ANAEROBIC MONO AND CO- DIGESTION OF FOOD WASTE AND PALM OIL MILL EFFLUENT FOR PHOSPHORUS RECOVERY

RAFIDAH BINTI SELAMAN

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN FULLFILLMENT WITH THE REQUIREMENT FOR DEGREE OF MASTER OF SCIENCE

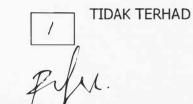
FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2016

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL:ANAEROBIC MONO AND CO-DIGESTION OF FOOD WASTE AND
PALM OIL MILL EFFLUENT FOR PHOSPHORUS RECOVERY

IJAZAH: MASTER OF SCIENCE (CHEMISTRY)


Saya **RAFIDAH BINTI SELAMAN**, Sesi Pengajian **2014-2016** mengaku membenarkan tesis Ijazah Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/)

(Mengandungi maklumat yang berdarjah Keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Disahkan oleh IN BINTI ISMAIL LIBRARIAN Comulity SITI MALAYSIA SABAH

(Tandatangan Pustakawan)

(Dr. Newati Wid)

Tarikh: 10 OKTOBER 2016

RAFIDAH BINTI SELAMAN

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excert, equations, summaries and references, which have been duly acknowledge.

Fefel.

26 September 2016

Rafidah Binti Selaman MS1411015T

CERTIFICATION

NAME : RAFIDAH BINTI SELAMAN

- MATRIC NO : MS1411015T
- TITLE : ANAEROBIC MONO AND CO-DIGESTION OF FOOD WASTE AND PALM OIL MILL EFFLUENT FOR PHOSPHORUS RECOVERY.
- DEGREE : MASTER OF SCIENCE (CHEMISTRY)
- VIVA DATE : 26 SEPTEMBER 2016

DECLARED BY;

Dr. Newati Wid

Signature

CERTIFICATION

NAME : RAFIDAH BINTI SELAMAN

- MATRIC NO : MS1411015T
- TITLE : ANAEROBIC MONO AND CO-DIGESTION OF FOOD WASTE AND PALM OIL MILL EFFLUENT FOR PHOSPHORUS RECOVERY.
- DEGREE : MASTER OF SCIENCE (CHEMISTRY)
- VIVA DATE : 26 SEPTEMBER 2016

DECLARED BY;

Dr. Newati Wid

Signature

ACKNOWLEDGEMENTS

All praise to Allah S.W.T. for this research would not have been completed without the support of many people. First and foremost, I would like to thank my supervisor, Dr Newati Wid, for her guidance and support throughout this research. I have been working under her invaluable supervision for about two years and have many unique research experiences which I cherish throughout my life.

I also would like to acknowledgement the Ministry of Higher Education Malaysia (MOHE) for the financial support by grant FRGS0368-2014. My sincere thanks also goes to lab assistants at the Faculty of Science and Natural Resources, Universiti Malaysia Sabah for their comments, sensible suggestions and definite recommendations that helped in the betterment of this research. I would also like to thank Restoran Koboi Town, Kinabalu Sawit company and Kogopon water treatment plant for giving me permission to collect samples in their area.

Finally, I would like to convey thanks to my family for their support, encouragement and patience throughout the process of producing a dissertation. Moreover, I thank everyone who involved for their unequivocal support. Thank you.

Rafidah Binti Selaman

SEPTEMBER 2016

ABSTRACT

Anaerobic digestion (AD) is a process by which microorganisms break down biodegrable material in the absence of oxygen. The process involves hydrolysis, acedogenesis and methanogensis stages. This technology have gained interests as a technique to recover resources such as energy and nutrient. Additionally, it can help in reducing waste volume as well as greenhouse gases. To improve the production of anaerobic digestion products, co-digestion of different substrates is being introduced. The benefits of co-digestion are to increase the efficiency of digestion process as the co-substrates can supply the missing nutrient in the main substrates. So far, there are no studies have been carried out for applications of anaerobic co-digestion of food waste (FW) with palm oil mill effluent (POME) to recover phosphorus. FW is a type of municipal solid wastes which abundantly available. It has high organic content and can cause various environmental problems if disposed on landfill. While POME is a largest wastewater produced by palm oil mill industry that contain significant nutrient content. It has been reported that phosphorus is a limited and non-renewable mineral source that is essential in our daily life especially for agricultural industry as fertilizers. Therefore, this study aims to investigate phosphorus recovery from FW using anaerobic co-digestion with POME. The physicochemical properties of the samples were determined to study the suitability to be used in anaerobic digestion. The results showed that the total solids and volatile solid of FW and POME were 15%, 3% and 94% and 68%, respectively, pH were, 3 and 5, respectively. These results suggested that FW and POME were appropriate to undergo anaerobic co-digestion for phosphorus recovery. The anaerobic digestion was performed using batch anaerobic digester at mesophilic condition at 37°C (± 1) and pH between 6.8-7.2. Mono-digestion of single FW and POME was carried out to investigate phosphorus recovery at different digestion period for 40 days. It was found the optimum days to recover phosphorus was within 30 days with 89% and 77%, phosphorus recovery from FW and POME, respectively. Therefore, the co-digestion was performed for 30 days at different ratios of FW to POME, namely 70:30% and 30:70%. The results showed co-digestion increased phosphorus recovery to 183-247%, compared to monodigestion, with 70:30 (FW:POME) was the highest, followed by 30:70 (FW:POME), 100% FW and 100% POME with percentages 247%, 183%, 89% and 77%, respectively. When expressed in mg P/q, the values were, 6.70 mg P/q, 3.00 mgP/q, 4.90 mg P/g and 0.68 mg P/g, respectively. From the results, this study suggested that phosphorus recovery can be improved using co-digestion with FW as the main substrates and POME was a suitable co-substrate in anaerobic codigestion. While the waste reduction was presented by total solid and volatile solid reduction with 41% and 45%, respectively from the result.

V

ABSTRAK

PENCERNAAN ANAEROBIK TUNGGAL DAN BERSAMA DI ANTARA SISA MAKANAN BERSAMA EFLUEN KILANG KELAPA SAWIT UNTUK PEMULIHAN FOSFORUS

Pencernaan anaerobik (PA) adalah suatu proses di mana mikroorganisma memecahkan bahan biodegrable dalam ketiadaan oksigen. Proses ini melibatkan peringkat hidrolisis, asidogenesis dan methanogensis. Kepentingan teknologi ini telah meningkat kerana ia merupakan teknik yang digunakan bagi mendapatkan sumber-sumber seperti tenaga dan nutrien. Selain itu , ia boleh membantu dalam mengurangkan jumlah sisa dan gas rumah hijau.Untuk meningkatkan pengeluaran produk pencernaan anaerobik, pencernaan bersama pelbagai substrat diperkenalkan. Manfaat proses ini adalah untuk meningkatkan kecekapan proses pencernaan di mana substrat bersama boleh membekalkan nutrien yang hilang dalam substrat utama. Setakat ini, tidak ada kajian telah dijalankan untuk aplikasi anaerobik bersama pencernaan bagi sisa makanan (SM) dengan efluen kilang minyak sawit (EKMS) untuk pemulihan fosforus. SM merupakan sisa pepeial perbandaran yang banyak dihasilkan. Ia mempunyai kandungan organik yang tinggi dan boleh menyebabkan pelbagai masalah alam sekitar sekiranya ia dilupuskan di tap<mark>ak pelup</mark>usan. Manakala, EKMS merupakan sisa air terbesar yang dihasilkan oleh industri kilang minyak sawit dan ia juga disignifikasikan mengandungi nutrien. Fosforus telah dilaporkan sebagai sumber mineral terhad dan ia tidak boleh diperbaharui. Namun begitu, ia amat penting dalam kehidupan harian kita terutamanya bagi industri pertanian di mana ia igunakan sebagai baja. Dengan itu, tujuan kajian ini adalah untuk mengkaji pemulihan fosforus daripada SM menggunakan pencernaan anaerobik bersama dengan EKMS. Bagi menentukan kesesuaian sampel yang digunakan dalam proses pencernaan anaerobik, sifat-sifat fizikokimia telah di analisa. Hasil kajian menunjukkan bahawa jumlah pepejal dan pepejal meruap bagi SM dan EKMS adalah 15%, 3% dan 94% dan 68%. Manakala, niai pH masing-masing adalah 3 dan 5. Keputusan ini menunjukkan bahawa SM dan EKMS adalah sesuai untuk menjalani anaerobik bersama bagi pemulihan fosforus. Pencernaan anaerobik dijalankan dengan menggunakan kumpulan anaerobik pencernaan pada keadaan mesophilic $37^{\circ}C$ (± 1) dan pH antara 6.8-7.2. Pencernaan tunggal SM dan EKMS telah dijalanan pada tempoh penghadaman yang berbeza iaitu selama 40 hari untuk menyiasat pemulihan fosforus. Keputusan kajian menunjukkan hari ke-30 merupakan hari yang optimum untuk pemulihan fosforus. Dimana hasil kajian daripada SM dan EKMS masingmasing menunjukkan pemulihan fosforus adalah sebanyak 89% dan 77%. Oleh itu, penghadaman bersama dilakukan selama 30 hari pada nisbah yang berbeza di antara SM dan EKMS, iaitu, 70: 30% dan 30: 70%.

Hasil kajian menunjukkan penghadaman bersama meningkatkan pemulihan fosforus sebanyak 183-247%, berbanding dengan penghadaman tunggal, dengan 70:30 (SM: EKMS) adalah yang tertinggi, diikuti oleh 30:70 (SM: EKMS), 100% SM dan 100 % EKMS dengan peratusan masing-masing 247%, 183%, 89% dan 77%. Apabila dinyatakan dalam unit mg P/g, nilai masing-masing adalah 6.70 mg P/g, 3.00 mg P/g, 4.90 mg P/g dan 0.68 mg P/g. Keputusan kajian ini mencadangkan bahawa pemulihan fosforus boleh dipertingkatkan dengan menggunakan penghadaman bersama. Di mana SM sebagai substrat utama dan EKMS subagai substrat bersama dalam anaerobik penghadaman bersama. Daripada hasil kajian, pengurangan jumlah sisa pepejal and pepejal meruap juga dapat ditunjukkan di mana nilai masing-masing adalah 41% dan 45%.

TABLE OF CONTENTS

Page

TITLE		
DECLARATION		ii
CERTIFICATION		iii
ACKNOWLEDGEMENT		iv
ABSTRACT		V
ABSTRAK		vi
TABLE OF CONTENTS		vii
LIST OF TABLES		×ii
		xv
LIST OF ABBREVIATIONS		xvii
LIST OF APPENDICES	UNIVERSITI MALAYSIA SABAH	xvii
CHAPTER 1: INTRODUCTION		

1.1	Background of study	1
1.2	Problem statement	2
1.3	Objectives of study	5
1.4	Scope of study	5

CHAPTER 2: LITERATURE REVIEW

2.1 Anaerobic digestion (AD)		bic digestion (AD)	6
	2.1.1	Background of anaerobic digestion	6

	2.1.2 Advantages and disadvantages of anaerobic digestion (AD)	6
	2.1.3 Process in anaerobic digestion	8
	a. Hydrolysis/Liquefaction	9
	b. Acedogenesis	9
	c. Methanogenesis	10
2.2	Anaerobic co-digestion (co-AD)	11
2.3	Factors affecting anaerobic digestion (AD)	13
	2.3.1 Temperature	13
	2.3.2 Retention time	14
	2.3.3 Waste composition/Volatile solid (VS)	14
	2.3.4 Alkalinity	15
	2.3.5 pH level	16
	2.3.6 Carbon to nitrogen ration (C:N)	16
	2.3.7 Mixing	17
	2.3.8 Micronutrient availability ERSITI MALAYSIA SABAH	17
	2.3.9 Volatile fatty acids (VFAs)	18
	2.3.10 Type of microoganism	20
2.4	Products of anaerobic digestion (AD)	20
	2.4.1 Biogas	21
	2.4.2 Nutrients	21
2.5	Municipal solid waste	21
	2.5.1 Food waste (FW)	24
2.6	Malaysian palm oil industry	26
	2.6.1 Uses of oil palm	28

	2.6.2	Types of waste residue produced by oil	
		palm industry	28
2.7	Palm o	oil mill effluent (POME)	30
2.8	Phosp	horus (P)	34
	2.8.1	Sources of phosphorus	34
	2.8.2	Depletion of phosphorus	35
	2.8.3	Excess of phosphorus in the environment	36
2.9	Treatm	ent and recovery of phosphorus (P)	37
	2.9.1	Treatment of phosphorus (P)	37
		a. Biological phosphorus removal (BPR)	37
		b. Biochemical background to the process	
		of biological phosphorus removal (BPR)	40
	2.9.2	Recovery of phosphorus (P)	42
СНА	PTER 3:	METHODOLOGY UNIVERSITI MALAYSIA SABAH	
3.1	Overvie	v of methods	45
3.2	Samples	collection and preparation	46
3.3	Determi	nation of FW composition	47
3.4	Determi	nation of physicochemical charcterization	48
	3.4.1	Physical determination of FW, POME and inocula	48
		a. Determination of total solid (TS)	48
		b. Determination of volatile solid (VS)	49
		c. Determination of pH	49

	3.4.2	Chemica	I characterization of FW and POME	50
		a.	Determination of total carbon (TC)	
			concentration by concentrations by	
			sulphuric acid-UV method	50
		b.	Determination of nitrogen concentration	
			by Kjedahl method	51
		с.	Determination of phosphorus concentration	
			by spectrometric method	55
3.5	Mono-A	Anarobic o	ligestion (mono- AD)	57
	3.5.1	Sample	preparation of FW and POME	57
	3.5.2	Mono-Al	D operational set-up	57
3.6	Co -Ana	aerobic di	gestion (co-AD)	59
	3.6.1	Sample	preparation of FW and POME	59
	3.6.2		perational set-up	59
3.7	Determ	ination of	phosphorus (P) VERSITI MALAYSIA SABAH	60
3.8	Determ	ination of	total volatile fatty acids (TVFAs) concentration	
	by disti	illation an	d titration methods	60
3.9	Determ	ination of	cations concentrations by AAS	61
3.10	Determ	ination of	TS and VS reduction on initial and final day	62
	digestio	on		

CHAPTER 4: RESULTS AND DISCUSSION

4.1	Composition of FW sample	63
4.2	Physical characteristics of FW, POME and inoculum	67
	4.2.1 Physical properties of raw food waste (FW)	67

	4.2.2 Physical properties of raw POME	69
	4.2.3 Physical properties of inoculum	70
4.3	Chemical characteristics of POME and raw FW	71
	4.3.1 Total carbon (TC) and total nitrogen (TN)	71
	4.3.2 Phosphorus	73
4.4	Phosphorus recovery at different digestion period	75
4.5	Phosphorus recovery from FW and POME in mono-AD and	
	co-AD process	80
4.6	Concentration of soluble cations (Na ⁺ and K ⁺) from initial	
	and final days digestion in mono and co-AD process	84
4.7	Reduction of waste through mono-AD and co-AD process	
	in mono-AD and co-AD	88
	4.7.1 Total solid (TS) and volatile solid (VS) reduction	88
4.8	Potential of phosphorus application	91
	UNIVERSITI MALAYSIA SABAH	
CHA	PTER 5: CONCLUSION AND FUTURE WORKS	
5.1	Conclusion	93
5.2	Future works	96

REFERENCES

APPENDICES

97

117

LIST OF TABLES

		Page
Table 2.1	The advantages and disadvantges of AD	7
Table 2.2	Overview of co-digestion (co-AD) studies	11
Table 2.3	Overview of carbon to nitrogen (C:N) studies in co-digestion (co-AD) process	12
Table 2.4	The range of VFAs concentrations in wastewater and waste	19
Table 2.5	Overview municipal solid waste (MSW) studies by countries	22
Table 2.6	Co <mark>mparison</mark> of waste characteristic in Kuala Lumpur, Penang and Bakri (Muar)	24
Table 2.7	Composition of different components of food waste reported in the literature (on % dry weight/weight)	25
Table 2.8	Micronutrient composition of food and green wastes	25
Table 2.9	World Palm Oil Production in 2012	27
Table 2.10	Summarizes the uses of palm oil	28
Table 2.11	Various palm mill wastes and their common uses	29
Table 2.12	Characteristics of palm oil mill effluent (POME)	31
Table 2.13	Advantages and disadvantages between anaerobic and alternative treatment methods	33
Table 2.14	Selected Sources of Dietary Phosphorus	35
Table 3.1	Preparation of mixed reagent	57

Table 3.2	Mono-AD of FW and POME in different reactor	58
Table 3.3	Co-AD of FW and POME in different reactor	60
Table 4.1	Components of FW collected in three different months in 2015	63
Table 4.2	Comparison of total average of leftover components in three different classes of food with other studies	65
Table 4.3	TS, VS and pH of FW	67
Table 4.4	Comparison of TS, VS and pH of raw FW from previous studies	68
Table 4.5	TS, VS and pH of POME	69
Table 4.6	TS, VS and pH of inoculums (primary sludge)	71
Table 4.7	Values of TC, TN and C/N of raw POME and FW	72
Table 4.8	Comparison C:N ratio from previous studies	73
Table 4.9	P concentration in raw FW and POME	74
Table 4.10	Comparison P of raw POME and FW with previous ABAH studies	75
Table 4.11	Daily P production throughout 40 days of mono-AD for FW and POME	76
Table 4.12	P recovery, pH, and TVFA in 40 days digestion	79
Table 4.13	Comparison of P production with others studies	80
Table 4.14	Composition of FW and POME in different batch reactors	80
Table 4.15	P recovery between mono-AD and co-AD of POME and FW 30 days	81
Table 4.16	Optimum pH for P recovery in 30 days digestion process	82

Table 4.17	Comparison of optimum pH and TVFAs concentrations with	84
	others studies	
Table 4.18	Total TS degraded during mono-AD and co-AD process	89
Table 4.19	Total VS degraded during mono-AD and co-AD process	90
Table 4.20	Comparison of total TS and VS degraded from others	91

LIST OF FIGURES

P:	n	ρ
10	чЧ	

Figure 2.1	Anaerobic pathway of complex organic matter degradation	8
Figure 2.2	General process of mono-AD and co-AD plant	13
Figure 2.3	The percentages of municipal solid waste at Bhimtal, India	23
Figure 2.4	World rock phosphate production	36
Figure 2.5	BPR process diagram	38
Figure 2.6	BPR metabolism by PAOs in anaerobic zone	39
Figure 2.7	Structure of polyphosphate	40
Figure 2.8	Anaerobic conversion of acetate and glycogen to PHA	41
Figure 2.9	Biochemical process in AD zone	42
Figure 2.10	The global percentage of phosphorus demands in agricultural	43
Figure 2.11	Overview of phosphorus removal	44
Figure 3.1	Research method flowchart	45
Figure 3.2	Food waste sample (a). POME sample (b)	46
Figure 3.3	Preparation of inocula before anaerobic digestion process	47
Figure 3.4	UV-VIS Spectrophohotomer machine (Cary 60, Perkin-Elmer)	51
Figure 3.5	Sample colour after digestion process	52
Figure 3.6	Digester machine (K-436, Buchi)	52
Figure 3.7	Sample colour after distillation process	53

Figure 3.8	Distiller machine (K-360, Buchi)	54
Figure 3.9	Sample colour after titration process	55
Figure 3.10	Preparation of standard and sample solutions for UV-VIS Analysis	55
Figure 3.11	Mono-AD in 40 days	58
Figure 3.12	Method used for releasing gases during AD	59
Figure 3.13	AAS Spectoscopy machine (Perkin Elmer)	62
Figure 4.1	Leftover components in three months period	64
Figure 4.2	Mono-AD of POME and FW in 40 days	77
Figure 4.3	The content of soluble Na ⁺ ions concentration before and after digestion process	84
Figure 4.4	The reduction of soluble Na ⁺ in 30 days digestion period	86
Figure 4.5	The content of soluble K ⁺ ions concentration before and after digestion process	87
Figure 4.6	The reduction of soluble K ⁺ in 30 days digestion period	88

LIST OF ABBREVIATIONS

AAS	-	Atomic Absorption Spectrometer
AD	-	Anaerobic Digestion
AO	•	Anaerobic/Oxic process
A20	# a	Advanced Anaerobic/Oxic process
BVS	-	Biodegrable Volatile Solid
CH ₄	7	Methane
СО	-	Carbon Monoxide
CO2	-	Carbon Dioxide Gas
СРО	T	Crude Palm Oil
CRFW		Carbohydrates Rich Food Waste
C:N		Carbon to Nitrogen
FWDs	SA B	Food Waste Disposal Units
H ₂	-	Hydrogen Gas
H ₂ O	-	Water
FFB	-	Fresh Fruit Bunch
FRFW	-	Fiber Rich Food Waste
FW	-	Food waste
HRT	-	Hydraulic Retention Time
K ⁺	-	Potassium ion
MHLG	-	Ministry Housing and Local Government
MAP	-	Magnesium: Ammonium: Phosphorus
МРОВ	-	Malaysia Palm Oil Board

MSW	-	Municipal Solid Waste
Na ⁺	-	Sodium ion
O ₂	-	Oxygen Gas
Р	-	Phosphorus
PAO	-	Phosphorus Accumulating Organisms
POME	-	Palm Oil Mill Effulent
POMW	×	Palm Oil Mill Waste
PRFW	-	Protein Rich Food Waste
MD1	-	100% of FW
MD2	-	100% of POME
CD1	ж	70:30% of FW:POME
CD2	141	30:70% of FW:POME
RVS		Refractory Volatile Solid
TKN	AC	Total Kjedhal Nitrogen
TS	S-A B	Total Solid JNIVERSITI MALAYSIA SAB
TVFAs	-	Total volatile fatty acids
SBR	-	Sequencing Batch Reactor
SCFA	-	Short Chain Fatty Acid
UCT		University Cape Town process
UV-Vis	÷	Ultraviolet-visible
VS	4	Volatile Solid
Mg ²⁺	-	Magnesium ion
NH_4^+	9	Ammonium ion
PO4 ³⁻	-	Phosphate ion
VIP	-	Virginia Innovative Plant

LIST OF APPENDICES

Appendix A	Raw samples calculation in each reactor	117
Appendix B	Preparation and calibration of glucose stock solution	118
Appendix C	Preparation and calibration phoshorus stock solution	119
Appendix D	Preparation and calibration sodium stock solution	120
Appendix E	Preparation and calibration potassium stock solution	121
Appendix F	Calculation of phosphorus concentration in each reactor	122
Appendix G	Calculation of phosphorus recovery by FW and POME	123
1 N LL		

UNIVERSITI MALAYSIA SABAH

Page

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Anaerobic digestion (AD) is an attractive and appropriate treatment process for organic wastes such as food waste (FW) (Xian *et al.*, 2013) and palm oil mill effluent (POME) (Abdurahman *et al.*, 2013). It is classified as a biological process where the organic materials are decomposed by bacteria in oxygen free state (Iacovidov *et al.*, 2012). According to Kangle *et al.* (2012), the main principle of this method is degradation and destruction of the organic substances sequentially as a process of stabilizes which also resulting in the diminishing of odor and pathogens. This view is supported by Hariprasad *et al.* (2014) as AD treatment provides a better environmental advantages compared to other technologies, for instance: composting. It is also considered as a technology that can convert waste to energy that widely applied for treatment on organic wastes that are easily biodegrable in nature (Chen *et al.*, 2010; Baba & Nasir, 2012; Cunsheng *et al.*, 2013). Additionally, AD also can solubilize phosphorus (P) for recovery that is useful to community and economy of a country (Hood *et al.*, 2001; Batitistoni *et al.*, 2006; Martina *et al.*, 2013).

Recent developments in the field of AD have led to a renewed interest on anaerobic co-digestion (Co-AD) due to the positive synergisms effects establish in the medium which directly can improve the digestion and nutrient balance (Mata-Alvarez *et al.*, 2000; Angelidaki *et al.* 2003; Cunsheng *et al.* 2013). Co-AD described as a combination treatment of several wastes with complementary characteristics as being one of the main advantages of the anaerobic technology (Fernandez & Forster, 1993; Kangle *et al.*, 2012). Nowadays, it becomes one of the most widely treatment used for treating wastes due to its advantages opposed to traditional AD. Gomez *et al.* (2006) stated that the intentions of this technology are to stabilize the AD process as well increases resources production such as methane gas and valuable nutrients (Batistoni *et al.*, 2006; Chen *et al.*, 2008; Coats *et al.*, 2011; Maranon *et al.*, 2012). Nevertheless, there are very limited research works that have been carried out to recover phosphorus (P) using co-AD technique. Therefore, one of the intentions of this study is to provide data and information on P recovery using AD techniques. For future work, AD can be applied in P recovery in the form of struvite, which can be used as slow - release fertilizer.

1.2 Problem Statement

Over the past decades, municipal solid waste (MSW) management has become a central issue in developing countries (Mohd Dinie and Mashitah, 2013). In Malaysia, MSW is the most challenging problems due to the rapid urbanization, industrialization and high demand in the guality of life. According to Kathiravale & Mohd Yunus (2008), Malaysian generates almost 17,000 tonnes of domestic waste daily, which one of the most significant current MSW is food waste (FW). This report is supported by Nurhidayati Abdul Aziz (2009) who stated that in the past decades FW has become the major components of MSW particularly in the rapid development countries. Recent years, Solid Waste and Public Cleansing Management Corporation (SWCorp, 2015) also have reported about 45% of waste in Malaysia was contribute by FW. FW generation rate in India also increased by 1.33 times per year due to the increasing of population (Ankur et al., 2013). In addition, similar observations found in United States (US), where FW becomes the single largest component of waste produced in the country (Kubaska et al., 2010). According to a report published by California Integrated Waste Management Board (Carr, 2004), the estimated amount of FW generated in 1999 was 5.6 million wet tons per year and this value increase gradually in a year (Liu et al., 2009).