ESTABLISHMENT OF PEREZ DU- MORTIER CALIBRATION ALGORITHM AS A SUNPHOTOMETERS CALIBRATION PROTOCOL AT ALTITUDE ABOVE SEA LEVEL

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2017

ESTABLISHMENT OF PEREZ DU- MORTIER CALIBRATION ALGORITHM AS A SUNPHOTOMETERS CALIBRATION PROTOCOL AT ALTITUDE ABOVE SEA LEVEL

NUR HASINAH NAJIAH BINTI MAIZAN

THESIS SUBMITTED IN FULFILMENT FOR THE DEGREE OF MASTER OF SCIENCE

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2017

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS THESIS

JUDUL: ESTABLISHMENT OF PEREZ DU- MORTIER CALIBRATION ALGORITHM AS A SUNPHOTOMETERS CALIBRATION PROTOCOL AT ALTITUDE ABOVE SEA LEVEL.

UAZAH: MASTER OF SCIENCE (PHYSICS WITH ELECTRONICS)

Saya **NUR HASINAH NAJIAH BINTI MAIZAN**, sesi **2014- 2016**, mengaku membenarkan thesis sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat- syarat kegunaan seperti berikut:

- 1. Thesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah DIBERNARKAN MEMBUAT SALINAN UNTUK TUJUAN PENGAJIAN SAHAJA.
- 3. Perpustakaan dibenarkan membuat salinan thesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

SULIT

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

TIDAK TERHAD

NUR HASINAH NAJIAH BINTI MAIZAN, MS1411010T Tarikh: 14 OGOS 2017

Disahkan Oleh, NURULAIN BINTI ISMAIL LIBRARIAN **IMALAYSIA SABAH** (Tandatangan PustakaWah§

USTAKAA

tom for CON

(ASSOC, PROF, DR, JEDOL DAYOU)

Penyelia

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

15th August 2017

Nur Hasinah Najiah Binti Maizan MS1411010T

MARAN ANN

CERTIFICATION

NAME	: NUR HASINAH NAJIAH BINTI MAIZAN
MATRIC. NO	: MS1411010T
TITTLE	: ESTABLISHMENT OF PEREZ DU- MORTIER CALIBRATION
	ALGORITHM AS A SUNPHOTOMETERS CALIBRATION
	PROTOCOL AT ALTITUDE ABOVE SEA LEVEL
DEGREE	: MASTER OF SCIENCE
	(PHYSICS WITH ELECTRONICS)
VIVA DATE	: 23rd JANUARY 2017

CERTIFIED BY;

SIGNATURE

- 1. CHAIRMAN ASSOC. PROF. DR. JEDOL DAYOU
- 2. COMMITTEE MEMBER UNIVERSITI MA ASSOC. PROF. DR. JUMAT SULAIMAN
- 3. COMMITTEE MEMBER JACKSON CHANG HIAN WUI

iii

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful

Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this thesis. Special appreciation goes to my main supervisor, Associate Professor Dr. Jedol Dayou, my co- supervisor, Associate Professor Dr. Jumat Sulaiman and Jackson Chang Hian Wui for their supervision, knowledge, patience, motivation and continuous support in all stage to complete this thesis.

In addition, I would like to express my deep gratitude to all the members of club Energy, Vibration and Sound Research Group (e-Vibs) for their kindness and moral support. Thanks for the friendship and memories.

Besides, I want to give an appreciation to Taman- Taman Sabah and their helpful staff for granting me the permission to conduct this research at Laban Rata and Kinabalu Park.

Finally, a very big thank you goes to my family especially my mother, Minah Binti Jantan and my husband, Fidaiy Fathullah Bin Misran for their endless love. Their loves inspired me and give me strength to accomplish this research. Thank you so much.

Nur Hasinah Najiah Binti Maizan 15th August 2017

ABSTRACT

Calibration of sunphotometer using Langley technique requires direct sun irradiance data during very clear and stable atmospheric condition. However, it is impenetrable to find cloud free condition at near sea level altitude especially tropical country due to cloud loading and rainfall throughout the year. Recently, near sea level Langley calibration method for ground based measurement was developed by combining Perez Du- Mortier (PDM) algorithm with statistical filter. It is already known that PDM as an improved Langley method are capable in calibrating supphotometers at nearsea- level. Therefore, this research are focused on the implementation of PDM as establish calibration protocol at different altitudes above sea level. In order to achieved this desired, this improved Langley method should be able to achieve standard target as a establish calibration protocol by producing results that are approaching Standard Langley Method. Thus, in this research, the performance of PDM method was examined at three different altitude site where data were collected at site A for high altitude at 3,270 m a.s.l, Site B for mid altitude (1,574 m a.s.l.), and site C for low altitude (7.8 m a.s.l) for four nominal wavelengths. Calibration constant retrieved by PDM at different altitude were compared with Standard Langley Method which performed at high altitude. Result shows that the reproducibility of calibration constant using the PDM calibration method at three different altitude when compared with Standard Method is acceptable to a certain extent of not greater than \sim 3% at most. Therefore, it prove that, PDM is feasible in calibrating sun photometer at different altitude above sea level by producing data that approaching to Standard Langley Method at high altitude.

v

ABSTRAK

PEMBENTUKKAN ALGORITHMA PEREZ DU- MORTIER SEBAGAI KAEDAH PENETUUKURAN ALAT PENGUKUR CAHAYA PADA ALTITUD BERBEZA

Penentukuran sunphotometer menggunakan teknik Langlev memerlukan data sinaran langsung matahari semasa keadaan atmosfera yang sangat jelas dan stabil. Walau bagaimanapun, keadaan ini adalah amat mustahil untuk diperolehi di kawasan yang berketinggian paras laut kerana kehadiran awan yang kerap dan menyebabkan sukar untuk memperolehi langit yang cerah terutamanya negara yang beriklim tropika. Baru-baru ini, kaedah penentukuran spektrometer matahari untuk pengukuran di paras laut telah dibangunkan dengan menggabungkan algoritma Perez Du- Mortier (PDM) dengan penapis statistik. Ia sudah diketahui bahawa PDM mampu membuat penentuukuran di kawasan paras laut. Maka, kajian ini memberi tumpuan kepada pelaksanaan PDM untuk menjadikannya protokol penentukuran di pelbagai ketinggian. Dalam usaha untuk mencapai hasrat ini, bacaan keputusan yang diperolehi oleh PDM haruslah menghampiri bacaan kaedah Standard Langley. Dalam kajian ini, pelaksanaan kaedah PDM telah diperiksa di tiga tapak ketinggian di mana data telah dikumpul di tapak A untuk ketinggian tinggi pada 3,270 m dari aras laut, Tapak B untuk ketinggian pertengahan (1574 m dpl), dan tapak C untuk ketinggian yang rendah (7.8 m dpl) untuk empat panjang gelombang nominal. Penentukuran berterusan diambil oleh PDM di pelbagai ketinggian dibandingkan dengan Standard Langley Kaedah yang dilakukan pada ketinggian tinggi. Keputusan menunjukkan bahawa kebolehulangan pemalar penentukuran menggunakan kaedah penentukuran PDM apabila berbanding dengan Standard Kaedah adalah boleh diterima ke tahap tertentu tidak lebih besar daripada ~ 3% paling banyak. Oleh itu, ia membuktikan bahawa, PDM boleh dilaksanakan dalam menimbang fotometer matahari di pelbagai ketinggian dengan menghasilkan data yang menghampiri kepada Standard Langley Kaedah pada ketinggian tinggi.

TABLE OF CONTENTS

		Page
πт	LE	1
DEC	CLARATION	ii
CER	RTIFICATION	iii
ACK	KNOWLEDGEMENT	iv
ABS	STRACT	v
ABS	STRAK	vi
TAB	BLE OF CONTENTS	vii
LIS	T OF TABLES	xiv
LIS	T OF FIGURES	xvi
LIS	T OF ABBREVIATIONS	xix
LIS	T OF SYMBOLS	хх
LIS	T OF APPENDICES	xxii
СНА	APTER 1 : INTRODUCTION	1
1.1	Solar Radiation	1
1.2	Sun Photometry: An Introduction, Uses and Calibration	3
1.3	Problem Statement	4
1.4 1.5	Thesis Contribution	5
CHA	APTER 2 : LITERATURE REVIEW	7
2.1	Introduction	7
2.2	Solar Radiation Energy and Atmospheric Transmission	7
2.3	Sunphotometers Calibration	11
2.4	Langley Method	13
2.5	Improved Langley Method	16

2.6	Perez- Du Mortier Calibration Method	18	
	2.6.1 Clear- sky detection model	18	
	2.6.2 Statistical Filter	21	
СНА	APTER 3 : RESEARCH METHODOLOGY	23	
3.1	Overview	23	
3.2	Experimental Design		
3.3	Project Location		
3.4	Device and Instrument		
3.5	Experimental Procedure	32	
	3.5.1 Raw data collection and Refinement	32	
	3.5.2 Retrieval of calibration constant using PDM method at	34	
20	Various altitude	20	
3.0	Validation: Comparison of PDM and LM	30	
	at different altitude	30	
	3.6.2 Comparison of calibration constant retrieved by PDM at	37	
	different altitude and Standard LM at high altitude		
C 111		20	
CH/	APTER 4: RESULT AND DISCUSSION	38	
4.1	Introduction	38	
4.1 4.2	Introduction Raw data refinement and Effects of Langley Calibration at Different Altitude Levels	38 38	
4.1 4.2 4 3	Introduction Raw data refinement and Effects of Langley Calibration at Different Altitude Levels Effect on PDM calibration at various altitude	38 38 38 49	
4.1 4.2 4.3 4.4	Introduction Raw data refinement and Effects of Langley Calibration at Different Altitude Levels Effect on PDM calibration at various altitude Validation: Comparison of PDM and LM	38 38 49 57	
4.1 4.2 4.3 4.4	Introduction Raw data refinement and Effects of Langley Calibration at Different Altitude Levels Effect on PDM calibration at various altitude Validation: Comparison of PDM and LM 4.4.1 Comparison of calibration constant retrieved by PDM and LM at various altitude	38 38 38 49 57 57	
4.1 4.2 4.3 4.4	Introduction Raw data refinement and Effects of Langley Calibration at Different Altitude Levels Effect on PDM calibration at various altitude Validation: Comparison of PDM and LM 4.4.1 Comparison of calibration constant retrieved by PDM and LM at various altitude 4.4.2 Comparison of calibration constant retrieved by PDM at	38 38 38 49 57 57 57	
4.1 4.2 4.3 4.4	Introduction Raw data refinement and Effects of Langley Calibration at Different Altitude Levels Effect on PDM calibration at various altitude Validation: Comparison of PDM and LM 4.4.1 Comparison of calibration constant retrieved by PDM and LM at various altitude 4.4.2 Comparison of calibration constant retrieved by PDM at various altitude and Standard LM at high altitude	38 38 38 49 57 57 62	
4.1 4.2 4.3 4.4	Introduction Raw data refinement and Effects of Langley Calibration at Different Altitude Levels Effect on PDM calibration at various altitude Validation: Comparison of PDM and LM 4.4.1 Comparison of calibration constant retrieved by PDM and LM at various altitude 4.4.2 Comparison of calibration constant retrieved by PDM at various altitude and Standard LM at high altitude	38 38 38 49 57 57 62 74	
4.1 4.2 4.3 4.4 CHA 5.1	Introduction Raw data refinement and Effects of Langley Calibration at Different Altitude Levels Effect on PDM calibration at various altitude Validation: Comparison of PDM and LM 4.4.1 Comparison of calibration constant retrieved by PDM and LM at various altitude 4.4.2 Comparison of calibration constant retrieved by PDM at various altitude and Standard LM at high altitude	38 38 38 49 57 57 62 74 74	
4.1 4.2 4.3 4.4 CHA 5.1 REF	Introduction Raw data refinement and Effects of Langley Calibration at Different Altitude Levels Effect on PDM calibration at various altitude Validation: Comparison of PDM and LM 4.4.1 Comparison of calibration constant retrieved by PDM and LM at various altitude 4.4.2 Comparison of calibration constant retrieved by PDM at various altitude and Standard LM at high altitude Conclusion ERENCES	38 38 38 38 49 57 57 62 74 74 76	
4.1 4.2 4.3 4.4 CHA 5.1 REF APP	Introduction Raw data refinement and Effects of Langley Calibration at Different Altitude Levels Effect on PDM calibration at various altitude Validation: Comparison of PDM and LM 4.4.1 Comparison of calibration constant retrieved by PDM and LM at various altitude 4.4.2 Comparison of calibration constant retrieved by PDM at various altitude and Standard LM at high altitude Conclusion ERENCES ENDICES	38 38 38 38 49 57 57 62 74 74 74 76 80	

LIST OF TABLES

		Page
Table 1.1:	Solar radiation and its absorption in the earth atmosphere (Mohanakumar, 2008).	2
Table 2.1:	Perez and Du Mortier model classification of sky condition	20
Table 3.1:	The details of three observatory sites	30
Table 3.2:	Specification of ASEQ spectrometer	31
Table 4.1:	Daily AM0 extrapolation for low altitude site for 5 days (L^{1} - L^{5})	42
Table 4.2:	Daily AM0 extrapolation for middle altitude site for 5 days $(L^{6} - L^{10})$	45
Table 4.3:	Daily AM0 extrapolation for high altitude site for 5 days (L^{10} - L^{15})	46
Table 4.4:	Corresponding information of raw regression before PDM calibration approach at three different altitude for four spectral band	51
Table 4.5:	Corresponding information of regression line after PDM calibration approach at three different altitude for four spectral band	54
Table 4.6:	Absolute error of P0 and AOD between PDM calibration methods with Langley method during cloudy and clear days at low, middle and high altitude for wavelength 440, 500, 670, and 870 nm	61
Table 4.7:	Corresponding information of regression line for PDM at low altitude and Standard LM at high altitude	63
Table 4.8:	Relative error of R2, P0 and AOD between PDM calibration methods at low altitude with Standard LM for wavelength 440, 500, 670, and 870 nm	63
Table 4.9:	Corresponding information of regression line for PDM at middle altitude and Standard LM at high altitude	65
Table 4.10:	Relative error of P0 and AOD between PDM calibration methods at middle altitude with Standard LM for wavelength 440, 500, 670, and 870 nm	65

Table 4.11: Corresponding information of regression line for PDM at 67 high altitude and Standard LM at high altitude Table 4.12: Relative error of P0 and AOD between PDM calibration 68 methods at high altitude with Standard LM for wavelength 440, 500, 670, and 870 nm Table 4.13: Percentage error of calibration constant of Aseg LR-1 at 3 68 different altitude by using inter-comparison calibration Table 4.14: Percentage error of calibration constant of Aseg LR-1 at 3 73 different altitude by using inter-comparison calibration after reanalysis.

LIST OF FIGURES

		Page
Figure 1.1:	Absorption of solar radiation by earth's atmosphere	1
Figure 2.1:	Comparison on how Rayleigh and Mie scattering affect solar radiation when collides with floating small particles (Alkhodili, 2014).	8
Figure 2.2:	Absorption spectrum of ozone in the region within 180- 300 nm, 300- to 350 nm and within visible region (400- 720 nm) (Edward & Yushio, 1959).	9
Figure 2.3:	Four main stages of atmosphere, known as troposphere (0- 15 km), stratosphere (15- 55 km), mesosphere (55- 95 km), and thermosphere (95- 150 km) (Stordal and How 1993)	10
Figure 2.4:	Air mass path length as zenith angle change	11
Figure 2.5:	A handheld LED sunphotometer (Grčić and Milković, AH 2011).	12
Figure 2.6:	Result on MVC regression at 500 nm when compared with traditional Langley plot for 11 January (dotted line) and 21 January (dashed line) at Xianghe (Lee et al., 2010)	17
Figure 2.7:	Result on MVC regression at 500 nm when compared with traditional Langley plot for 11 January (dotted line) and 21 January (dashed line) at Xianghe (Lee et al., 2010)	18
Figure 2.8:	Flowchart of the implementation of PDM filtration (Chang et al., 2014)	22
Figure 3.1:	The observations were categorized into Site A for high altitude at 3,270 m a.s.l. which is Laban Rata, Site B for	26

mid altitude at 1,574 m a.s.l. which is Kinabalu Park, Kundasang, and Site C for low altitude at 18 m a.s.l. which is Menara Tun Mustafa.

Figure 3.2:	Experimental set- up over the study area at Laban Rata (6.05 °N, 116.56°E).	27
Figure 3.3:	Experimental set- up over the study area at Kinabalu Park, Kundasang (6.00°N, 116.54°E)	28
Figure 3.4:	Experimental set- up over the study area at Menara Tun Mustafa (6.01°N, 116.10°E).	29
Figure 3.5:	: The materials and instruments that used in this project are LR-1 Aseq spectrometer, laptop, diffuser with 1 meter extended pole and retort stand.	32
Figure 3.6:	Flowchart of the implementation of PDM filtration to determine calibration constant	35
Figure 3.7:	Flowchart of the implementation of PDM filtration to determine calibration constant	36
Figure 3.8:	Flowchart of the implementation of PDM filtration to determine calibration constant	37
Figure 4.1:	Daily Langley plot at 440, 500, 670 and 870 nm for low altitude site. Regression line is best fitted in linear form y = $a + bx$ where a represents the AM0 extrapolated value (P0) and b represents the aerosol optical depth (AOD).	40
Figure 4.2:	Daily Langley plot at 440, 500, 670 and 870 nm for middle altitude site. Regression line is best fitted in linear form y = $a + bx$ where a represents the AM0 extrapolated value (Po) and b represents the aerosol optical depth (AOD).	43

Figure 4.3: Langley plot at 440, 500, 670 and 870 nm for high altitude site. Regression line is best fitted in linear form y
= a + bx where a represents the AM0 extrapolated value (Po) and b represents the aerosol optical depth (AOD).

47

48

52

- Figure 4.4: Daily variation of AOD at low, middle as well as high altitude site for wavelength 440, 500, 670, and 870 nm
- Figure 4.5: Grouped raw data for 15 days according to it spectral 50 band (440, 500, 670, and 870 nm) and altitude (low, middle, and high)
- Figure 4.6: Langley plot at 440 nm (a) unfiltered data Ln=213, (b) after PDM clear-sky filtration, Ln=152, (c) after statistical filtration, Ln=127 (b) Another horizontal parallel line (black bold line) created using vertex of A from Triangle ABC and vertex of Q from Triangle PQR for X_A and X_Q from both triangles
- Figure 4.7: Final product of Langley plot after series filtration using 53 PDM algorithm and statistical filter for each wavelength 440, 500, 670, and 870 nm at low, middle and high altitude
- Figure 4.8: Comparison of P0 and AOD between PDM calibration 57 methods with Langley method at low altitude during cloudy and clear days
- Figure 4.9: Comparison of P0 and AOD between PDM calibration 59 methods with Langley method at middle altitude during cloudy and clear days
- Figure 4.10:Comparison of P0 and AOD between PDM calibration60methods with Langley method at high altitude during
cloudy and clear days

Figure 4.11:	Comparison between PDM calibration methods at low altitude with standard Langley method at high altitude	
Figure 4.12:	Comparison between PDM calibration methods at middle altitude with standard Langley method at high altitude	64
Figure 4.13:	Comparison between PDM calibration methods at high altitude with standard Langley method at high altitude	66
Figure 4.14:	Standard Langley method at high altitude suffered with parabolic effect problem at wavelength 440 and 500 nm.	69
Figure 4.15	Comparison between PDM calibration methods at low altitude with standard Langley method at high altitude after reanalysis.	70
Figure 4.16	Comparison between PDM calibration methods at middle altitude with standard Langley method at high altitude after reanalysis.	71
Figure 4.17	Comparison between PDM calibration methods at high	72

after reanalysis.

LIST OF ABBREVIATIONS

AOD	Aerosol Optical Depth
COD	Cloud Optical Depth

LIST OF SYMBOLS

I_d	Diffuse irradiance
Ι	Global irradiance
I _{dir}	Direct irradiance
R	Earth-Sun distance
$\phi_{\scriptscriptstyle H}$	Zenith angle
ε	Clearness index
NI	Nebulosity index
CR	Cloud ratio
I _{d,cl}	Clear sky illuminance
α	Solar altitude
m	Optical air mass
I _{o., λ}	Extraterrestrial irradiance at the top of atmosphere
T	Total irradiance
A	Surface albedo
g	Cloud asymmetry factor ERSITI MALAYSIA SABAH
μ_0	Zenith angle
С	Clear sky irradiance
πF	Extraterrestial irradiance
±	Plus minus sign
W/m^2	Watt per meter square
$k_{oz(\lambda)}$	Ozone absorption cross section
I_{λ}	Direct normal irradiance at the ground at wavelength $\boldsymbol{\lambda}$
$ au_{\lambda,i}$	Total optical depth of the <i>i</i> th scatter or absorber
m	Air mass of the <i>i</i> -th scatter or absorber through the atmosphere
$ au_{R,\lambda,i}$	Rayleigh scattering optical depth
$\tau_{o,i}$	Ozone optical depth
$\tau_{a,i}$	Aerosol optical depth

$\tau_{g,i}$	Gas optical depth	
k _{Ray}	Rayleigh scattering coefficient	
Н	Altitude from sea in meter	
Ζ	Ozone concentration	
Po	Extrapolated value	

LIST OF APPENDICES

Appendix A Appendix B List of publications List of conferences

CHAPTER 1

INTRODUCTION

1.1 Solar Radiation.

The Sun is the primary sources of energy supplies for most physical and biological processes on Earth. Solar radiation is radiant energy that travels from the Sun to Earth with speed 300, 000 km per second at a distance of 150 million kilometres. As the solar radiation enters the earth- atmosphere, it experiences three processes namely reflection, absorption and scattering. These processes occur due to the interaction of radiation with Earth's atmospheric compositions such as dust, cloud, gasses and aerosol. Noted that, energy of solar radiation is not distributed evenly over all wavelength even though solar radiation a wide range of wavelength. Figure 1.1 shows the solar radiation at the top of atmosphere and the actual radiation at sea level which has been reduced due to absorption by atmospheric gasses.

Figure 1.1: Absorption of solar radiation by earth's atmosphere.Source: Mohanakumar (2008)

The energy of solar radiation is sharply centred on the wavelength band of 200- 2000 nm. It can be divided into three major bands namely radiation (100- 400 0nm), visible light (400- 700 nm), and infrared radiation (700- 1000 nm). Table 1.1

presents the attenuation of solar radiation at various spectral region due to absorption of atmospheric constituents.

Band	Wavelength (nm)	Atmospheric effect
Gamma ray	<0.03	Completely absorbed by the upper atmosphere.
X-ray	0.03-3	Completely absorbed by the upper atmosphere.
Ultraviolet (UV)	3-400	
UVc	200-280	Completely absorbed by oxygen, nitrogen, and ozone in the upper atmosphere.
UVb	280-320	Mainly absorbed by ozone in the lower stratosphere.
UVa	320-400	Transmitted through the atmosphere, but atmospheric scattering is severe.
Visible	400-700	Transmitted through the atmosphere, with moderate
	UNIVERSITI MA	scattering of the shorter wave.
Infrared (IR)	700- 14,000	
Reflected IR	700-3000	Mostly reflected radiation.
Thermal IR	3, 000- 14, 000	Absorption at specific wavelengths by carbon dioxide, oxone, and water vapour, with two major

Table 1.1: Solar radiation and its absorption in the Earth atmosphere.

Sources : Mohanakumar (2008)

Solar radiation can be measured using either space- based or surface- based instrumentation. Instruments on satellite measure solar radiation reflected by the atmosphere, cloud and Earth surface. On the other hand, surface instruments measure the radiation incident on the Earth's surface. Surface- based instruments are often used to monitor long term atmospheric because they are able to do continuous measurement with higher temporal resolution. One of the most common examples of surface- based instrument is sunphotometers.

1.2 Sunphotometer: An Introduction, Uses and Calibration.

Ground based sun photometry contribute adequate fundamental information about the optical and physical properties of both Sun and Earth's atmosphere (McArthur *et al.*, 2013). Sunphotometers is an electronic device that measures solar irradiance over a narrow range of wavelengths and it uses light emitting diode (LEDs) as detectors (Hamasha *et al.*, 2012). Compared to past, modern sunphotometers are electronically controlled, have capability for board data storage and some of them are equipped with automated tracking system for accurate sun pointing.

Sunphotometers is commonly used on the earth's surface, as well as by aircraft for monitoring network by measuring optical properties of the atmosphere such as Cloud Optical Depth (COD) (Liu *et al.*, 2013), concentration of atmospheric gases such as O_3 and water vapour. It is also widely used for physical- optical characterization of the aerosols such as Aerosol Optical Depth (AOD) (Toledano *et al.*, 2012). Not only that, sunphotometers also have the ability to measure aerosol size distribution, and the columnar amount of water vapour, ozone and nitrogen oxide (Schmid & Wehrli, 1994).

Despite the great values of sunphotometers in many remote measurement applications, degradation of optical sensors is the most important source of the longterm changes in cross-calibrations. In other words, after long term usage, sunphotometers reading is likely to deviate and eventually resulting error in measurement. Therefore, ongoing calibration of sun photometer is necessary to account for instrument changes including changes in the sensitivity of detectors and changes in the transmittances of the interference filters.

Instrument calibration is a combination of the instrument precision, the calibration procedure, and the algorithm used (Holben *et al.*, 1998). Probably one of the best methods to calibrate sunphotometers is known as standard Langley Method (LM). It is a method for determining the top-of-atmosphere extra-terrestrial constant using ground based instrumentation across a wide range of airmass. This

3

method eliminates the need for band pass integration, a standard lamp, or any difficulties in the absolute calibration method (Slusser *et al.*, 2000). In fact, most professional sunphotometers systems (e.g. AERONET) rely on Langley Method as their primary calibration procedure, because it can be extremely accurate, simple, versatile and most importantly freely accessible worldwide.

However, LM is restricted to stringent atmospheric conditions which usually useful only at high altitude location. One example of calibration network which actively performs sunphotometers calibration is Mauna Loa Observatories on the big island of Hawaii located at latitude 20.708 N, longitude 156.25 W and at an altitude of 3,400 meters near the summit of Mauna Loa. For other monitoring network that located far away from calibration centre, they usually calibrate their instrument by comparing the calibration value with master instrument (Xia *et al.*, 2014). Though calibration transfer is possible, the accuracy of calibration constant retrieved reduce continually especially when the transfer chain is getting longer.

Besides, not all monitoring network have same type of sun photometers plus critically not all country have their own calibration network like Mouna Loa Observatory, Hawaii. Some research institutes spend large amount of money and require long lead time for sending their instrument to overseas calibration network for calibration purpose. Therefore, to solve this problem, further study on the potential of near- sea- level- Langley Method (PDM algorithm) is taken into consideration to establish a calibration protocol above sea level for sunphotometers using PDM algorithm.

1.3 Problem Statement

As previously mentioned, standard Langley Method (LM) is common calibration protocol which have been used over the years for sunphotometers calibration at high altitude for clear sky condition and stable atmosphere. However, studies show that sites located at low and middle altitude, away from sources of pollution, can achieve sufficient stability in the atmosphere to obtain reliable calibration constant. However, it is hard to find cloud free condition at tropical country due to abundant cloud loading and rainfall throughout the year (Chang *et. al.*, 2014).

4