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ABSTRACT 

Human Wharton's jelly mesenchymal stem cells (WJ-MSCs) treatments are 
being tested clinically for a range of disorders. Surface modification techniques 
have been instrumental in the development of biomaterials that promote cell
surface interactions. In this study, the surface of graphene oxide (GO) was 
modified to promote the proliferation and differentiation of Wharton's jelly 
mesenchymal stem cells (WJ-MSCs). Synthesized GO was prepared through 
modified Hummers method, fabrication of GO film using drop-casting method 
and attachment of peptide to GO film through non-covalent approach, n-rc 

and electrostatic interactions. Synthesized GO were confirmed by UV-vis, XRD 
and FTIR. SEM and AFM images showed that synthesized GO has curled 
transparent thin film with thickness of 1.10 nm. Four peptide sequences, 
namely Pepl ("N"-YIGSRWYQNMIRIKVAV-"C''), Pep2 ("N"
QHREDGSYIGSRIKVAV-"C''), Pep3 ("N"-WQPPRARIYIGSRIKVAV-"C") and 
Pep4 ("N"-DGEARGDSPKRSR-"C") were designed based short peptide 
sequences derived from extracellular matrix (ECM) adhesion peptides. AFM 
results revealed the thickness of GO biofilm (0.25 mg/ml) was 82.6 nm ± 
10.4 nm, corresponding to 65 - 85 layers of single layer GO. The GO biofilm 
(0.25 mg/ml) treated with Pepl shows decrease in thickness as compared to 
non-treated GO film and the present of peptide bond in GO/Pep biofilm was 
confirmed by modified Lowry method. Furthermore, GO biofilms with 
concentration lower than 0.25 mg/ml were able to maintain the cell viability 
at day 5 as compared to glass coverslip. The WJ-MSCs were able to attach 
and growth on GO film. Increased of cell viability at day 6 was observed for 
all the GO/Pep biofilms as compared to GO biofilm. GO and GO/Pep biofilm 
allowed WJ-MSCs attachment, proliferation and increased in osteogenic 
differentiation capacity. Besides, the cell cultured on GO and GO/Pep biofilm 
able to maintain its undifferentiated stem cell characteristic. The data obtained 
here collectively demonstrates that the GO/Peptide biofilm assemble via non
covalent approach is a potential substrate for the adhesion, proliferation and 
enhance osteogenic differentiation of human WJ-MSCs. In conclusion, GO/Pep 
biofilms can be utilized for designing and manipulating biomaterials for stem 
cell, biological and tissue engineering applications. 
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ABSTRAK 

FABRIKASI BIOFILEM GRAPHENE OXIDE DAN GRAPHENE OXIDE/ 

PEPTIDA: PENCIRIAN, KEBOLEHAN HIDUPAN SEL DAN 
POTENSI PEMBEZAAN BAGI SEL STEM 

MESENKIMA WHARTON JELI 

Rawatan sels stem mesenkima Wharton je/i manusia (WJ-MSCs} diuji secara klinikal 
untuk pelbagai penyakit. Teknik pengubahsuaian permukaan bagi menggalakkan 
interaksi sel dengan permukaan telah memainkan peranan penting dalam 
pembangunan biobahan. Dalam kajian inl permukaan oksida grafit (GO} diubahsuai 
bagi menggalakkan kebolehan hidupan se/ dan pembezaan WJ-MSCs. Oksida grafit 
yang disintesis melalui kaedah Hummers yang diubahsuat fabrikasi filem GO dengan 
kaedah 'drop-casting-' dan lekatan peptida ke filem GO melalui pendekatan bukan 
kovalen, n-n dan interaksi e/ektrostatik. GO yang disintesis disahkan o/eh UV-vis, XRD, 
dan FTIR. Imej SEM dan AFM menunjukkan bahawa GO yang disintesis mempunyai 
ketebalan 1.10 nm. Empat urutan peptida, Pepl (''N"-YIGSRWYQNMIRIKVAV-"C''), 
Pep2 (''N"-QHREDGSYIGSRIKVA V-"C''}, Pep3 ("N"-WQPPRARIYIGSRIKVA V-"C''} dan 
Pep4 (''DGEARGDSPKRSR-"C''} direka berdasarkan urutan pendek peptida dari 
matriks ekstrase/ular (ECM}. Hasil AFM mendedahkan ketebalan GO biofilem (0.25 
mg/ml} adalah 82.6 nm± 10.4 nm, bersamaan dengan 65 - 85 lapisan tunggal GO. 
Biofilem GO (0.25 mg/ml} yang dirawat dengan Pepl telah menunjukkan penurunan 
dalam ketebalan berbanding filem GO yang tldak dirawat, dan kemunculan ikatan 
peptida dalam GO/Pep biofilem telah disahkan o/eh kaedah Lowry yang diubah suai. 
Tambahan pula, biofilem GO dengan kepekatan lebih rendah daripada 0.25 mg/ml 
tidak menunjukkan ketara dalam daya tahan sel pada hari ke-5, berbanding dengan 
kawalan (kaca}. WJ-MSCs dapat melampirkan dan berkembang pada filem GO. 
Peningkatan daya maju se/ pada hari 6 diperhatikan bagi semua biofilem GO/Pep, 
berbanding dengan biofilem GO. GO dan GO / Pep biofilem membenarkan lekatan 
WJ-MSC, kebolehan hiduoan sel dan peningkatan keupayaan pembezaan osteogenik. 
Selain itu, se/ yang berbudaya pada biofilem GO dan GO / Pep dapat mengekalkan 
ciri sel stem yang tidak dibezakan. Data yang diperoleh di sini secara kolektif telah 
menunjukkan bahawa biofilem GO/Pep dihasilkan melalui pendekatan bukan kovalen 
adalah substrat yang berpotensi untuk melekatkan, mempercepatkan dan 
meningkatkan pembezaan osteogenik WJ-MSC manusia. Kesimpulanya, biofilem 
GO/Pep boleh digunakan dalam mereka bentuk dan memanipu/asi biobahan untuk 
aplikasi stem sel, biologi dan tisu. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research background 

Recently, stem cell researches are expand rapidly with the potential to develop 

tissues/cells for transplantation, therapeutic agents to treat diseases as well as study 

disease development from early stages. Stem cells are an attractive prospect for 

tissue engineering and regenerative medicine due to their self-renewal capacity and 

multilineage differentiation (Higuchi et al., 2012). Stem cell can be isolated from 

embryonic and adult stem cells. Embryonic stem cells (ESC) isolated from inner cell 

mass of a blastocyst are pluripotent (Bongso et al., 1994), which able to differentiate 

into all types of cells from three germ layers namely, the ectoderm ( epidermal tissue 

& nerves), mesoderm (muscle, bone & blood) and endoderm (liver, pancreas, 

gastrointestinal tract & lungs) (Thomas et al., 2009). However, their clinical 

applications are limited by cellular immune rejection, tendency to form tumors and 

ethical issue (Edwards, 2007; Maitra et al., 2005; Saric et al., 2008). Therefore, adult 

stem cells began to become a potential substitute source of stem cell. Mesenchymal 

stem cells derived from bone marrow show similar functions as ESC and at the same 

time without involving embryos destruction (Takahashi & Yamanaka, 2006). 

Unfortunately, when it comes to clinical applications, the bone morrow derived 

mesenchymal stem cell (BM-MSCs) also face challenges, such as genetic alterations 

occurring due to ageing, limitation of cell numbers, decreased growth and 

differentiation capacity changes and painful isolation process (Baksh et al., 2007; 

Mimeault et al., 2007; Mueller & Glowacki, 2001). Thus, extensive research have 

been done in proving mesenchymal stem cells isolated from human umbilical cord

derived stem cells as a new potential source of stem cells(Jin et al., 2013; Nagamura

Inoue & He, 2014; Wang et al., 2009; Yousefifard et al., 2016). 



Extensive investigations of Wharton's jelly mesenchymal stem cells (WJ-MSCs) 

as a potential source of stem cell have been done. WJ-MSCs shared several 

remarkable features that make these cells suitable as an alternative source of 

mesenchymal stem cells. WJ-MSCs have shown the differentiation potential of WJ

MSCs into adipogenic, osteogenic, chondrogenic, angiogenic, neurogenic and 

myogenic (Aristea et al., 2013; Iwona et al., 2013; Pires et al., 2014; Xu et al., 2017), 

high capacity of proliferation and no risk is associated with teratoma formation, do 

not elicit an immune reaction which may reduce the risks of rejection upon 

transplantation (Davies et al., 2017; Karahuseyinoglu et al., 2007; Kim et al., 2013a; 

Medicetty et al., 2004; Rachakatla et al., 2007; Troyer & Weiss, 2008; Zhou et al., 

2011), abundance and easy accessibility during pregnancy from healthy mothers as 

they are discarded after delivery (Li et al., 2017; Nagamura-Inoue & He, 2014), 

noninvasive isolation process and ethically free from controversial issues concerning 

human embryos as the stem cells sources (Edwards, 2007; Nagamura-Inoue & He, 

2014). Due to these beneficial properties, WJ-MSCs shows ideal for clinical practice 

and good potential for cell therapy. However, WJ-MSCs have shown poor osteogenic 

and chondrogenic differentiation potential as compared to BM-MSCs (Hsieh et al., 

2010; Wang et al., 2009). Hence, WJ-MSCs have been shown to increase its 

differentiation capacity by culturing in nano-scaffold (Gauthaman et al., 2010; 

Hosseini et al., 2015; Inthanon et al., 2016). Despite the differences, future scientific 

and clinical application of WJ-MSCs will require a detailed understanding of the 

mechanisms and signals that maintain their undifferentiated or enhance their 

differentiation capacity. 

The stem cell 'niche' refers to the specific microenvironment features that 

regulates the fate of stem cells (Fuchs et al., 2004). The stem cell fate is manipulated 

by varying the niche, for example, by altering the signaling molecules, stromal 

support tissue with cell-cell interactions, integrins-mediated cell-matrix interaction 

with the surrounding ECM, biophysical stimuli (Brafman, 2013) . Recently, graphene

based nanomaterials are being applied to tissue engineering and induction of cell 

differentiations for in vitro stem cell culture. 
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Graphene-based biomaterials are able to modulate stem cell behaviors by 

providing a unique physical framework which proven to be comparable to natural 

ECM (Garcia-Alegria et al., 2016; Kim et al., 2013b; Marcela et al., 2015). Due to the 

surface property of GO (hydrophilic) with the presence of oxygenated group enable 

them to bind with serum protein through electrostatic interactions and act as a pre

concentration platform to induce osteogenic and adipogenic differentiation (Lee et 

al., 2011). Development of functionalized graphene oxide biomaterials is also 

necessary to improve their solubility and biocompatibility, and reduced cytotoxicity 

and genotoxicity in cellular application (Guo & Mei, 2014). The characteristic and 

biocompatibility of graphene-based nanomaterials may be controlled through surface 

functionalization either through covalent conjugation or noncovalent physisorption 

with other protein and peptides (Lu et al., 2010; Sasidharan et al., 2011). 

To mimic the microenvironment of stem cell culture condition, extracellular 

matrix (ECM) components in important to enhance the growth and control stem cell 

fate (Ahmed & ffrench-Constant, 2016) Thus, synthetic biomaterials, such as 

peptides and polymers, are easily to fabricate and represent a reliable alternative for 

in vitro stem cell culture. Synthetic approaches for peptide materials, for example, 

short chain of amino acids, are quite different from protein materials, for example, 

long chains of amino acids. However, both strategies allow researchers the unique 

ability to program the exact monomer sequence within the biopolymer. Utilization of 

synthetic peptides as a component within engineered biomaterials is now a standard 

technique. For instances, peptides have been grafted to a variety of synthetic 

polymers to endow the material with cell-adhesive, enzymatically degradable and 

growth factor-binding properties. 

In this study, GO biofilm were fabricated in various concentration and treated 

with bioactive peptide sequences via non-covalent approach as a biomaterials for 

culture WJ-MSCs. Then, direct contact of WJ-MSCs with various concentration of GO 

biofilm for certain cultured period via cell viability assay and morphological changes 

of cells were determined. The effect of bioactive peptide grafted on GO biofilm at 

different time point via cell morphology, cell viability assay and also the differentiation 

potential towards osteogenic and adipogenic lineages were studied. 
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1.2 Objectives 

The objectives of this research are: 

(i) To synthesize and characterize GO flakes, GO biofilms and GO/Peptides

biofilms.

(ii) To evaluate the cell viability of various concentrations of GO biofilms and

proliferation potential of GO/Peptide biofilm on Wharton Jelly's mesenchymal

stem cells (WJ-MSCs).

(iii) To investigate the osteogenic and adipogenic differentiation potential of GO

and GO/Peptides biofilms on WJ-MSCs.

1.3 Scope of Work 

This research focus on the fabrication of biocompatible substrate for growing 

Wharton's Jelly mesenchymal stem cells (WJ-MSCs). Graphene oxide (GO) flake is 

first synthesize through the modified Hummers method from graphite flake. The 

fabrication of GO biofilms with varying ratio is prepare by drop-casted the synthesize 

GO solution on APTES-treated glass coverslip. For the fabrication of GO/Pep biofilm, 

peptide sequences is first design based on the bio-active short peptides. Then, 

GO/Peptide biofilms are prepare by assembly the different peptide sequences onto 

the surface of GO biofilm using non-covalent method. The surface of GO and GO/Pep 

biofilms are characterize using scanning-electron microscope (SEM) and atomic force 

microscope (AFM). The present of peptide bond on GO/Pep biofilm is measure using 

modified Lowry's method and Fourier transform infrared spectroscopy (FTIR). The 

cell viability of varying concentrations of GO biofilms are studied by culture with WJ

MSCs for 5 days using MTT assay. The osteogenic and adiposgenic differentiation 

potential of both GO and GO/Pep biofilms are also studied with culture WJ-MSCs. The 

main objective is to evaluate the cell viability and differentiation potential of WJ-MSCs 

growth on the GO film before and after treated with peptide using non-covalent 

approach. The expected outcome and hypothesis is that the GO biofilm treated with 

peptide will allow better stem cell proliferation and increase the differentiation 

capacity. 
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2.1 Stem Cell 

CHAPTER2 

LITERATURE REVIEW 

Stem cells are defined as cells that have two main characteristic: capability to 

proliferate indefinitely and multilineage differentiation (Leeb et al., 2010; Zhang & 

Fu, 2008). These properties of human stem cells have been extensively studied for 

their regeneration processes, cell-replacement therapies, use for disease modeling 

and drug screening (Srivastava & Ivey, 2006; Wu & Izpisua Belmonte, 2016). 

Basically, stem cell can be classified based the differentiation capacity. Stem cell 

produced from the fusion of an egg and sperm cell are totipotent cells which is the 

most important stem cells that capable to differentiate into all types of cell, including 

cell for development of placenta, umbilical cord, and any other cell found in the adult 

body (Baker & Pera, 2018; Forraz & McGuckin, 2011). Embryonic stem cells isolated 

from inner cell mass of a blastocyst are pluripotent cells and potential to give rise to 

any differentiated cell in the body, except the placenta and umbilical cord (Hima & 

Srilatha, 2011; Thomson et al., 1998). Induced pluripotent stem cells (iPSC) 

discovered by Yamanaka and coworkers by inducing the somatic terminally 

differentiated cell to express a number of genes that are normally present in 

embryonic stem cell to produce stable lines of embryonic-like pluripotent stem cells 

(Takahashi et al., 2007; Takahashi & Yamanaka, 2006). Adult or somatic stem cells 

can also be isolated from various adult human tissues, such as brain, bone marrow, 

skin, liver, gut, fat and more. These adult stem cells can be isolated from several 

tissue sources, such as bone marrow, the central nervous system and skeletal. They 

are multipotent stem cells which can proliferate and differentiate into those closely 

related family of cells (Toma et al., 2001). In the context of clinical applications of 

stem cells, totipotent stem cells, pluripotent stem cells (embryonic stem cell) and 

iPSC are currently constrained by cellular immune rejection (Saric et al., 2008), 



tendency to form turners (Maitra et al., 2005; Shih et al., 2011), ethical issue 

concerning human embryos as the sources (Edwards, 2007; Nagamura-Inoue & He, 

2014) and low efficiency induced gene expression (for iPSC) (Forraz & McGuckin, 

2011; Yamanaka, 2012). In contrast, the use of adult stem cells such as 

mesenchymal stem cells does not involve destruction of human embryos and at the 

same time show similar functions as ESC (Okolicsanyi et al., 2015; Takahashi & 

Yamanaka, 2006). Adult stem cells have been used for many years for leukemia and 

blood/bone cancers treatment though bone marrow transplants (Moorthy, 2011; 

Radhika & Laxmi, 2011). 

Mesenchymal stem cells (MSC) are adult stem cells that can proliferate as 

undifferentiated cells and able to potentially differentiate to lineages of mesenchymal 

tissues, such as cartilage, bone, tendon, fat, muscle and marrow stroma (Pittenger 

et al., 1999) (Okolicsanyi et al., 2015). Mesenchymal stem cell can be isolated mainly 

from adult tissues, including bone marrow (Wexler et al., 2003) and adipose tissue 

(Zuk et al., 2002). To a lesser extent, MSC can also isolated from dental pulp 

(Gronthos et al., 2000), trabecular bone (Noth et al., 2002), tendon (Bi et al., 2007), 

placenta (Fukuchi et al., 2004), umbilical cord (Romanov et al., 2003), amniotic fluid, 

synovia (De Bari et al., 2001) and others. Due to the lack of standard isolation, 

culture and characterizing protocols, results in many difficulties when comparing the 

study outcomes. Thus, in year 2006, the Mesenchymal and Tissue Stem Cell 

Committee of the International Society for Cellular Therapy (ISCT) proposes minimal 

criteria to define human mesenchymal stem cells (hMSCs). Firstly, hMSCs must be 

plastic-adherent in classical culture conditions. Secondly, under specific in vitro

differentiation conditions, hMSCs must be able to consistently differentiate into 

trilineage differentiation, including adipocytes, osteoblasts and chrondroblasts. 

Additional requirements included hMSC population must express high levels (� 95% 

positive) of CDlOS, CD73 and CD90, and the low expression (� 2% positive) of the 

hematopoietic markers, CD 34, CD11b or CD14, CD 45, CD19 or CD79a and HLADR 

(Dominici et al., 2006; Keating, 2012). For multipotentcy plastic adherent cells with 

lack of characterization data, the term 'multipotent mesenchymal stromal cell' with 

the same acronym MSC can be used to indicate these unique properties without 

ascribing homogeneity or stem cell activity (Davies et al., 2017; Horwitz et al., 2005). 
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For the past few years, clinical application of autologous bone marrow 

mesenchymal stem cells (BM-MSCs) was reported for conditions, including Crohn's 

disease (Duijvestein et al., 2010), cardiac infarction (Minguell et al., 2011), bone 

tissue engineering (Kagami et al., 2011) and graft-versus-host disease (GVHD) 

(Murai et al., 2013; Murai et al., 2016; Weng et al., 2010). Besides, BM-MSCs also 

face challenges like limitation of cell numbers, decreased growth and differentiation 

capacity due to age-related changes when it applied for clinical applications (Baksh 

et al., 2007; Mueller & Glowacki, 2001). In recent years, extensive studies focus on 

human umbilical cord mesenchymal stem cells (hUC-MSCs) with similar gene 

expression profile of hESCs and faster self-renewal as compared to BM-MSCs as the 

alternative source of stem cell (Baksh et al., 2007; Jin et al., 2013; Malgieri et al., 

2010; Nagamura-Inoue & He, 2014; Wang et al., 2009; Yousefifard et al., 2016). 

2.2 Wharton's Jelly Mesenchymal Stem Cells (Wl-MSCs) 

2.2.1 WJ-MSCs as the Alternative Source of Mesenchymal Stem Cells 

Human umbilical cord is considered as medical waste has been collected and used 

as the alternative source of stem cells. Isolation of mesenchymal stem cell from 

umbilical cord is noninvasive and does not encounter ethical problems (Li et al., 2017; 

Nagamura-Inoue & He, 2014). Human umbilical cord with an inner tissue contain two 

arteries and one vein and is surrounded by a connective tissue called Wharton's jelly 

(Figure 2.1). Mesenchymal stem cells which directly obtained from Wharton's jelly, 

and are known as human Wharton's jelly mesenchymal stem cells (WJ-MSCs) (Forraz 

& McGuckin, 2011). Fibroblast-like cells were first isolated about 20 years ago from 

Wharton's jelly (McElreavey et al., 1991). In 2004, WJ-MSCs were finally proved to 

be MSCs, as the cells expressed CD 105, CD 73, CD 51, CD 44 and CD 29, lacked 

expression of CD 45 and CD 34, and proved to be able to differentiate into osteogenic 

and adipogenic lineages (Wang et al., 2004). Currently, WJ-MSCs can be isolated 

either using the explant method or the enzymatic digestion method and most likely 

consist of a heterogeneous population (Seshareddy et al., 2008). 
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