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ABSTRACT 
 

The main objective of this research is to enhance the classification performance of 
the neural network-based bearing fault diagnostic module particularly when the 
input data has unpredictable variations compared to the training data under various 
working conditions. The most challenging problem in the fault diagnosis tasks is 
classifying testing data that has never been seen before by the classifier during 
training. Therefore genetic algorithm (GA) is employed to search for a minimum 
number of relevant features nonlinearly to increase the classification accuracy while 
reducing the computational effort of the training process. However this feature 
selection algorithm might be unstable due to the stochastic property of GA. In 
addition, GA has the limitation on generalization which causes the problem of over-
fitting to the training data. Therefore a correlation-based filtering algorithm is 
embedded into GA feature selection to solve the over-fitting problem and increase 
the adaptability of the diagnostic scheme to unpredictable input data. The 
developed bearing fault diagnosis system has been evaluated and assessed for 
various working conditions such as rotating speeds, bearing types, fault types and 
fault sizes. Results show that the reinforced network classifier with GA feature 
selection algorithm has successfully increased the classification accuracy of training 
process and testing process by 13.87% and 14.21% respectively compared to the 
conventional neural network classifier. However the average classification accuracy 
of 84.74% on the unseen test data did not achieve the acceptable average success 
rate of 90% in this application. This is due to the features selected in this classifier 
is over-fitted to the training data and not generalized for variations in testing data. 
Subsequently, the integration of embedded correlation-based filtering algorithm has 
further increased the classification accuracy of training process and testing process 
by 4.93% and 14.73% respectively. The average classification accuracy of 99.47% 
on the test data achieved the acceptable average success rate. Thus, it can be 
concluded that the developed algorithm is capable to improve the classification 
efficiency by improving the generality of the classifier in classifying test data with 
unpredictable variations under various working conditions. 
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ABSTRAK 
 

PENINGKATAN PRESTASI MODUL DIAGNOSIS GALAS MELALUI 
PEMILIHAN CIRI YANG DIOPTIMUMKAN OLEH ALGORITMA GENETIK 

 
Objektif utama kajian ini adalah untuk meningkatkan prestasi pengkelasan untuk 
modul diagnosis galas bebola berasaskan rangkaian neural, terutamanya untuk 
data yang mempunyai variasi yang tidak menentu berbanding dengan data latihan 
di pelbagai keadaan operasi. Masalah yang paling mencabar dalam tugas 
pengkelasan ialah mengklasifikasikan data yang tidak pernah wujud semasa latihan. 
Oleh itu, algoritma genetik (AG) dicadangkan untuk mencari ciri-ciri yang penting 
dalam bilangan minimum untuk meningkatkan peratusan ketepatan pengkelasan 
serta mengurangkan usaha pengiraan dalam proses latihan. Walau bagaimanapun, 
AG mungkin tidak stabil disebabkan perubahan AG yang tidak menentu. Maka, 
algoritma pemilihan ciri berasaskan korelasi dibenamkan ke dalam AG untuk 
meningkatkan pengitlakan terhadap data input yang tidak menentu. Sistem ini 
telah dianalisis dan dikaji untuk pelbagai keadaan seperti variasi kelajuan, jenis 
galas bebola, jenis kerosakan dan saiz kerosakan. Keputusan menunjukkan bahawa 
pengkelasan berasaskan rangkaian neural yang diperkukuhkan dengan AG 
algoritma pemilihan ciri telah berjaya meningkatkan ketepatan klasifikasi untuk 
proses latihan dan proses ujian sebanyak 13.78% dan 14.21% masing-masing 
berbanding dengan pengkelasan berasaskan rangkaian neural konvensional. 
Walaubagaimanapun, peratus ketepatan klasifikasi sebanyak 84.74% untuk data 
ujian tidak mencapai purata ketepatan klasifikasi yang dapat diterima dalam kerja 
ini, iaitu sebanyak 90%. Ini adala kerana ciri-ciri yang dipilih adalah lebih sesuai 
untuk data latihan dan tidak stabil untuk variasi data ujian. Justeru, algoritma 
pemilihan ciri berasaskan korelasi yang dibenamkan ke dalam AG dapat 
meningkatkan lagi ketepatan klasifikasi proses latihan dan proses ujian sebanyak 
4.93% dan 14.73% masing-masing. Purata ketepatan klasifikasi sebanyak 99.47% 
untuk data ujian dapat mencapai purata ketepatan klasifikasi yang dapat diterima. 
Oleh itu, kesimpulan dapat dibuat bahawa sistem ini mampu meningkatkan 
ketepatan klasifikasi dengan meningkatkan pengitlakan dalam mengklasifikasikan 
data ujian dengan variasi yang tidak menentu di bawah pelbagai keadaan.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Project Background 

Rotating machinery is widely used in industries including machining tools, milling 

machines, and aircraft gas turbine engines, due to their relatively low cost. The 

most frequent failure that causes an unexpected machine breakdown is due to 

bearing defects, so bearings are classified as critical mechanical components. A 

reliable condition monitoring system is important for predictive maintenance actions 

to reduce the need of periodic shutdowns for routine inspections. Consequently, 

there is a high demand for researches to be conducted on the development of 

bearing condition monitoring system. The condition monitoring system consists of 

incipient fault detection, fault isolation and severity monitoring. Due to the shortage 

of experienced personnel, an automated on-site diagnosis system that does not 

require human interpretations to analyze the data is desirable.  

 

The main components of rolling element bearings consist of an outer race, 

an inner race, rolling elements in between the two races, and a cage around the 

rolling elements. The rolling elements can be needles, balls, cylindrical rollers, 

tapered rollers or barrel rollers. The outer race is typically mounted to the 

stationary housing, and the inner race is mounted on the rotating shaft. The 

function of cage is to separate the rolling elements to avoid contact between them 

(Kiral and Karagülle, 2003). The load carrying capability of roller bearing is usually 

higher than ball bearing because the balls can only transfer the load applied to a 

ball bearing via point contact with the races, whereas the rollers can transfer the 

load to races through line contact. Radial ball bearings are most commonly used 

due to its simple design and suitability for high speed operation with little 

maintenance requirement (Braun and Datner, 1979).  
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The analysis of defective bearing signals depends on the type of defects in 

the bearing. The two main types of defects are initial small localized defects and 

extended spalls if the spalls are smoothed by wear. The former is described as the 

visible faults that appear at the races, cage or rolling elements. This type of defect 

refers to spalls, cracks, pits and brinelling on the rolling surfaces, which are caused 

by shock loading or overloading during the operation and installation process. The 

distributed defect is defined as the damages on an unhealthy bearing that is not 

apparent, including roughness on surface, off-size rolling elements and misaligned 

races which caused by manufacturing error and abrasive wear (Amarnath et al., 

2004). The adhesive wearing process might be accelerated by lubricant deficiency 

due to the increase of bearing component temperature, and this speed up of the 

deterioration process. In general, localized defect diagnostics are more important 

than distributed defect diagnostics because the spalls on the races and rolling 

elements are the most common failures in real-world applications. Distributed 

defects usually originate from localized spalls so it is more important to diagnose 

the initial stage of the faults (McFadden and Smith, 1984). Therefore the research 

in this thesis is focused on the condition monitoring of bearings with localized 

bearing defects.  

 

The influence of external noise from the other machinery components such 

as pumps, gears, and turbines leads to the need of more advanced bearing fault 

detection and diagnosis approaches. Some existing algorithms for bearing 

characteristic-fault-frequencies detection and diagnosis are artificial neural network, 

statistical methods, wavelet, spectral model, model-based techniques, and high-

frequency resonance methods. Among these methods, Artificial Intelligence (AI) 

technologies such as neural network and fuzzy logic could predict the dynamic 

performance of the system accurately where bearings are parts of the system 

(Piyush and Prajapati, 2011). In fact, intelligent bearing condition monitoring is one 

of the challenging scientific industrial researches in recent years.  
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1.2 Motivation 

Fault diagnosis is vital for advanced supervision and fault management of a system. 

They have to be capable of detecting incipient faults and diagnose faults. Generally 

fault diagnostics focuses on detection, isolation and identification of faults. Early 

fault detection and diagnosis is crucial for counteraction to be planned, such as 

reconfiguration, maintenance or repair. The traditional approaches of fault 

diagnosis relies on skilled personnel to identify faults based on the extracted 

features, which are time-consuming and can be inaccurate when the amount of 

data for monitoring the machinery condition is vast and the data is degraded by 

noise. Therefore an automated system which does not require human 

interpretations to analyze the data is required as an alternative solution. This can 

be achieved by automatic pattern recognition and classification based on the 

features extracted from the vibration signals.  

 

Furthermore, feature selection is an important technique to make the 

diagnosis process faster and more accurate using the minimum number of relevant 

features. The discovery of feature set with predictive ability is essential for non-

linear analysis and modeling process. Neural network-based classifier is one of the 

non-linear pattern recognition or classification techniques, which can implement 

non-linear feature mapping with sigmoidal basis function. In this research, neural 

network is used to design an accurate model for the automated bearing defect 

classifier.  In order to keep the model simple and accurate, suitable feature 

selection technique is employed to extract the important discriminating attributes of 

the data and ignore the irrelevant characteristics, such as noise.  

 

1.3 Aim and Objectives 

The aim of this research is to improve the efficiency of the neural network-based 

bearing fault diagnostic module by implementing the feature optimization algorithm 

under various working conditions. The genetic algorithm (GA)-based approach is 

used to search for optimal features nonlinearly by creating the feature 

combinations randomly while correlation-based filtering algorithm is adapted into 

GA to increase the feature selection stability and reduces the over-fitting problem 

to the training data.  
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The research aim can be achieved through the development of an 

automated bearing fault diagnostic scheme based on reinforced neural network, 

enhancement of the diagnostic scheme with feature optimization algorithm and the 

assessment of the developed diagnostic algorithm. The developed bearing fault 

diagnosis system is evaluated and assessed for ball bearings with seeded faults and 

double roller bearings with real defect propagation process under various working 

conditions and fault types. The classification performances of the diagnostic 

schemes with and without feature optimization algorithm are compared. In addition, 

the feature subsets selected by the GA feature optimization algorithm and filter 

embedded GA feature optimization algorithm are evaluated and compared. The 

measures of association between features are investigated for the task of 

quantifying feature-feature correlations. The correlation between the selected 

features has to be sufficiently small to minimize redundancy. 

 

1.4  Thesis Outline  

This thesis is organized as the following: 

 

 Chapter One describes the overview on the bearing condition monitoring 

system and elaborates on optimization of the bearing fault diagnostic algorithm. 

The research aims and scope of work are presented and the organization of the 

thesis is explained in the thesis outline.  

 

 Chapter Two presents the literature review concerning optimization 

approaches in bearing condition monitoring systems. The chapter is initiated with 

an introduction to existing vibration-based condition monitoring techniques. The 

techniques discussed are classified into time-domain based, frequency-domain 

based and time-frequency based. A review on existing bearing fault detection and 

diagnostic algorithms follows. In addition, the past researches of the artificial 

intelligent methods in optimizing the bearing condition monitoring system are also 

reviewed. Lastly, the enhancement of the diagnosis process with the feature 

selection algorithms is studied.  
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 Chapter Three presents the enhancement of the bearing signals through the 

time-domain and frequency-domain analysis. The chapter begins with the 

development of autoregressive liner prediction and minimum entropy deconvolution 

techniques to isolate the bearing signals from noise. In addition, the integration of 

the Fast Kurtogram into envelope analysis is introduced to enhance the signal-to-

noise ratio (SNR) and helps in identification of the peaks associated with bearing 

fault impulses. 

 

Chapter Four discusses the implementation of neural network-based 

classifier in bearing fault diagnosis process. Reinforcement learning is theoretically 

explained and practically integrated into the neural network training process. In 

addition, the development of a bearing degradation indicator based on quantization 

error is also included in this chapter. 

 

 Chapter Five illustrates the implementation of feature extraction and feature 

optimization techniques. The procedures to implement the developed GA-based 

feature selection algorithm to extract the feature set with important discriminating 

attributes are proposed. The performance of the developed algorithm is then 

further enhanced by embedding the correlation-based filtering algorithm into it.  

 

 Chapter Six shows the evaluation and assessment of the proposed 

enhanced bearing diagnostic scheme for ball bearings with seeded faults and roller 

bearings which developing natural defect propagation processes. The performances 

of the diagnostic scheme are evaluated on case studies with and without feature 

optimization algorithms. The efficiency of these diagnostic algorithms is 

investigated and compared under different working conditions. Furthermore, the 

damage levels of the bearings are trended with the degradation indicator based on 

minimum quantization error. 

 

 Finally, the summary of this thesis is concluded in Chapter Seven. 

Achievement and future works are presented in this chapter.  
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

2.1 Introduction  

A bearing condition monitoring system is crucial to prevent malfunction and 

catastrophic failure of the machine caused by bearing faults. The techniques used 

for bearing condition monitoring are commonly achieved via vibration analysis, 

acoustic signal analysis, thermal analysis, oil debris analysis, and electrical current 

analysis.  

 

The most widely employed approach in monitoring the bearing defects is 

vibration-based. It has been employed for a long time and has become more 

economical and reliable in recent years. The faults in bearing will typically produce 

salient signature in the vibration signal. The fault signature produced by the 

interaction between the bearing fault and its rotating component is the first 

indication of the defect (Yan and Gao, 2005). Therefore vibration analysis is 

suitable for diagnosis of both localized and distributed defects in their incipient 

stage.  

 

Acoustic-based analysis is another effective bearing condition monitoring 

technique. Acoustic emission refers to the emission of a certain level of seismic 

signals when the materials are subjected to deformation or stress. The generation 

of high-frequency stress waves are caused by the rapid release of strain energy if 

there is a structural modification in material under stress. The measurement of 

these waves is analyzed to detect the bearing defect (Elmaleeh et al., 2007). This 

method can provide higher SNR compared to the vibration analysis. However, it has 

a drawback of incurring high cost and specialized expertise is required to measure 

acoustic emission.  


