DEVELOPMENT OF CRYOPRESERVATION PROTOCOLS FOR PAPHIOPEDILUM ROTHSCHILDIANUM AND PHALAENOPSIS GIGANTEA FOR LONG-TERM GERMPLASM CONSERVATION PROGRAM

BIOTECHNOLOGY RESEARCH INSTITUTE UNIVERSITI MALAYSIA SABAH 2008

DEVELOPMENT OF CRYOPRESERVATION PROTOCOLS FOR PAPHIOPEDILUM ROTHSCHILDIANUM AND PHALAENOPSIS GIGANTEA FOR LONG-TERM GERMPLASM CONSERVATION PROGRAM

KOO GECK CHIN

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

BIOTECHNOLOGY RESEARCH INSTITUTE UNIVERSITI MALAYSIA SABAH 2008

PUMS 99:1

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN TESIS		
JUDUL :		
IJAZAH :		
		SESI PENGAJIAN :
(HURL	IF BESAR)	
-	an tesis *(LPSM/Sarjana/Dokto yarat kegunaan seperti berikut:	r Falsafah) ini disimpan di Perpustakaan Universiti Malaysia -
2. Perpustakaan	dibenarkan membuat salinan t // (Mengandungi maklur seperti yang termaktu	aarkan membuat salinan untuk tujuan pengajian sahaja. esis ini sebagai bahan pertukaran antara institusi pengajian mat yang berdarjah keselamatan atau kepentingan Malaysia ub di AKTA RAHSIA RASMI 1972) mat TERHAD yang telah ditentukan oleh organisasi/badan di
TIDAK	mana penyelidikan dij TERHAD	Disahkan oleh:
(TANDATANGA Alamat Tetap:		(TANDATANGAN PUSTAKAWAN)
 TARIKH:		(NAMA PENYELIA) TARIKH:
menyatakan sek *Tesis dimaksud	LIT dan TERHAD, sila lampirkan sur ali sebab dan tempoh tesis ini perlu	at daripada pihak berkuasa/organisasi berkenaan dengan u dikelaskan sebagai SULIT dan TERHAD. r Falsafah dan Sarjana Secara Penyelidikan atau disertai njek Sarjana Muda (LPSM).

CERTIFICATION

NAME : KOO GECK CHIN

MATRIC NO. : **PS2004-013-011**

TITLE : DEVELOPMENT OF CRYOPRESERVATION PROTOCOLS FOR PAPHIOPEDILUM ROTHSCHILDIANUM AND PHALAENOPSIS GIGANTEA FOR LONG-TERM GERMPLASM CONSERVATION PROGRAM

DEGREE : MASTER OF SCIENCE (PLANT BIOTECHNOLOGY)

VIVA DATE

18 DECEMBER 2008

DECLARED BY MALAYSIA SABAH

1. SUPERVISOR

Dr. Zaleha Abdul Aziz

DECLARATION

I hereby declare that the material in this dissertation is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

KOO GECK CHIN PS2004-013-011

18 March 2009

ACKNOWLEDGEMENT

First of all, I would like to express my thanksgiving to the Lord Jesus Christ Who strengthen me to complete this project. I also wish to express my sincere appreciation and gratitude to Dr. Zaleha Abdul Aziz, my supervisor, for her encouragements, guidance, helps, advices and patience throughout my Master study.

Especially thanks to Wei Jing Jing, undergraduate student, who assisted me on some parts of my study. I would like to appreciate to the lab assistants, Radizah, Doreen, Christina, Richard and Vidarita, for their assistance and technical support. I also thank Dr. Mariam and Kenneth, who gave a lot of suggestions and opinions.

I would like to express my gratitude to all the staffs in Poring Orchid Conservation Center and Kinabalu Park for their help in providing *P. rothschildianum* and *P. gigantea* capsules. I also want to thank our government for their financial support for this project. My appreciation also goes to Biotechnology Research Institute, University Malaysia Sabah for providing me a comfortable environment and partnership throughout this project.

My deepest gratitude also goes to my family members. My parents who given me fully support for my study in UMS. Especially thanks for my elder sister, Koo Gaik Kee, who have given me financial support throughout my Master study. I also want to express my gratitude to my church members, who always support me by prayers.

ABSTRACT

DEVELOPMENT OF CRYOPRESERVATION PROTOCOLS FOR PAPHIOPEDILUM ROTHSCHILDIANUM AND PHALAENOPSIS GIGANTEA FOR LONG-TERM GERMPLASM CONSERVATION PROGRAM

Paphiopedilum rothschildianum and Phalaenopsis gigantea are two endangered orchids of Sabah. Both are currently protected and listed under the Convention in Trade on Endangered Species of Flora and Fauna (CITIES). Cryopreservation is an effective method for long term storage of plant materials. Hence, development of cryopreservation protocols for these two species will facilitate the long term conservation programmes of these orchids. In this study, protocorms and seeds were used as the explants. Preculture conditions, preculture durations and combinations of loading solution were evaluated for cryopreservation of protocorms of both species. The effect of PVS2 incubation period (0-90 min) on the viability of protocorms was evaluated. Protocorms were precultured in liquid medium supplemented with different concentrations of sucrose (0-0.5M) and precultured at different period (0-7 days). Different combinations of glycerol (0-2.5M) and sucrose (0-0.5M) were evaluated for loading solution. Protocorms of P. rothschildianum were used in developing encapsulation dehydration and encapsulation vitrification method. The viability of protocorms was determined using 2,3,5-triphenyl tetrazolium chloride (TTC) test. For the development of cryopreservation protocol of P. rothschildianum seeds, incubation time (0-5 hours) in PVS2 solution at 0°C, preculture conditions (0-0.5M sucrose), preculture durations (1-7 days) and storage durations in liquid nitrogen (2-24 weeks) were evaluated. The viability of the seeds was determined using TTC test and the germination ability was recorded. Protocorms of *P. rothschildianum* precultured in MS medium supplemented with 0.25M sucrose for 3 days gave the highest viability value while protocorms of P. aigantea in XER medium supplemented with 0.25M sucrose for 5 days showed the highest viability value prior to liquid nitrogen storage. Loading solution comprised of 0.5M glycerol and 0.4M sucrose showed the highest viability value for protocorms of P. rothschildianum while the combination of 0.5M glycerol and 0.2M sucrose resulted in the highest viability value for P. gigantea. Protocorms showed low viability in all incubation periods. Protocorms failed to grow even after two months on recovery media after cryopreservation. No regrowth of protocorms were observed after cryopreservation by both encapsulation-dehydration and encapsulation-vitrification methods. Seeds that were dehydrated with PVS2 solution for 5 hours gave the highest seed germination percentage (30%). Seeds precultured on medium supplemented with 0.4M sucrose and precultured for 7 days resulted in the highest seed germination percentages, which was 30% and 63%, respectively. No significant difference in seed germination was observed when seeds were stored in liquid nitrogen for 2 to 24 weeks.

Key words: Paphiopedilum rothschildianum, Phalaenopsis gigantea, vitrification, encapsulation dehydration, encapsulation vitrification

ABSTRAK

Paphiopedilum rothschildianum dan Phalaenopsis gigantea merupakan dua orchid spesies vang terancam di Sabah. Kedua-dua spesies orkid ini telah dilindungi dan disenaraikan bawah Convention in Trade on Endangered Species of Flora and Fauna (CITES). Pengawetan-krio merupakan suatu kaedah yang berkesan untuk menvimpan bahan tumbuhan dalam jangka masa panjang. Oleh itu, perkembangan sistem pengawetan-krio bagi kedua-dua spesies ini akan memudahkan program pemeliharaan secara jangka masa panjang. Protokom dan biji benih digunakan dalam kajian ini. . Kesan bagi tempoh pengeraman dalam larutan vitrifikasi tumbuhan 2 (PVS2)(0-90min) telah dikaji. Kesan prakultur, tempoh prakultur dan qabungan larutan 'loading' dinilaikan untuk pengawetan-krio bagi protokom dua spesies orkid tersebut. Protokom diprakultur dalam media cecair yang dibekal dengan kepekatan sukrosa vang berlainan (0-0.5M) dan diprakultur pada tempoh yang berbeza (0-7 hari). Gabungan gliserol (0-2.5M) dan sukrosa (0-0.5M) yang berbeza telah dinilaikan bagi larutan 'loading'. Protokom P. rothschildianum digunakan dalam mengaji pengawetan-krio secara 'encapsulation dehydration' dan 'encapsulation vitrification'. Viabiliti bagi protokom dikaji dengan menggunakan 2,3,5-triphenyl tetrazolium chloride (TTC). Untuk perkembangan protokol pengawetan-krio bagi biji benih P. roschildianum, tempoh pengeraman dalam larutan PVS2 pada 0°C (0-5 jam), kesan prakultur (0-0.5M sukrosa), tempoh prakultur (1-7 hari) dan tempoh penyimpanan dalam cecair nitrogen (2-24 minggu) telah dikaji. Viabiliti biji benih dikaji dengan TTC dan peratus percambahan. Protokom P. rothschildianum diprakultur dalam media cecair MS yang dibekal dengan 0.25M sukrosa selama 3 hari menunjukkan nilai viabiliti yang tertinggi manakala protokom P. gigantea dalam media cecair XER dibekal dengan 0.25M sukrosa selama 5 hari menunjukkan nilai viabiliti tertinggi sebelum disimpan dalam cecair nitrogen, Larutan Yoading' yang mengandungi 0.5M gliserol dan 0.4M sukrosa menunjukkan nilai viabiliti yang tertinggi bagi protokom P. rothschildianum manakala kombinasi 0.5M gliserol dan 0.2M sukrosa menunjukkan nilai viabilitv yang tertinggi bagi protokom P. gigantea Protokom bagi dua spesies orkid tersebut menuniukkan viabiliti yang rendah dalam semua tempoh pengeraman yang dikaji. Protokom tidak menumbuh semula selepas pengawet-krio walaupun telah dikultur dua bulan. Tiada pertumbuhan semula bagi protokom yang diawet-krio dengan menggunakan kedua-dua cara tersebut. Biji benih yang dikeringkan dengan larutan PVS2 selama 5 jam menunjukkan peratus percambahan yang tertinggi (30%). Biji benih yang dikultur dalam media yang dibekal dengan 0.4M sukrosa dan selama 7 hari menunjukkan peratus percambahan yang tertinggi masing-msasing pada 30% dan 39%. Didapati bahawa peratus percambahan tidak berubah apabila biji nenih disimpan dalan cecair nitrogen selam 2 hingga 24 minggu.

Kata kunci: Paphiopedilum rothschildianum, Phalaenopsis gigantea, vitrifikasi, encapsulation dehydration, encapsulation vitrification

TABLE OF CONTENTS

TITTLE		i
DECLAR	ATTON	ii
	VLEDGEMENT	
ABSTRA	cī	iv
ABSTRA	K	v
TABLE O	F CONTENTS	Vi
LIST OF	TABLES	x
	FUGURES	xi
	ABBREVIATIONS	xv xvi
LIST OF	APPENDIX	~~
CHAPTEI	R 1: INTRODUCTION	1
CHAPTEI	R 2: LITERATURE REVIEW	
	2.1 Orchid	4
	2.1.1 Orchid seeds and their development	5
	2.1.2 Orchid conservation	7
	2.1.3 Paphiopedilum rothschildianum	13 15
	2.1.4 <i>Phalaenopsis gigantea</i> 2.2 Cryopreservation	16
	2.2.1 Classical cryopreservation technique	19
	2.2.2 New cryopreservation techniques	21
	a Vitrification	21
	b Encapsulation-dehydration	24
	c Encapsulation-vitrification	25
	d Vitrification-droplet	27 28
	2.3 Application of cryopreservation techniques2.3.1 Long-term storage of rare and endangered	20
	plant species	28
	2.3.2 Retention of biosynthetic capabilities in	20
	transformed medicinal plant cultures	29
	2.3.3 Cryopreservation for virus eradication2.3.4 Crop plant conservation	30 30
	2.4 Factors that influence cryopreservation protocol	32
	2.4.1 Choice of material	32
	2.4.2 Preculture	33
	2.4.3 Pretreatment	34
	2.4.4 Dehydration regimes	35
	2.4.5 Freezing scheme	36

vi

2.1		ors that induce freezing tolerance	37
	Cryoinjury	nonco to chroniconvotion	40
2.0	2.6.1 Triphenyl Te	ponse to cryopreservation etrazolium Chloride (TTC)	42
		ic test (Steponkus and	42
	Lamphear, 1		43
	2.6.2 Colouration		43
		Detection of Malondialdehyde	
		th and Packer, 1968)	44
		viacetate (FDA) Vital Stain	
	(Widholme,	1972)	44
CHAPTER 3: MET			
	Preparation of med		45
3.2		opreservation protocol for	
		schildianum and Phalaenopsis	
		s by vitrification method	48
		f preculture conditions and	
		urations for Paphiopedilum	
		<i>num</i> and <i>Phalaenopsis</i>	
	<i>gigantea</i> pro		49
		f loading solutions for	
		<i>m rothschildianum</i> and	
		s gigantea protocorms	50
		f vitrification solutions for	
		ım rothschildianum	51
	protocorms		
	and the second se	PVS2 incubation durations	
		edilum rothschildianum and	50
		<i>s gigantea</i> protocorms	52
3.3		Paphiopedilum rothschildianum	
	•	apsulation-dehydration method	53
3.4		Paphiopedilum rothschildianum	
		apsulation-vitrification method	53
3.5		Paphiopedilum rothschildianum	
	seeds by vitrificatio		54
	3.5.1 Evaluation of		
	incubation du		54
		preculture conditions and	
	durations		55
		the effect of cryo-storage	
	durations		55
		tion of Paphiopedilum	
		um seeds using optimized	
	vitrification p		56
3.6		n chloride colorimetric assay for	
		and Lamphear, 1967)	56
3.7	Statistical analysis		57

CHAPTER 4: RESULTS

4.1 Development of cryopreservation protocol for	
Paphiopedilum rothschildianum and Phalaenopsis	
gigantea protocorms by vitrification method	58
4.1.1 Evaluation of preculture conditions and	
preculture durations for Paphiopedilum	
rothschildianum and Phalaenopsis	
gigantea protocorms	58
4.1.2 Evaluation of loading solutions for	
Paphiopedilum rothschildianum and	
<i>Phalaenopsis gigantea</i> protocorms	61
4.1.3 Evaluation of different vitrification	
solutions for Paphiopedilum	
<i>rothschildianum</i> protocorms	67
4.1.4 Evaluation of PVS2 incubation durations	
For <i>Paphiopedilum rothschildianum</i>	
and <i>Phalaenopsis gigantea</i> protocorms	70
4.2 Cryopreservation of <i>Paphiopedilum rothschildianum</i>	, ,
protocorms by encapsulation-dehydration method	72
4.3 Cryopreservation of <i>Paphiopedilum rothschildianum</i>	/ 2
protocorms by encapsulation-vitrification method	74
4.4 Cryopreservation of <i>Paphiopedilum rothschildianum</i>	, ,
seeds by vitrification method	76
4.4.1 Evaluation of the effect of PVS2 incubation	
Durations	76
4.4.2 Evaluation of preculture conditions and	
preculture durations	83
4.4.3 Evaluation of the effect of cryo-storage	
Durations	86
4.4.4 Cryopreservation of <i>Paphiopedilum</i>	
<i>rothschildianum</i> seeds using optimized	
vitrification protocol	91
4.4.5 Development of cryopreserved seeds after	
liquid nitrogen exposure	93
CHAPTER 5: DISCUSSION	
5.1 Development of cryopreservation protocol for	
Paphiopedilum rothschildianum and	
Phalaenopsis gigantea protocorms by vitrification	
Method	94
5.1.1 Evaluation of preculture conditions and	
durations for Paphiopedilum	
rothschildianum and Phalaenopsis gigantea	
protocorms	94
5.1.2 Evaluation of loading solutions for	
Paphiopedilum rothschildianum and	
Phalaenopsis gigantea protocorms	96

5.1.3 Evaluation of different vitrification solutions for <i>Paphiopedilum rothschildianum</i>	
protocorms	98
5.1.4 Evaluation of PVS2 incubation durations for Paphiopedilum rothschildianum and	
Phalaenopsis gigantea protocorms.	100
5.2 Cryopreservation of Paphiopedilum rothschildianum	
protocorms by encapsulation-dehydration method	101
5.3 Cryopreservation of Paphiopedilum rothschildianum	
protocorms by encapsulation-vitrification method	102
5.4 Cryopreservation of Paphiopedilum rothschildianum	
seeds by vitrification method	104
5.4.1 Evaluation of the effect of PVS2 incubation	
durations	104
5.4.2 Evaluation of the effect of preculture	
conditions and preculture durations	106
5.4.3 The effects of long-term cryo-storage	109
5.4.4 Germination and development of	
Paphiopedilum rothschildianum seeds using	
optimal vitrification protocol	111
CHAPTER 6: CONCLUSION	113
	116
REFERENCES	116
APPENDIX	146
UNIMERSITI MALAVSIA SARAH	

LIST OF TABLES

Page

Table 2.1	Cryopreservation of seeds and protocorms of Russian orchids.	12
Table 2.2	Examples of plant species that have been successfully cryopreserved by different cryopreservation techniques.	18
Table 3.1	Composition of stock solution for Murashige and Skooge medium.	46
Table 3.2	Composition of stock solution for Experimental Ernst Robert Medium.	47
Table 3.3	Composition of stock solution for RE Medium.	47
Table 3.4	Composition of preculture media for <i>P. rothschildianum</i> and <i>Phalaenopsis gigantea</i> (100ml).	50
Table 3.5	Composition of loading solution for <i>P. rothschildianum</i> and <i>Phalaenopsis gigantea</i> (100ml).	51
Table 3.6	Composition of vitrification solutions for <i>P. rothschildianum</i> (100ml).	52
Table 3.7	Composition of TTC solution for viability test.	57
Table 4.1	Recovery of cryopreserved <i>P. rothschildianum</i> protocorms after 40 days of post-thaw culture.	75
Table 4.2	Germination of viable seeds after 150 days post-thaw culture (First experiment).	86
Table 4.3	Germination of viable seeds after 150 days post-thaw culture (Second experiment).	87

LIST OF FIGURES

Ρ	а	a	e
•	-	_	-

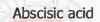
Figure 2.1	Capsule of <i>Paphiopedilum rothschildianum</i> and <i>Phalaenopsis gigantea</i> .	5
Figure 2.2	General shapes of orchid seeds.	6
Figure 2.3	Stage of development for orchid.	7
Figure 2.4	<i>Paphiopedilum rothschildianum</i> flowering in the Poring Orchid Conservation Center.	14
Figure 2.5	<i>Phalaenopsis gigantea</i> under protection in Poring Conservation Centre.	16
Figure 2.6	Schematic representation of the classical cryopreservation procedure.	20
Figure 2.7	General procedures that involved in cryopreservation by using vitrification technique.	22
Figure 2.8	General steps that involved in cryopreservation by using encapsulation-dehydration technique.	24
Figure 2.9	General steps that involved in cryopreservation by using encapsulation-vitrification technique.	26
Figure 2.10	Chemical structure of extracellular and intracellular cryoprotectant agents.	38
Figure 3.1	Flow chart of development of cryopreservation protocol for <i>Paphiopedilum rothschildianum</i> and <i>Phalaenopsis gigantea</i> by vitrification.	49
Figure 4.1	Absorbance following TTC reduction by protocorms of <i>Paphiopedilum rothschildianum</i> precultured in different concentration of sucrose.	59
Figure 4.2	Absorbance following TTC reduction by protocorms of <i>Phalaenopsis gigantea</i> precultured in different concentration of sucrose.	59
Figure 4.3	Absorbance following TTC reduction by protocorms of <i>Paphiopedilum rothschildianum</i> precultured in MS medium supplemented with 0.25M sucrose at different days of culture.	60

60

Figure 4.4	Absorbance following TTC reduction by protocorms of <i>Phalaenopsis gigantea</i> precultured in XER medium supplemented with 0.25M sucrose at different days of culture.	61
Figure 4.5	Absorbance following TTC reduction by protocorms of <i>P. rothschildianum</i> loaded in different concentration of sucrose.	62
Figure 4.6	Absorbance following TTC reduction by protocorms of <i>P. gigantea</i> loaded in different concentration of sucrose.	63
Figure 4.7	Absorbance following TTC reduction by protocorms of <i>P. rothschildianum</i> loaded in different concentration of glycerol.	64
Figure 4.8	Absorbance following TTC reduction by protocorms of <i>P. gigantea</i> loaded in different concentration of glycerol.	64
Figure 4.9	Absorbance following TTC reduction by protocorms of <i>P. rothschildianum</i> loaded in different combination of glycerol and sucrose.	65
Figure 4.10	Absorbance following TTC reduction by protocorms of <i>P. gigantea</i> loaded in different combination of glycerol and sucrose.	66
Figure 4.11	Absorbance following TTC reduction by white protocorms of <i>P. rothschildianum</i> treated with different vitrification solutions before and after LN exposure.	67
Figure 4.12	Absorbance following TTC reduction by green protocorms of <i>P. rothschildianum</i> treated with different vitrification solutions before and after LN exposure.	69
Figure 4.13	White and green protocorms used for different vitrification solutions treatment.	70
Figure 4.14	Absorbance following TTC reduction by protocorms of <i>P. rothschildianum</i> after incubated with PVS2 for 0-80 minutes.	71
Figure 4.15	Absorbance following TTC reduction by protocorms of <i>P. gigantea</i> after incubated with PVS2 for 0-80 minutes.	72
Figure 4.16	Changes of the water content of encapsulated protocorms after 3 days of second-step preculture with 0.25M sucrose during dehydration by air-drying in a laminar flow chamber for 0 to 10 hours.	73
Figure 4.17	Protocorms of <i>P. rothschildianum</i> cryopreserved by encapsulation-dehydration method.	74

Figure 4.18	Viability of <i>P. rothschildianum</i> protocorms after precultured on medium containing sucrose and ABA prior to liquid nitrogen exposure.	75
Figure 4.19	Protocorms of <i>P. rothschildianum</i> cryopreserved by encapsulation-vitrification method.	76
Figure 4.20	Seeds of <i>P. rothschildianum</i> under microscope.	77
Figure 4.21	Viability of <i>P. rothschildianum</i> seeds after exposure to PVS2 solution from 0 to 5 hours and LN storage (First experiment).	78
Figure 4.22	Viability of <i>P. rothschildianum</i> seeds after exposure to PVS2 solution from 0 to 5 hours and LN storage (Second experiment).	78
Figure 4.23	Germination percentage of <i>P. rothschildianum</i> seeds after treated with different PVS2 incubation periods (First experiment).	80
Figure 4.24	Germination percentage of <i>P. rothschildianum</i> seeds after treated with different PVS2 incubation periods (Second experiment).	81
Figure 4.25	Seeds of <i>P. rothschildianum</i> that had germinated after 150days of post-thaw culture.	82
Figure 4.26	Germination percentage of <i>P. rothschildianum</i> seeds after precultured on media containing different sucrose concentrations and liquid nitrogen storage for 1 day.	84
Figure 4.27	Germination percentage of <i>P. rothschildianum</i> seeds after precultured for different durations and liquid nitrogen storage for 1day.	85
Figure 4.28	Germination percentage of <i>P. rothschildianum</i> seeds after storage in liquid nitrogen for 2, 4, 8, 12, and 24 weeks (Experiment 1).	88
Figure 4.29	Germination percentage of <i>P. rothschildianum</i> seeds after storage in liquid nitrogen for 2, 4, 8, 12, and 24 weeks (Experiment 2).	89
Figure 4.30	Comparison of germination percentage of <i>P. rothschildianum</i> seeds between seeds stored in refrigerator and control seeds from LN storage experiment.	90
Figure 4.31	Germination percentage of <i>P. rothschildianum</i> seeds after LN storage using optimized vitrification protocol.	92

Figure 4.32 Development of *P. rothschildianum* seeds after storage in liquid nitrogen.


LIST OF ABBREVIATIONS

BGCI	Botanic Gardens Conservat	tion International
------	---------------------------	--------------------

CITES Convention on International Trade in Endangered Species

IPGRI International Plant Genetic Resources Institute

- LN Liquid nitrogen
- MS Murashi and Skoog Medium, 1962
- PVS2 Plant Vitrification Solution 2
- PVS4 Plant Vitrification Solution 4
- **TTC** 2,3,5-Tritetrazolium chloride
- USDA United States Department of Agriculture
- XER Experimental Ernst Robert Medium
- ABA

UNIVERSITI MALAYSIA SABAH

LIST OF APPENDIX

APPENDIX A	Composition of Murashige and Skoog Medium	146
APPENDIX B	Composition of Experimental Ernst Robert (XER) Medium	147
APPENDIX C	Composition of RE medium	148
APPENDIX D	Different Types of Orchid Seeds	149
APPENDIX E	Data of TTC Viability Test	152
APPENDIX F	Evaluation of preculture condition (sucrose concentrations) for <i>P. gigantea</i> protocorms	157
APPENDIX G	Evaluation of preculture durations for <i>P. gigantea</i> protocorms	159
Appendix H	Evaluation of preculture condition (sucrose concentrations) for <i>P. rothschildianum</i> protocorms	161
APPENDIX I	Evaluation of preculture durations for <i>P. rothschildianum</i> protocorms	163
APPENDIX J	Evaluation of loading solution for <i>P. gigantea</i> protocorms (sucrose concentration)	165
APPENDIX K	Evaluation of loading solution for <i>P. gigantea</i> protocorms (glycerol concentration)	167
Appendix L	Evaluation of loading solution for <i>P. gigantea</i> protocorms (combination of sucrose and glycerol)	169
APPENDIX M	Evaluation of loading solution for <i>P. rothschildianum</i> protocorms (sucrose concentration)	171
APPENDIX N	Evaluation of loading solution for <i>P. rothschildianum</i> protocorms (glycerol concentration)	173
APPENDIX O	Evaluation of loading solution for <i>P. rothschildianum</i> protocorms (combination of sucrose and glycerol)	175
APPENDIX P	Evaluation of different Vitrification Solutions for <i>P. rothschildianum</i> (green protocorms) before LN storage	177
APPENDIX Q	Evaluation of different Vitrification Solutions for <i>P. rothschildianum</i> (green protocorms) after LN storage	179

CHAPTER 1

INTRODUCTION

The orchids are classified under the Orchidaceae with over 25,000 known species and with an estimation of 5,000 species waiting to be discovered (McGough *et al.*, 2006). Orchids are now the second most popular potted floriculture crop with wholesale prices estimated at \$128 million in the year 2004 (USDA, 2005) and have became popular houseplants.

Most of the orchid species are at risk of extinction as the results of habitat destruction caused by human activities such as logging, mining and urban development (Hágster and Dumont, 1996). It was been facing the stress of over collection of wild population for illegal trade (Sivasithamparam *et al.*, 2002). McGough *et al.* (2006) reported that over-collection of species that are important in trade can lead to the extinction of the species in the wild within a few years of discovery.

VIVERSITI MALAYSIA SABAH

Many efforts have been done to conserve orchid species using biotechnological approaches. The Tropical Botanic Gardens and Research Institute in Kerala, India studied the *in vitro* conservation of 30 orchids from the conservation hotspot of Western Ghats (Sarasan *et al.*, 2006). Stewart and Kane (2006) had successfully developed some effective *in vitro* seed germination and seedling development media for *Habenaria macroceratitis*, which is a rare Florida terrestrial orchid.

Several species of orchids that had been cryopreserved include *Spathoglottis plicata* (Wang *et al.*, 2003), *Vanda pumila* (Na and Kondo, 1996), *Bletilla striata* (Ishikawa *et al.*, 1997; Hirano *et al.*, 2005), *Doritaenopsis* (Tsukazaki *et al.*, 2000) and *Dendrobium* Walter Oumae (Lurswijidjarus and Thammasiri, 2004). The materials used in cryopreservation included protocorms, shoot apices, zygotic embryos, suspension cells, immature seeds and shoot tips.

In Sabah, Malaysia, *Paphiopedilum rothschildianum* and *Phalaenopsis gigantea* are the two species of endangered orchids. Their number in the wild is reducing due to several reasons such as forest fires and illegal collection for the horticultural trade (Cribb, 1998). Cribb (1997) stated that one of the three sites on the lower slopes around Mount Kinabalu, where *P. rothschildianum* could be found, was totally destroyed by logging, mining and shifting agriculture.

Since the population of both *Paphiopedilum rothschildianum* and *Phalaenopsis gigantea* is reducing in the wild, there is a need to develop an alternative conservation strategy to protect these two species. This study is about developing cryopreservation protocols for *P. rothschildianum* and *P. gigantea* to address small portion of this problem.

There were two parts in this study. The first part was the development of cryopreservation protocols for protocorms whereas the second part focuses on the development of cryopreservation procedure for *P. rothschildianum* seeds. In the beginning of this project, only protocorms were available. It was because the flowering season for *P. rothschildianum* was in March and November. The capsule could only be collected after 6 months of pollination. Seeds of *P. gigantea* were not studied in this project because there was no flowering in the year 2005-2006. Thus, the seeds of *P. gigantea* were not available throughout the project.

The objectives of this study are:

- to develop the vitrification protocol for protocorms of *P. rothschildianum* and *Phalaenopsis gigantea* by optimizing preculture condition, preculture duration, loading solution, vitrification solution and PVS2 incubation duration.
- (ii) to evaluate encapsulation-dehydration and encapsulation-vitrification method for *P. rothschildianum* protocorms.
- to develop the vitrification protocol for seeds of *P. rothschildianum* by optimizing preculture condition, preculture duration and PVS2 incubation duration.
- (iv) to evaluate the effect of long-term storage of *P. rothschildianum* seeds.

2

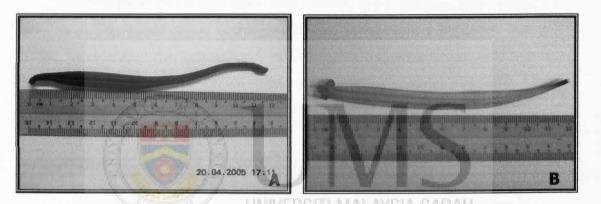
 (v) to evaluate the applicability of optimized vitrification protocol for *Paphiopedilum rothschildianum* seeds.

CHAPTER 2

LITERATURE REVIEW

2.1 Orchid

Orchids are members of the plant family Orchidaceae. It is one of the largest families of flowering plants, which consists of 700 to 800 genera, 17,500 to 35,000 species (Dressler, 1993), and more than 70,000 ornamental hybrids (Bukhov *et al.*, 2006). Orchids are categorized into two main groups, namely terrestrials and epiphytes. Terrestrials orchids typically occur in temperate regions whereas epiphytes orchids mostly can be found in tropical regions (Sivasithamparam *et al.*, 2002).


The flowers of orchids are diverse in size, shape, colour, structure, number and fragrance. Thus, orchids are highly demanded in the cut-flower industry and ornamental potted plants. According to the United States Department of Agriculture (USDA, 2005), orchids are the second most popular potted floriculture crop in 2004 with whole prices estimated at \$128 million (Kauth *et al.*, 2005).

Despite of the contribution in horticulture trade, orchids are also used for therapeutic purposes. For example, the stems of *Dendrobium officinale* have been used as a traditional Chinese tonic medicine (Su and Yang, 2006). Its main function is to nourish kidney and promote the production of body fluid, resist cancer and prolong life (The Pharmacopoeia Commission of People's Republic of China (PRC), 2000).

Because of the high demand in horticulture trade as well as therapeutic purposes, many orchids are facing collection stress. Most of the orchids are currently at risk of extinction as the results of human activities, which include habitat destruction and extraction of wild plant for trade (Sivasithamparam *et al.*, 2002). Hágster and Dumont (1996) characterized the factors that have been identified to cause orchids species being threatened into two categories. The first factor is habitat destruction, modification and fragmentation that include longing, agriculture and plantations, urban development and mining. The second factor is due to collecting for horticulture trade, amateur collection and consumable orchids.

2.1.1 Orchid Seeds and Their Development

Orchid seeds are unique and they are termed as 'dust seeds' which mean that the seeds are small measuring 200 to 1700µm (Rasmussen, 1995; Szendrak, 1997). Orchid seeds are characterized as being very light, produced in large numbers and enclosed within capsules (Figure 2.1). These characteristics not only facilitate dispersion around the parent plant but also over a wider area (Nakamura and Hamada, 1978; Rasmussen, 1995; Arditti and Abdul Ghani, 2000).

PERPUSTAKAAN

Figure 2.1: Capsule of orchids. A): Capsule of *Paphiopedilum rothschildianum* and, B): Capsule of *Phalaenopsis gigantea*.

Clifford and Smith (1969) had classified orchid seeds into five general shapes, namely shape one to five (Figure 2.2). Shape one and five are the most common shape whereas shape four is relatively rare. Different morphology and classes of orchid seeds are showed on Appendix D.

An orchid seed consists of a testa surrounding a tiny embryo in the globular stage. The seeds do not contain endosperm and have limited nutrient (Arditti, 1992). Thus, only 2-5% of seeds could be germinated in their natural environment (Nikishina *et al.*, 2006).