) without accounting for deposited allochthonous recalcitrant 

carbon forms like black carbon (BC). Black carbon is produced outside coastal 

vegetated ecosystems through the incomplete combustion of fossil fuels and 

biomass, and is already stable over climatic scales. Hence, a more accurate value of 

blue carbon storage can only be estimated by subtracting that portion of BC from 

the TOC. The main objective was, for the first time, to analyze the portion of BC 

over TOC down the sediment columns of coastal vegetated ecosystem from the 

seagrass meadows and its adjacent mangrove forest within Salut-Mengkabong 

lagoon. Black carbon analysis was carried out using two methods, namely, 

Chemothermal Oxidation (CTO) and Nitric Acid Oxida tion (NAO) to isolate the soot 

continuum and soot to charcoal continuum, respectively. The top meter C stock for 

seagrass and mangrove sediment estimated ranging from 6.0 - 203.0 Mg C ha·1 

and 139.4 - 425.5 Mg C ha·1 respectively. For organic carbon (OC) sequestration of 

Enhalus acoroides meadow, estimated ranging from 1.5 - 5.1 Mg C ha·1 yr"1 for 

Salut upper lagoon and Mengkabong lagoon over "'20 years. However, the results 

of BC{TOC isolated by CTO and NAO, suggested C stock capacity for seagrass and 

mangrove will diminish, 1.8 - 66.6 % and 1.4 - 19.6 % respectively. The BC 

sequestration on the same Enha/us acoroides meadows estimated ranging from 

32.6 - 36.0 g m·2 yr"1• Moreover, comparison between temperate and tropical blue 

carbon ecosystems, suggested current carbon stock estimates are positively biased, 

particularly for sandy seagrass environs, by 18 ± 3% (±95% confidence interval) 

and 43 ± 21% (±95% 0) respectively. In conclusion, it is recommended 

accounting for BC to be included within the blue carbon conceptual model for more 

accurate assessments in future carbon trading schemes. 
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ABSTRAK 

KARBON BIRU DAN HITAM DALAM ENDAPAN RUMPUT LAUT DAN BARAU 

SABAH: KEPENTINGANNYA DALAM KARBON SEKUESTRASI DAN 

PENYIMPANAN 

Karbon Biru dirujukan kepada karbon yang disimpan dan disekuestrasi o%h 

ekosistem persisiran pantai, seperii hutan bakau, rumput laut dan rawang masin. 

Hal /ni kerana, tumbuhan kanopi dan sistem akar mampu menstabilkan karbon (C) 

yang disimpan da/am sedimen se/ama beratus tahun dan me/indunginya daripada 

proses mineralisasi. Konsep Model Karbon Biru yang terkini mengganggar stok C 

berdasarkan kandungan jumlah karbon organik jumlah (TOC), tidak termasuk 

allochthonous recalcitrant carbon, seperti karbon hitam (BC). BC ada/ah sisa 

pembakaran daripada bahan api fosil dan biojisim dan dihasil luar daripada 

ekosistem persisiran pantai serta mempunyai kestabilan yang tinggi 0/eh itu, 

penggangaran stok karbon biru yang lebih tepat hanya bo%h dianggar selepas 

menolak bahagian BC daripada TOC. Kajian objektif utama ini ialah menganalisi 

peratusan BC da/am TOC yang didapati dalam endapan rumput laut dan juga bakau 

bersebelahan lagun Salut-Mengkabong. Analisis BC d#alankan me/a/ui dua kaedah, 

iaitu, Chemothermal Oxidation (CTO) untuk mengasingkan kontinum jelaga dan 

Nitric Acid Oxidation (NAO) dapat mengasingkan kontinum darf jelaga hingga arang. 

Penggangaran stok C da/am sedimen teratas adalah dalam /ingkungan 6.0 - 203.0 

Mg C hä' dan 139.4 - 425.5 Mg C hä' bagi rumput laut dan bakau masing- 

masing. Sekuestrasi karbon organik oleh hampuran Enhalus acoroides dianggar 

dalam lingkungan 1.5 - 5.1 Mg C hä' yºr' untuk -- 20 tahun. Walau bagaimanapun, 

keputusan BC/TOC yang dianalisi oleh CTO dan NAO mencadangkan bahawa 

kapasiti stok C rumput laut dan bakau akan berkurang sebanyak 1.8 - 66.6% dan 

1.4 - 19.6% masing-masing. Selain itu, sekuestrasi BC dianggar dalam lingkungan 

32.6 - 36.0 g m-' yr"'. Keputusan perbandingan antara ekosistem karbon biru yang 

meliputi zon iklim sederhana dan tropika, mencadangkan ketepatan penganggaran 

stok C terkini perlu dikaji semula. Terutamanya, kawasan rumput laut berpasir di 

zon iklim sederhana dan tropika terdapati BC sebanyak 18 t 3% (± 95% Cl) dan 43 

± 21% (± 95% C/) masing-masing. Kesimpulannya, BC% perlu diambil kira dalam 
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konsep model karbon biru untuk penilaian stok C yang lebih tepat bagi menjalani 

skim dagangan karbon pada masa depan. 
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CHAPTER 1 

INTRODUCTION 

1.1 The Importance of the Coastal Vegetative Area 

Coastal vegetated ecosystems include mangrove forests, salt marshes, seagrass 

meadows and seaweed/kelp forests, provide a number of ecological services. 
Services vary from the biological to the physical, such as nursery grounds for 

marine organisms (fish and invertebrates), which provide food to N3 billion people 

as 50% of the world fishery resources (Nellemann, Corcoran, Duarte, Valdes, De 

Young, Fonseca and Grimsditch, 2009), reducing the impact of storm events to 

coastal areas, coastal erosion (Twilley, Snedaker, Yänez-Arancibia and Medina, 

1996; Mumby, Edwards, Arias-Gonza'lez, Lindeman, Blackwell, Gall, Gorczynska, 

Harborne, Pescod, Renken, Wabnitz and Llewellyn, 2004). It is also more being 

increasing realise that these ecosystems may also provide an important carbon 

sequestration services for the mitigation of greenhouse emissions (Nellemann et al., 
2009). 

In recent decades, the introduction of blue carbon successfully has drawn 

the attention of various parties that include researchers, policy makers and the 

private sector. Because of its high carbon storage capacity, on average of 25% 

(Duarte, Marbh, Gacia, Fourqurean, Beggins, Barron and Apostolaki, 2010; 

Gallagher, 2015); or 30-50% (Irving, Connell and Russell, 2011) of world carbon 

stored and sequestered within small area ("0.05% of land and < 2% of the ocean 

area ) over long time scales (millennia) (Falkowski, Katz, Knoll, Quigg, Raven, 

Schofield and Taylor, 2004; Arrigo, 2005; Gonzalez, Fernandez-Gomez, Fernandez- 

Guerra, Gomez-Consarnau, Sanchez, Coll-Uado, del Campo, Escudero, Rodriguez- 

Martinez, Alonso-Saez, Latasa, Paulsen, Nedashkovskaya, Lekunberri, Pinhassi and 

Pedros-Alio, 2008; Simon, Cras, Foulon and Lemde, 2009; Trumper, Bertzky, 



Dickson, Van Der Heijden, Jenkins and Manning, 2009). These ecosystems capable 

of sequestering and storing most of the autochthonous organic carbon produced by 

the ecosystem as well as allochthonous organic carbon trapped by the canopy. The 

allochthonous carbon ostensibly washed out from the land and adjacent 

ecosystems and stored together with the autochthonous forms, through 

sedimentary burial and within its living biomass. The name given to the carbon 

associated with vegetated coastal ecosystem is known as "Blue Carbon"" in which 

the sediment components are under the protection from remineralisation and 

resuspension by the presence of the plant canopy and root system (McLeod et al., 

2011). 

1.2 Potential Untested Bias in Estimating Blue Carbon Stock 

Over recent decades, it has become apparent that the coastal ecosystem are 

vulnerable with losses up to four times quicker than land forests (Duarte, Dennison, 

Orth and Carruthers, 2008; Duarte, 2009). It has been estimated the loss of 

seagrass, mangrove, and saltmarshes has resulted in the release of -0.15-1.02 Pg 

yr 1 of CO2 into the atmosphere, an uncertain but significant fraction of current 

global anthropogenic emissions, 9.9 ± 0.9 Pg yr 1 (Pendleton, Donato, Murray, 

Crooks, Jenkins, Sifleet, Craft, Fourqurean, Kauffman, Marbä, Megonigal, Pidgeon, 

Herr, Gordon and Baldera, 2012). The large range of uncertainty in CO2 emissions 

from the loss of coastal vegetated ecosystems is, in part, due to under sampling 

(Donato, Kauffman, Murdiyarso, Kumianto, Stidham and Kanninen, 2011; Lavery, 

Mateo, Serrano and Rozaimi, 2013). However, the question of blue carbon stock 
bias, which additional sampling cannot address, has not yet been fully tested. One 

source of bias is the implicit inclusion of allochthonous recalcitrant organic matter 

within sedimentary stock estimates (Gallagher, 2014). Hence, blue carbon 

ecosystems are not responsible for the recalcitrant carbon formation, and burial 

does not provide additional protection from remineralisation. Consequently, 

allochthonous recalcitrant carbon must be excluded from stock estimates as a 

mitigation service for anthropogenic emissions of CO2 (Gallagher, 2015). 
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1.3 The Existence of Allochthonous Recalcitrant Carbon 

Allochthonous recalcitrant carbon source refers to highly stable carbon, resistant to 

oxidation over climatic scales, which is trapped by the blue carbon canopy and 

roots system, transported from the land via coastal erosion, river runoff and 

atmospheric deposition (Figure 1.1). 

Figure 1.1: An augmented blue carbon conceptual model. The model 

shows saltmarsh, mangrove, and seagrass canopies' ability 

to trap and store black pyrogenic carbon (BC) washed out 
from the catchment (green and black) and atmosphere 

(black), along with detritus produced by those coastal 

vegetated ecosystems (blue and black). The argument of 

this study is the failure of removal allochthonous 

recalcitrants, such as BC, from the coastal vegetated 

sedimentary carbon stocks could result in overestimated 

values in mitigating anthropogenic emissions of CO2. Icon 

credit: Tracey Saxby (mangrove) and Catherine Collier 

(seagrass), Integration and Application Network, University 

of Maryland Center for Environmental Science 

(ian. umces. edu/imagelibrary/) 
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