PHYLA NODIFLORA MODULATES APOPTOSIS AND CELL CYCLE ARREST IN BREAST CANCER CELL LINES, MCF-7

BIOTECHNOLOGY RESEARCH INSTITUTE UNIVERSITI MALAYSIA SABAH 2016

PHYLA NODIFLORA MODULATES APOPTOSIS AND CELL CYCLE ARREST IN BREAST CANCER CELL LINES, MCF-7

MONICA LIAU

THESIS SUBMITTED IN PARTIAL FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

BIOTECHNOLOGY RESEARCH INSTITUTE UNIVERSITI MALAYSIA SABAH 2016

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL Phyla nodiflora MODULATES APOPTOSIS AND CELL ; CYCLE ARREST IN BREAST CANCER CELL LINES, MCF-7

IJAZAH SARJANA (BIOTEKNOLOGI)

Saya MONICA LIAU, Sesi pengajian 2014-2016, mengaku membenarkan tesis Sarjana ini disimpan di perpustakaan Universiti Malaysia Sabah dengan syaratsyarat kegunaan seperti berikut:

1. Tesis ini adalah hak milik Universiti Malaysia Sabah.

2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.

4. Sila tandakan (/)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh,

NURULAIN BINTI ISMAIL LIBRARIAN UNIVERSITEMALAYSIA SABAH (Tandatangan Pustakawan)

(Dr. Teoh Peik Lin)

(Cheong Bo Eng)

MONICA LIAU

DECLARATION

I hereby declare that the material in this thesis is my own effort, except for acknowledged and cited clearly its sources.

21 September 2016

Monica Liau MZ1411013T

CERTIFICATION

NAME	:	MONICA LIAU
MATRIC NO.	:	MZ1411013T
TITLE	:	<i>Phyla nodiflora</i> MODULATES APOPTOSIS AND CELL CYCLE ARREST IN BREAST CANCER CELL LINES, MCF-7.
DEGREE	:	MASTER OF SCIENCE (BIOTECHNOLOGY)
VIVA DATE	:	1 AUGUST 2016

CERTIFIED BY;

UNIVERSITI MALAYSIA

Signature

1. SUPERVISOR Teoh Peik Lin

2. CO-SUPERVISOR

Cheong Bo Eng

ACKNOWLEDGMENT

First of all, I thank God for granting me patience and effort with good health to go through all the challenges in completing this thesis and laboratory work. Next, I would like to thank to my supervisor, Dr Teoh Peik Lin for advices that ensure me in the right track in this research. Besides that, I appreciated the knowledge given by Madam Cheong Bo Eng especially in preparation of plant extracts.

Not to forget, I would like to express my deepest gratitude to my senior, Miss Lem Fui Fui for her encouragement, caring and patience most of the time in guiding me during this research was carried out. I would like to convey my gratitude as well to Biotechnology Research Institute lab assistant especially Christina, Mony and Vidarita for providing the needs. Last but not least to my family members and my friend, Teoh Chui Peng, thanks for the supportive advices.

Monica Liau 21 September 2016

INIVERSITI MALAYSIA SABAH

ABSTRACT

Phyla nodiflora belongs to Verbenaceae family. It has been widely used as medicinal remedies in curing various types of diseases as it contains several of constituents. However, the precise cytotoxicity of Phyla nodiflora in relation to the apoptosis and cell cycle in breast cancer cell line, MCF-7 remains unclear. In this study, the ability of Phyla nodiflora to act as anticancer agents by modulating apoptotic pathways and cell cycle arrest was studied. Three of the extracts which consists of EA leaf, EA stem and Met stem shows inhibition of MCF-7 with IC_{50} of $44.02\pm0.42 \text{ }\mu\text{a}/\text{m}$, $57.27\pm0.11 \text{ }\mu\text{a}/\text{m}$ and $96.26\pm0.43 \text{ }\mu\text{a}/\text{m}$ respectively. While for MDA-MB-231 cells, only cells treated with EA stem (79.36±0.58 µg/ml) and Met stem (93.48 \pm 0.91 µg/ml) showed IC₅₀ value but not in EA leaf. However, there was no or less inhibition of MCF-10A was observed after treatments. To further understand Phyla nodiflora extracts in modulating apoptosis, MCF-7 was used. Apoptotic morphological changes were also seen in both methylene blue and DAPI staining in treated cells. JC-1 analysis shows that EA leaf extract (47.81±4.06%) has more cells undergone apoptosis through disruption of mitochondrial membrane potential followed by EA stem extracts (31.31±2.59%) and Met stem extracts (13.64±1.80%). In AnnexinV/PI analysis, more cells were undergoing late apoptosis after treated with Met stem (39.09±3.87%) followed by EA leaf (33.93±4.78%) and EA stem extracts (21.35±4.08%). Concurrent with this, cells treated with three different extracts showed different expression of Bcl-2, Bax, caspase 8 and caspase 9 proteins. Total 12 related apoptotic genes such as AIFM1, BAD, BCL-2, BIK, BIRC5, BAX, DFFA, CASP14, CASP2, CASP8, CASP9 and TP53 were selected for analysis and different fold change was seen in each of these gene expressions after treated with different type of extracts. Taken together, these results demonstrated that Phyla nodiflora induces the apoptosis pathway with different magnitude. To investigate the effect of plant extracts on cell cycle progression, cells were subjected to PI staining. For all treatments, S phase arrest was observed in MCF-7 cells. Altered expression of cell cycle regulatory proteins such as CDK6, CDK2, cyclin E1 and cyclin A2 suggested the perturbation of cell cycle regulation. In conclusion, these findings suggest that Phyla nodiflora has potential to be developed into anticancer agent(s).

ABSTRAK

PHYLA NODIFLORA MODULASI APOPTOTIK DAN PERENCATAN KITARAN SEL PADA SEL PENGALAS KANSER PAYUDARA, MCF-7

Phyla nodiflora berasal daripada keluarga Verbenaceae. Ia telah digunakan secara meluas sebagai pengubat pelbagai jenis penyakit atas kehadiran pelbagai juzuk. Walaubagaimanapun, ketepatan sitotoksisiti Phyla nodiflora berhubung dengan apoptotik dan kitaran sel terhadap sel pengalas payudara, MCF-7 masih tidak jelas. Dalam kajian ini, kebolehan Phyla nodiflora sebagai ejen antikanser melalui modulasi laluan apoptotik dan perencatan kitaran sel telah dikaji. Ketiga-tiga ekstrak seperti EA daun, EA batang and Met batang telah menunjukan perencatan pada sel-sel MCF-7 dengan nilai with IC_{50} of $44.02\pm0.42 \mu q/ml$, $57.27\pm0.11 \mu q/ml$ dan 96.26±0.43 µg/ml masing-masing. Sementara bagi rawatan pada sel MDA-MB-231, hanya rawatan EA daun (79.36±0.58 µg/ml) and Met batang (93.48±0.91 µg/ml) mencapai nilai IC₅₀. Walau bagaimanapun, tiada atau kurang perencatan berlaku pada sel payudara normal, MCF-10A selepas rawatan. Bagi memahami secara lanjut modulasi apoptosis oleh ekstrak Phyla nodiflora, MCF-7 telah diguna. Perubahan apoptotic morpologi turut dapat dilihat pada pewarnaan Methylene blue dan DAPI. Analisis JC-1 menunjukan bahawa EA daun (47.81±4.06%) mempunyai bilangan sel yang banyak melalui gangguan membran mitokondria diikuti dengan ekstrak EA batang (31.31±2.59%) dan Met batang (13.64±1.80%). Bagi analisis AnnexinV/PI, kebanyakan sel menjalani apoptosis lewat selepas rawatan dengan Met stem $(39.09\pm3.87\%)$ diikuti dengan rawatan EA daun $(33.93\pm4.78\%)$ and EA batang (21.35±4.08%). Sehubung dengan itu, sel-sel yang dirawat dengan ketigatiga ekstrak menunjukkan perbezaan ekpresi protein Bcl-2, Bax, Caspase 8 dan Caspase 9. Keseluruhan 12 gen berkait rapat dengan apoptotic seperti AIFM1, BAD, BCL-2, BIK, BIRC5, BAX, DFFA, CASP14, CASP2, CASP8, CASP9 dan TP53 telah dipilih bagi tujuan analisa dan terdapat perbezaan kali ganda pada setiap gen pada sel yang terawat. Keseluruhannya, keputusan ini menunjukkan bahawa Phyla nodiflora mendorong laluan apoptosis dengan magnitud yang berbeza. Untuk mengkaji kesan ekstrak tumbuhan pada perkembangan kitaran sel, sel-sel telah tertakluk kepada PI pewarnaan. Keseluruhan rawatan, perencatan fasa S telah diperhatikan pada sel-sel MCF-7. Gangguan pada ekspresi kawalan kitaran sel protein seperti CDK6, CDK2, siklin E1 dan siklin A2 mencadangkan gangguan terhadap kawalan kitaran sel. Kesimpulannya, hasil kajian ini menunjukkan bahawa Phyla nodiflora mempunyai potensi untuk dibangunkan sebagai ejen antikanser.

TABLE OF CONTENTS

		Page
TITI	E	j
DEC	LARATION	i
CER	TIFICATION	iii
ACK	NOWLEDMENT	iv
ABS	TRACT	V
ABS	TRAK	vi
TAB	LE OF CONTENTS	vii
LIST	OF TABLES	×
LIST	OF FIGURES	xi
LIST	OF SYMBOLS	xiii
LIST	OF ABBREVIATIONS	xiv
LIST	OF APPENDICES	xix
CHA	PTER 1: INTRODUCTION	
1.1	Background of Study	1
1.2	Significant of Study	4
1.3	Objective A B A UNIVERSITI MALAYSIA SABAH	5
CHA	PTER 2: LITERATURE REVIEW	
2.1	Breast Cancer	6
2.2	Tumorigenesis and Apoptosis	7
	2.2.1 Mechanisms of Apoptosis	8
	a. Impaired Receptor Signaling	13
	b. Bcl-2 family of proteins	13
	c. Caspases Activity Downregulated	1/
	d. Inhibitor of Apoptosis Proteins (IAPs)	20
	e. Tumor Supressor Protein, p53	23
2.3	Cell Cycle Regulation	25
	2.3.1 Abnormalities of cell cycle	28
2.4	Medicinal Plants in Cancer Prevention and Therapy	28
	2.4.1 Apoptosis Pathway in Targeting Cancer Therapeutic	30

CHAF	PTER 3: METHODOLOGY			
3.1	Plant Material	37		
3.2	Preparation of Plant Extracts 38			
	3.2.1 Plant Preparation	38		
	3.2.2 Soxhlet Extraction	39		
	3.2.3 Liquid-liquid Partition	39		
3.3	Cell Culture	40		
3.4	Cytotoxic Assay	40		
3.5	Morphological Assay	41		
	3.5.1 Methylene Blue	41		
	3.5.2 DAPI	42		
3.6	Apoptosis Analysis	42		
	3.6.1 Flow Cytometry Analysis	42		
	3.6.2 Image-based Cytometer Analysis	43		
3.7	Protein Extraction	44		
3.8	Western Blotting	44		
3.9	RNA Extraction	46		
3.10	PCR Array Analysis	47		
3.11	Cell Cycle Study	49		
3.12	Statistical Analysis	50		

CHAPTER 4: RESULTS

4.1	Yield of Plant Extracts5		
4.2	The Effect of Phyla nodiflora extracts on cell proliferation	53	
	4.2.1 The Anti-proliferation effect of <i>Phyla nodiflora</i> on MCF-7,	54	
	MDA-MB231 and MCF-10A		
4.3	Morphological Changes	63	
4.4	The Effect of Phyla nodiflora Mitochondrial Membrane Potential	73	
	4.4.1 JC-1 Analysis	73	
	4.4.2 Annexin V and Propidium Iodide Staining	77	
4.5	The effect of Phyla nodiflora on the expression of apoptotic	80	

PERPUSTANAAN

protein and gene

4.6 Cell Cycle Arrest

CHAPTER 5: DISCUSSION

5.1	Plant extraction	95
5.2	Anti-proliferation assay	96
5.3	Effect of Phyla nodiflora on apoptosis pathway	100
СНА	PTER 6: CONCLUSION	113
REFERENCES		115
	133	

90

LIST OF TABLES

		Page
Table 2.1:	<i>Phyla nodiflora</i> compound successfully isolated from previous study	34
Table 3.1:	SDS-PAGE gel preparation	45
Table 3.2:	Genomic DNA elimination mix	47
Table 3.3:	Reverse-transcription mix	47
Table 3.4:	PCR components mix	48
Table 3.5:	Cycling condition for Rotor-Gene analysis	48
Table 4.1:	Percentage of extraction yield of powdered <i>Phyla nodilfora</i> after soxhlet extraction by using methanol solvent	52
Table 4.2:	Percentage of extraction yield of dried <i>Phyla nodilfora</i> methanol extract after undergoing liquid-liquid partition using ethyl acetate, distilled water, hexane and chloroform solvents	52
Table 4.3:	IC_{50} value of MCF-7, MDA-MB231 and MCF-10A after treated with three different extracts of <i>Phyla nodilfora</i>	62
Table 4.4:	The quality and purity of RNA for untreated and treated	84
Table 4.5:	Different fold change of apoptotic related gene expression for MCF-7 cells treated with EA leaf, EA stem and Met stem extracts when compared with untreated cells	89
Table 4.6:	Summary of the cell distribution in cell cycle	92

LIST OF FIGURES

		Page
Figure 2.1 :	Mechanisms of intrinsic and extrinsic apoptotic pathways.	10
Figure 2.2 :	Mechanisms contribute to dysregulation of apoptosis and carcinogenesis	12
Figure 2.3 :	Classification of Bcl-2 family proteins based on BH domains	14
Figure 2.4 :	The model of BH-3 only protein in activating and inhibiting BCL-2 family protein	16
Figure 2.5 :	Caspase family involve in apoptosis	19
Figure 2.6 :	Domain structure of the mammalian inhibitor of apoptosis family (IAPs)	22
Figure 2.7 :	Formation of PIDDsome	24
Figure 2.8	Schematic overview of cell cycle regulation	26
Figure 2.9	Phyla nodiflora plant	33
Figure 3.1	Phyla nodiflora plant collected from Kota Kinabalu area	37
Figure 3.2 :	Flow chart of plant extracts preparation	38
Figure 4.1 :	The anti-proliferation effect of camptothecin on MCF-7 and MCF-10A cells	55
Figure 4.2 :	The anti-proliferation effect of <i>Phyla nodiflora</i> extracts on MCF-7 cells	57
Figure 4.3 :	The anti-proliferation effect of <i>Phyla nodiflora</i> extracts on MDA-MB-231 cells	59
Figure 4.4 :	The anti-proliferation effect of <i>Phyla nodiflora</i> on MCF-10A cells	61
Figure 4.5(A):	Detection of morphological changes in MCF-7 cells using methylene blue staining after treated with camptothecin	64
Figure 4.5(B):	Detection of morphological changes in MCF-7 cells using methylene blue staining after treated with <i>Phyla</i> <i>nodiflora</i> treatments	65

Figure 4.5(C):	Detection of morphological changes in MCF-7 cells using methylene blue staining after treated with <i>Phyla nodiflora</i> treatments	66
Figure 4.5(D):	Detection of morphological changes in MCF-7 cells using methylene blue staining after treated with <i>Phyla nodiflora</i> treatments	67
Figure 4.6 :	Detection of morphological changes in MCF-7 cells using methylene blue staining after treated with <i>Phyla nodiflora</i> treatments	69-72
Figure 4.7 :	Distribution of cell population after JC-1 staining	75
Figure 4.8 :	Detection of apoptosis using flow cytometer with JC-1 staining	76
Figure 4.9 :	Distribution of cell population stained with annexin-V and propidium iodide after treatments	79
Figure 4.10 :	SDS-PAGe gel electrophoresis of extracted protein from treated and untreated cells	80
Figure 4.11 :	The effect of <i>Phyla nodiflora</i> extracts on the expression of pro-apoptotic and anti-apoptotic protein in MCF-7 after 72 hours	83
Figure 4.12 :	RNA was extracted from MCF-7 cells treated with plant extracts	85
Figure 4.13 :	Different expression of apoptotic genes after treated with <i>Phyla nodiflora</i> extracts	88
Figure 4.14 :	Respresentative DNA profile of the effect of <i>Phyla</i> nodiflora on the cell cycle progression	91
Figure 4.15 :	Histogram of cell distribution during cell cycle	92
Figure 4.16 :	The effect of <i>Phyla nodiflora</i> extracts on cell cycle related proteins	93

LIST OF SYMBOLS

°C	-	Degree	Celsius
----	---	--------	---------

- g Gram
- % Percentage
- xg Times the force of gravity
- μl Microlitre
- ml Mililitre
- **rpm** Revolutions per minute
- s Second
- IC₅₀ 50 Percent Inhibition Concentration
- C_T Threshold cycle
- µg/ml Microgram per mililitre

Beta

β

UNIVERSITI MALAYSIA SABAH

LIST OF ABBREVIATIONS

ABL1	*	C-abl oncogene 1, non-receptor tyrosine kinase
AIFM1	-	Apoptosis-inducing factor, mitochondrion-associated, 1
AKT1	•	V-akt murine thymoma viral oncogene homolog 1
APAF1	-	Apoptotic peptidase activating factor 1
BAD		BCL2-associated agoinst of cell death
BAG1	-	BCL2-associated athanogene
BAG3	-	BCL2-associated athanogene 3
BAK1	-	BCL2-associated antagonist/killer 1
BAX	-	BCL2-associated X protein
BCL10		B-cell CLL/lymphoma 10
BCL2	TI	B-cell CLL/lymphoma 2
BCL2A1	4	BCL2-related protein A1
BCL2L1	-	BCL2-like 1
BCL2L10	- 11-02 L	BCL2-like 10
BCL2L11	SA B	BCL2-like 11
BCL2L2	÷.	BCL2-like 2
BFAR	-	Bifunctional apoptosis regulator
BID	-	BH3 interacting domain death agonist
BIK		BCL2-interacting killer
BIRC2	-	Baculoviral IAP repeat containing 2
BIRC3	-	Baculoviral IAP repeat containing 3
BIRC5	-	Baculoviral IAP repeat containing 5
BIRC6	-	Baculoviral IAP repeat containing 6
BNIP2	-	BCL2/adenovirus E1B 19kDa interacting protein 2
BNIP3	-	BCL2/adenovirus E1B 19kDa interacting protein 3
BNIP3L		BCL2/adenovirus E1B 19kDa interacting protein 3-like

BRAF	÷	V-raf murine sarcoma viral oncogene homolog B1
CASP1	-	Caspase 1, apoptosis-related cysteine peptidase
CASP10	-	Caspase 10, apoptosis-related cysteine peptidase
CASP14	-	Caspase 14, apoptosis-related cysteine peptidase
CASP2	-	Caspase 2, apoptosis-related cysteine peptidase
CASP3	-	Caspase 3, apoptosis-related cysteine peptidase
CASP4	-	Caspase 4, apoptosis-related cysteine peptidase
CASP5	-	Caspase 5, apoptosis-related cysteine peptidase
CASP6	-	Caspase 6, apoptosis-related cysteine peptidase
CASP7	-	Caspase 7, apoptosis-related cysteine peptidase
CASP8	-	Caspase 8, apoptosis-related cysteine peptidase
CASP9		Caspase 9, apoptosis-related cysteine peptidase
CD27	1	CD27 ligand
CD40		CD40 molecule
CD40LG		CD40 ligand
CD70		CD70 ligand
CFLAR	SA 1	Caspase 8 and FADD-like apoptosis regulator BA
CIDEA	÷.	Cell death-inducing DFFA-like effector a
CIDEB	-	Cell death-inducing DFFA-like effector b
CRADD	2	Caspase 2 and RIPK1 domain containing adaptor with death domain
CYCS	-	Cytochrome C
DAPK1	-	Death-associated protein kinase 1
DFFA	-	DNA fragmentation factor, 45kDa, alpha polypeptide
DIABLO	-	Diablo, IAP-binding mitochondrial protein
FADD	-	Fas (TNFRSF6) associated via death domian
FAS	+	Fas (TNF receptor superfamily, member 6)
FASLG	-	Fas ligand
GADD45A		Growth arrestand DNA damage inducible, alpha

HRK	12	Harakiri, BCL2 interacting protein
IGF1R	ie.	Insulin-like growth factor 1 receptor
IL10	÷	Interleukin 10
LTA	-	Lymphotoxin alpha
LTBR	-	Lymphotoxin beta receptor
MCL1	-	Myeloid cell leukemia sequence 1
NAIP	-	NLR family, apoptosis inhibitory protein
NFKB1	-	Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
NOD1	-	Nucleotide-binding oligomerization domain containing 1
NOL3	-	Nucleolar protein 3
PYCARD	-	PYD and CARD domain containing
RIPK2		Receptor-interacting serine-theronine kinase 2
TNF	ST1	Tumor necrosis factor
TNFRSF10A		Tumor necrosis factor receptor superfamily, member 10a
TNFRSF10B	-	Tumor necrosis factor receptor superfamily, member 10b
TNFRSF11B	S A B	Tumor necrosis factor receptor superfamily, member 11b
TNFRSF1A	-	Tumor necrosis factor receptor superfamily, member 1A
TNFRSF1B	- 11	Tumor necrosis factor receptor superfamily, member 1B
TNFRSF21	- C	Tumor necrosis factor receptor superfamily, member 21
TNFRSF25	940) 1940	Tumor necrosis factor receptor superfamily, member 25
TNFRSF9	-	Tumor necrosis factor receptor superfamily, member 9
TNFSF10	-	Tumor necrosis factor (ligand) superfamily, member 10
TNFSF8	-	Tumor necrosis factor (ligand) superfamily, member 8
ТР53	•	Tumor protein p53
TP53BP2	-	Tumor protein p53 binding protein
ТР73	-	Tumor protein p73
TRADD	-	TNFRF1A-associated via death domain
TRAF2		TNF receptor-associated factor 2

TRAF3	-	TNF receptor-associated factor 3
XIAP	-	X-linked inhibitor of apoptosis
АСТВ	-	Actin, beta
B2M	-	Beta-2-microglobulin
GAPDH	-	Glyceraldehyde-3-phosphate dehydrogenase
HPRT1	-	Hypoxanthine phosphoribosyltransferase
RPLPO	-	Ribosomal protein, large, PO
DISC	-	Death inducing signalingcomplex
c-FLIP	-	FLICE-like inhibitory protein
Apaf-1	+	Apoptotic protease activating factor 1
ΑΤΡ	-	Adenosine triphosphate adenosine triphosphate
AIF	-	Apoptosis inducing factor
CAD	-	Caspase activated DNase
CASc	499	Capases catalytic region
PARP	-	Poly(ADP-ribose) polymerase
IAP	\sim	Inhibitor of apoptosis proteins
NSCLCs	S-A B A	Non-small cell lung carcinomas AYSIA SABAH
XIAP	-	X-linked inhibitor of apoptosis protein
BRAC1	-	Breast cancer 1, early onset
BRAC2	-	Breast cancer 2
G1	-	Growth phase 1 (Cell cycle)
S	-	Syhthesis phase (Cell cycle)
G2	8	Growth phase 2 (Cell cycle)
м	5	Mitosis
CDK2	-	Cyclin dependent kinase 2
CDK4	-	Cyclin dependent kinase 4
P21	-	Cyclin dependent kinase inhibitor 1
ROS	-	Reactive oxygen species

ER	-	Endoplasmic reticulum
MCF-7	•	Michigan Cancer Foundation-7 (Human breast adenocarcinoma cell line)
MDA-MB231		Estrogen receptor-negative human breast cancer cell line
MCF-10A	-	Normal breast cell line
JC-1	-	Miotchondrial membrane potential assay kit
PI	=	Propidium iodide
АКТ	-	Protein kinase B
Р13К	-	Phosphoinositide 3 kinase
NIX	-	Pro-apoptotic gene that expresses a signaling protein related to BH-3 only family

LIST OF APPENDICES

- Page Appendix I DNA fragmentation of EA stem, EA leaf and Met stem done 133 by previous study
- Appendix II Effect of MCF-7 cell Proliferation percentage for stem and 134 leaf
- Appendix II quality including 135 The checks which PCR array reproducibility, RT efficiency and genomic DNA contamination for treated and untreated samples.

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Breast cancer was the top five cancers that lead women and men suffering in worldwide (Tan, Sulaiman, Najimuddin, Samian and Muhammad, 2005: 287). Approximately 14.5% of women and men out of 100,000 cancer cases were reported on April 2016 by Malaysian Deputy Health Minister Datuk Seri Dr Hilmi Yahaya (Arumugam, 2016). Like other cancers, breast cancer is also characterized by the rapid and uncontrolled proliferation of abnormal cells, which form a solid tumor that invade normal cells in the body that able to proliferate throughout the body (Qi, Li, Zhao, Xu, Inagaki, 2013: 654; Wang, Gao, Kokudo, Nakata, and Tang, 2010: 659).

UNIVERSITI MALAYSIA SABAH

Variations of this cancer are closely related to gene mutations in oncogenes and tumor suppressor gene, p53, which both of these genes play an important role in cell division and apoptosis. Generally, there are five types of regulatory processes for development of oncogenes in the cell cycle that can lead to cancer cell development. These main five types of regulatory process consist of growth factors, cell surface receptors, intracellular signal transduction components, nuclear DNA binding proteins and components of cyclin (Glinsky, 1998: 72; Rastogi and Mishra, 2012: 1). Other factors such as the abnormal expression level of certain proteins and environmental factors such as pollution also can cause mutation that leading to cancers occurs (Hoffmon, 1999: 239; Mantena, Sharma and Katiyar, 2006: 2018). The present modern technologies such as chemotherapy, radiotherapy and surgical operation in cancer treatment have accompanied with side effect and higher cost. Due to this reason, major trending in research nowadays has taken initiative since the early 1950 in drug discovery from natural product which is rich in secondary metabolites (Merlin, Parthasarathy and Santhoskumar, 2010: 4452). The use of natural product as an anti-cancer drug is also recognized by the US Natural Cancer Institute (Cragg and Newman, 2005: 72; Fouche, Cragg, Pillay, Kolesnikova, Maharaj and Senabe, 2008: 455).

Lack of consuming food based diet and excessive intake of meat may contribute to the high incidence of cancer (Modem, Dicarlo and Reddy, 2013: 177). Several studies have documented that consuming plant products help to reduce the chances to get cancer due to its nature of phytochemical property (Modem *et al.*, 2012: 177; Tasyriq, Najmuldeen, In, Mohamad, Awang and Hasima, 2012: 2). Phytochemicals in natural products are particularly very rich in antioxidants, immune-strengthening and anti-cancerous ingredients could be beneficial to human health (Modem *et al.*, 2013: 177; Dziki, Swiece, Sulkowski, Dziki, Baraniak and Czyz, 2013: 154). Most of the plants which are rich in alkaloids and other phytochemical contents that commonly found in different parts of the plant can be effectively used to cure variety types of disease (Modem *et al.*, 2013: 177).

About 25% to 30% of medicines available are derived from natural products as they provide an important source of bioactive compounds that can be used as an alternative way in treating various types of diseases by affecting different targets of signal transduction pathways that modulate gene expression, cell cycle progression, cell proliferation and cell death (Ramos, 2008: 509). Studies also prove that many biological activities such as antioxidants are due to the presence of high amount of phytochemicals (Ribeiro, Noranha, Ribeiro, Moraes, Santos, Coelho and Chavasco, 2015: 19). Components such as alkaloid, sterol and terpenoid are some examples of phytochemicals that found in most of plants that have been extensively studied for the drug's discovery purpose, especially for anti-

2

cancer (Tasyriq *et al.*, 2012: 1; Kaefer and Milner, 2008: 351; Mohammad and Farimani, 2014: 37).

In addition, cytotoxic activity of chemotherapeutic drugs is also proven to have the ability to induce genotoxic death through apoptosis. Some of the chemotherapy drugs are found to have the ability in inducing apoptosis *in vitro* such as quercetin, polyphenol, epicatechin gallate (ECG), catechin, theaflavin, anthocyanins and curcumin (Ramos, 2008: 514). Besides that, *in vivo* study also provides evidence that chemotherapeutic agents induce apoptotic tumor cell death. Both *in vitro* and *in vivo* studies have brought a great promise in identifying the potential chemotherapeutic agents for cancer treatment through induction of apoptosis (Tan *et al.*, 2005: 287).

Lin, Zhang, Cheng, Tang, Zhang, Zhen, Cheng, Liu, Cao and Dong (2008: 247) have suggested that apoptosis is an ideal mechanism to focus on cancer chemotherapy as it does not lead to cell lysis and inflammatory response which is in contrast to necrosis. Besides that, cancer involves genetic alteration in apoptotic pathway and this provides an insight to a target of treatment to inhibit cancer cells (Wong, 2011: 87).

Phyla nodiflora belongs to Verbenaceae family. It has been widely used as medicinal remedies in curing various types of diseases as it contains several of constituents such as triterpenoids, flavonoids, phenols, steroids, halleridone, hallerone and many others (Vanajothi, Sudha, Manikandan, Rameshthangam and Srinivasan, 2012: 287). Due to the presence of varied constituents, this plant is very useful for pharmaceutical purposes (Durairaj, Vaiyapuri, Kanti and Malaya, 2008: 83; Faheem, Wan and Koay, 2011: 102). Previous studies also suggested that this plant has the ability to act as anti-bacterial, parasiticide, anti-inflammation, anti-microbial, cytotoxic and diuretic (Durairaj, Mazumdar, Gupta and Selvan, 2009: 713).

3