BIOACTIVE PROPERTIES AND PHYTOCHEMICAL ANALYSIS OF *Rubus fraxinifolius* Poir (ROGIMOT).

NOR AMIRAH BINTI SHAMSUDIN

PERPUSTAKAAN

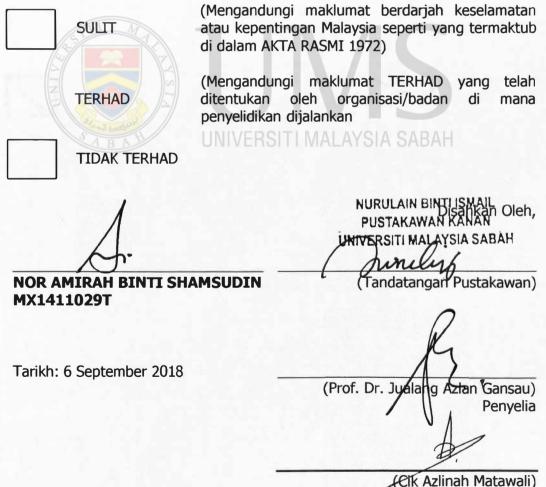
HNIVERSITI MALAVSIA

THESIS SUBMITTED IN FULFILLMENT FOR DEGREE OF MASTER OF SCIENCE

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH

2018

UNIVERSITI MALAYSIA SABAH


BORANG PENGESAHAN STATUS THESIS

JUDUL: BIOACTIVE PROPERTIES AND PHYTOCHEMICAL ANALYSIS OF Rubus fraxinifolius Pior (ROGIMOT)

LIAZAH: SARJANA SAINS (BIOTEKNOLOGI)

Saya **<u>NOR AMIRAH BINTI SHAMSUDIN</u>**, Sesi Pengajian <u>**2015-2018**</u>, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tanda (/)

Penyelia bersama

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, citations, equations, summaries and references, which have been fully acknowledged.

17 August 2018

Nor Amirah Binti Shamsudin MX1411029T

CERTIFICATION

NAME	:	NOR AMIRAH BINTI SHAMSUDIN
MATRIC NO.	:	MX1411029T
TITLE	:	BIOACTIVE PROPERTIES AND PHYTOCHEMICAL
		ANALYSIS OF Rubus fraxinifolius POIR
DEGREE	:	MASTER OF SCIENCE
		(BIOTECHNOLOGY)
VIVA DATE	:	17 AUGUST 2018

CERTIFIED BY,

SIGNATURE

1. SUPERVISOR PROF. DR. JUALANG AZLAN GANSAU 6

2. CO-SUPERVISOR

MS. AZLINAH MATAWALI

ACKNOWLEDGMENT

In the name of Allah who is most kind and merciful.

I thank God for all the opportunity, strength, trials and courage that have been showered on me to complete not only my thesis but also the whole process of obtaining my Master of Science Degree. I have learned so much from this process not only in academic but also from a personal perspective.

I wish to express my deepest gratitude to my supervisor, Prof. Dr. Jualang Azlan Gansau and Ms. Azlinah Matawali for their encouragement in this work. Their endless support, priceless guidance, valuable advice and constructive criticism have been precious during these three years

I am also grateful to Centre for Research and Innovation, University Malaysia Sabah and Seaweed Research Unit for use of their laboratory facilities. This thesis also would not be successful without the assistance of staffs from the Faculty Science and Natural resources and Institute for Tropical Biology and Conservation. I would like to thank the faculty and institute for their help and support, especially in sample collection and sample identification process.

My heartfelt gratitude is extended to my family especially to my parents, have always provided me with positive encouragements, valuable suggestions and warm spirit to complete this thesis. Special thanks to them for their endless love and support. I would also like to extend my gratitude to my friends for their help, support, and understanding for these two years. I am grateful for their constant support and help.

UNIVERSITI MALAYSIA SABAH

Nor Amirah Binti Shamsudin 21 March 2018

ABSTRACT

Rubus fraxinifolius, locally known as Rogimot, is an underutilized edible fruit that can be found distributed from low tropic to subtropics region. The aims of the present study were to determine the antioxidant activities, phytochemicals content, anticholinesterase and antibacterial properties in different parts (i.e., fruit, stem, and leaves) of the plants. Antioxidants were analysed using Ferric Reducing Antioxidant Power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. All samples were freezedried and extracted using five different solvents (dH_2O , absolute ethanol, 80% (v/v) ethanol, absolute methanol, and 80% (v/v) methanol). An antioxidant test showed that 80 (%) methanol crude extract display a higher antioxidant value compares to the other extract. The extract of 80% methanol is then subjected to phytochemicals analysis, where the result of total phenolic and total flavonoid content is found higher in the leaves part with the values of 56.32±0.05 mg GAE/g and 31.36±1.05 mg CE/g, respectively. Meanwhile, fruit part showed the highest total anthocyanin and total carotenoid content with values of 22.27±1.28x10⁻¹⁴mg C-3-GE/ g and 10.02±0.22 mg BC/g, respectively. For AChE inhibition activity, enzyme inhibition method is used with galanthamine as a positive control. The result of 80% (v/v) methanol extract of fruit, stem, and leaves showed a dependent inhibition activity against the AChE enzyme, where leaves part showed the highest ACh inhibition activity (63.48 \pm 0.48%) when tested at 250 µg/ml, followed by stem and fruit part. The leaves part is chosen for phytochemical analysis and were extracted with liquid-liquid extraction before undergoes fractionation by column chromatography. A total of 10 fractions were screened for their antioxidant, anticholinesterase, and antimicrobial activity. Nevertheless, fraction 5 and fraction 6 showed the highest antioxidant, AChE inhibition, and antibacterial activity. Therefore, both fractions are subjected to GC/MS analysis. The result on GC/MS analysis of both fractions revealed a total of 5 major compounds and among the major compounds that had been identified from both fraction is a phenol group compound, i.e phenol, phenol, 2,4-bis(1,1-dimethylethyl)- and a fatty acid group, i.e hexadecanoic acid, which is widely known for their bioactivity. As a conclusion, R. fraxinifolius leaves potentially provide protection against oxidation, antimicrobial, and having a potential as an acetylcholinesterase inhibitor.

ABSTRAK

SIFAT BIOAKTIVITI DAN ANALISIS FITOKIMIA Rubus fraxinifolius Pior (Rogimot)

Rubus fraxinifolius atau lebih dikenali sebagai Rogimot di kalangan masyarakat tempatan merupakan buah yang boleh dimakan dan ianya boleh ditemui di sekitar kawasan tropika rendah hingga ke subtropika. Kajian ini dilakukan bagi menentukan kebolehan bahagian buah, batang, dan daun tumbuhan ini sebagai antioksidan, kebolehan merencat enzim asetilkolin, jumlah kandungan fitiokimia, dan sebagai antimikrob. Aktiviti antioksidan ditentukan menggunakan kaedah kuasa penurunan ion ferik (FRAP), ujian penghapusan radikal bebas DPPH dan ujian penghapusan radikal bebas ABTS. Bahagian buah, batang dan daun yang telah diasingkan kemudiannya dikeringkan menggunakan pengering beku dan di ekstrak menggunakan lima pelarut yang berbeza (iaitu dH₂O, 100% etanol, 80% (v/v) etanol, 100% metanol, dan 80% (v/v) metanol). Berdasarkan keputusan ujian antioksidan, ekstrak menggunakan pelarut 80% (v/v) metanol menunjukkan keputusan aktiviti antioksidan yang lebih tinggi berbanding ekstrak larutan yang lain. Keputusan ujian fitokimia daripada ekstrak 80% (v/v) metanol menunjukkan bahawa bahagian daun mengandungi kandungan fenolik (56.32±0.05mg GAE/g) dan flavonoid (31.36±1.05mg CE/g) yang lebih tinggi berbanding bahagian batang dan buah. Manakala, jumlah kandungan antosianin dan karotenoid adalah lebih tinggi pada bahagian buah dengan nilai masing-masing iaitu 22.27±1.28×10¹⁴mg C-3-GE/a dan 10.02±0.22mg BC/g. Baai aktiviti perencatan enzim asetilkolinesterase, galantamin digunakan sebagai kawalan positif. Semua bahagian tumbuhan yang diuji menunjukkan aktiviti perencatan terhadap enzim asetilkolinesterase, di mana bahagian daun menunjukkan aktiviti perencatan tertinggi (63.48±0.48%), apabila diuji pada kepekatan 250 µg/ml. Bahagian daun dipilih untuk melalui analisis fitokimia dan ianya diekstrak dengan pengekstrakan cecair-cecair sebelum dipisahkan dengan kromatografi turus. Kesemua 10 fraksi yang dikumpul daripada kromatografi turus, diuji semula terhadap ujian aktiviti antioksidan, perencatan enzim asetilkolin dan aktiviti antimikrob. Keputusan ketigatiga ujian terhadap 10 fraksi tersebut menunjukkan bahawa fraksi 5 dan 6 menunjukkan aktiviti antioksida, perencatan enzim asetilkolin dan antimikrob tertinggi dan kedua-dua fraksi tersebut dipilih sebagai subjek analisis fitokimia menggunakan GC/MS. Hasil daripada analisis GC/MS pada kedua-dua fraksi menuniukkan kehadiran 5 sebatian utama dan antara sebatian utama yang telah dikenalpasti adalah daripada kumpulan fenol iaitu "phenol, 2,4-bis (1,1dimetilethyl)-" dan asid lemak iaitu asid heksadekanoik. Sebagai kesimpulan, daun R. fraxinifolius berpotensi memberikan perlindungan dan mengelak proses pengoksidaan, antimikrobial, dan berupaya menghentikan kesan enzim asetilkolinesterase.

Page

5

5

TITLE	i de la companya de l
DECLARATION	ii
CERTIFICATION	
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
LIST OF CONTENTS	vii
LIST OF TABLES	x
LIST OF FIGURES	xi
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATIONS	xiv
LIST OF APPENDICES	xvi
CHAPTER 1 INTRODUCTION	
1.0 Research Background	1
1.1 Problem Statement	3
1.2 Objectives	4

1.2.1	Research	Justification
1.2.1	Research	Justification

1.2.2 Hypothesis of Study

CHAPTER 2 LITERATURE REVIEWERSITI MALAYSIA SABAH

2.1	Gener	al Benefits of Fruits and vegetables	6
2.2	Genus	s Rubus	7
	2.2.1	Geographical distribution of Rubus	7
	2.2.2	Uses of Rubus in Traditional Medicine	8
	2.2.3	Biological Activity of Rubus	8
2.3	Select	red Rubus species	9
2.4	Phyto	chemical in Plants	11
	2.4.1	Phytochemicals as an Antioxidant	13
	2.4.2	Phytochemicals as an Antimicrobial	19
	2.4.3	Phytochemicals as an Anti-Alzheimer	20
2.5	Antiox	kidant	21
	2.5.1	Free Radicals	22
	2.5.2	Antioxidants and Its Mechanism	23
	2.5.3	Antioxidant and Immune System	25
	2.5.4	Antioxidant and Alzheimer's disease (AD)	27
2.6	Antim	icrobial	27
2.7	Acetyl	cholinesterase and Alzheimer's Disease	29
	2.7.1	Anticholinesterase	32

vii

2.8	Dioact	ive from Natural product	34
2.0		ive from Natural product	
	2.8.1	Extraction and Separation of Bioactive Compound in Plant	35
		Chromatography Separation Method	38
	2.8.3	Gas chromatography-mass spectrophotometer (GCMS)	39
СНАР	TER 3	MATERIAL AND METHODS	
3.1	Materi	als	41
	3.1.1	Apparatus and Instruments	41
	3.1.2	Chemicals and Solvents	42
3.2	Metho	dology Flow Chart	42
3.3	Sampl	e Collection and Preparation	43
3.4	Extrac	tion Method	44
3.5	Antiox	idant Assessments	45
	3.5.1	Ferric Reducing/ Antioxidant Power (FRAP) Assay	45
	3.5.2	DPPH (2,2-diphenyl-1-pycryl-hydrazyl) Free Radical	45
		Scavenging Activity	
	3.5.3	ABTS ⁺ Decolorization Assay	46
3.6	Deterr	nination of Total Phenolic, Flavonoid, Anthocyanin	47
	and Ca	arotenoid Contents	
	3.6.1	Total Phenolic Contents	47
	3.6.2	Total Flavonoid Contents	48
	3.6.3	Total Anthocyanin Contents	48
	3.6.4	Total Carotenoid Contents	49
3.7	Acetyl	cholinesterase Inhibition Assay	49
3.8	Antimi	icrobial Activity	50
3.9	Fractio	onation of Selected Potential Part Extract	50
3.10	Chrom	atography Separation and Characterization of	52
	Bioact	ive Compounds of leaves part	
	3.10.1	. Column Chromatography (CC)	52
	3.10.2	Gas Chromatography-Mass Spectrometry (GC-MS) Analysis	52
		of Active Fraction.	
3.11	Statist	ical Analysis	53
СНАР	TFR 4	RESULT	
4.1		leight Sample	54
	4.1.1		55
4.2		inary Antioxidant Screening	56
	4.2.1	Ferric Reducing/Antioxidant Power (FRAP) Assay	58
	4.2.2		59
	4.2.3	5 5 ,	64
		Trend in Antioxidant Activity Base on Different	68
		Extract Solvent	00
	4.2.5		70
	1.2.5	Part of <i>R. fraxinifolius</i>	70

4.3	Phytoc	chemicals Determination in Sample	72
	4.3.1	Total Phenolic Contents	72
	4.3.2	Total Flavonoid Contents	75
	4.3.3	Total Anthocyanin Contents	77
	4.3.4	Total Carotenoid Contents	79
4.4	Acetyle	cholinesterase Inhibition Activity	81
4.5	Correla	ation Analysis of Phytochemical Content with Antioxidant	84
	and Ad	cetylcholinesterase Inhibition Activities	
4.6	Liquid	Liquid Extraction of Bioactive Compound of Leaves Part	86
	R. frax	xinifolius	
4.7	Antiox	idant Activity, Acetylcholinesterase Inhibition Activity	88
	and Ar	ntimicrobial Activity of Fractions	
	4.7.1	Antioxidant Activity in Leaves Fractions	88
	4.7.2	Acetylcholinesterase Inhibition Activity of Leaves Fractions	89
	4.7.3	Antimicrobial Activity of leaves fraction	90
	4.7.4	Effect of Fractionation and Separation of Compound on	91
		the Activity of Sample	
4.8	Gas Ch	nromatography/Mass Spectroscopy (GC/MS) Analysis	93
	4.8.1	Bioactive Compositions in Fraction 5 of <i>R. fraxinifolius</i> Leaves	94
	4.8.2	Bioactive Compositions in Fraction 6 of <i>R. fraxinifolius</i> Leaves	97
	4.8.3	Comparison of Compounds from Fraction 5 and Fraction 6	100
CHA	PTER 5	CONCLUSION AND RECOMMENDATION	
		FOR FUTURE RESEARCH	
5.1	Genera	al Conclusion UNIVERSITI MALAYSIA SABAH	103
5.2			105
5.3	Limita	tion of Study	105
REFE	RENCE	S	106
		6	148

LIST OF TABLES

Page

Table 2.1	Structural Skeleton of Families of Phenolic Compounds	14
Table 4.1	Net Weight of Different Parts of R. fraxinifolius	54
Table 4.2	Phytochemicals Content of 80% (v/v) Methanol Extract in Different Parts of <i>Rubus fraxinifolius</i> .	72
Table 4.3	Antioxidant Activity of Liquids Fractions	88
Table 4.4	Acetylcholinesterase Inhibition Activity of Liquid Fractions	89
Table 4.5	Antimicrobial Activity of Liquids Fractions	90
Table 4.6	The Compounds Identified in Fraction 5 from Leaves of <i>R. fraxinifolius</i>	94
Table 4.7	The Compounds Identified in Fraction 6 from Leaves of <i>R. fraxinifolius</i>	97

LIST OF FIGURES

		Page
Figure 2.1	The Fruit of Rubus fraxinifolius	9
Figure 2.2	The Pinnately Compound Leaves of Rubus fraxinifolius	10
Figure 2.3	Type of Phytochemicals	12
Figure 2.4	Basic Structure of Flavonoid	16
Figure 2.5	Main Structure of Anthocyanin or the Flavium Cation with the Common Structural Formula of Common Anthocyanins.	17
Figure 2.6	Reaction of FRAP assay	25
Figure 3.1	Flow Chart of Methods Used Throughout Experiment	43
Figure 3.2	Liquid-Liquid Extraction Method with Modification	51
Figure 4.1	Ferric Reducing/ Antioxidant Power of Different Part of Samples (in Different Solvent) by mmol Ferric Reduction to Ferrous in 1 g of Dry Sample.	59
Figure 4.2	The Percentage Scavenging Activity of DPPH of Samples (In Different Solvent Extract), A) Fruits Part, B) Stem Part, C) Leaves Part.	62
Figure 4.3	IC_{50} value of DPPH of all sample tested (In a Different Extract Solvents).	64
Figure 4.4	The Percentage Scavenging Activity of ABTS of Samples (In Different Extract Solvents), A) Fruits Part, B) Stem Part, C) Leaves Part.	66
Figure 4.5	The IC_{50} value of ABTS of All Sample Tested (In Different Extract Solvent).	68
Figure 4.6	Acetylcholinesterase Inhibition Activity for Different Part of <i>R. fraxinifolius</i> (80% (v/v) Methanol Extract).	82
Figure 4.7	The IC ₅₀ value of Acetylcholinesterase Inhibition Activity in Different Part of <i>R. fraxinifolius</i> .	82

Figure 4.8	GC-MS Chromatogram of Fraction 5 of Leaves of <i>R. fraxinifolius</i>	94
Figure 4.9	Chemical Structures of Two Major Compounds in Fraction 5	95
Figure 4.10	Chemical Structures of Seven Minor Compounds in Fraction 5	96
Figure 4.11	GC-MS Chromatogram of Fraction 6 of Leaves of R. fraxinifolius	97
Figure 4.12	Chemical Structures of Three Major Compounds in Fraction 6	98
Figure 4.13	Chemical Structure of Ten Minor Compounds in Fraction 6	99

LIST OF SYMBOLS

В	Beta
°C	Degree Celsius
rpm	Revolution per minutes
±	Plus minus
%	Percentage
(v/v)	Volume per volume
mi	Milliliter
μg	Microgram
μί	Microliter
µg/ml	Microgram per milliliter
mg/ml	Milligram per milliliter
μΜ	Microgram
nm	Nanometer
xg	X gravitational forces
g 🖉 🖉 🔜	Gram
hà 🚽 🔛	Microgram
μΜ	Micromolar
mM AB	Millimolar UNIVERSITI MALAYSIA SABAH
min	Minutes
g/l	Gram per litre
U/ml	Unit per milliliter
CFU/ml	Colony-forming unit per milliliter
mm	Millimeter
°C/min	Degree Celsius per minunte
~	Approximately equal
≤	Less than or equal to
>	Greater than
<	Less than
=	Equal

LIST OF ABBREVIATIONS

AD	Alzheimer's disease
AChE	Acetylcholinesterase
ACh	Acetylcholine
AOC	Antioxidant Capacity
ArOH	Antioxidant
BHA	Butylated hydroxyanisole
внт	Butylated hydroxytoluene
BChE	Butrylcholinesterase
CAS	Catalytic anionic site
CNS	Central nervous system
dH₂O	Distilled Water
FRAP	Ferric Reducing Antioxidant Power
НАТ	Hydrogen Atom Transfer
HNO ₂	Nitrous acid
но•	Hydroxyl
HOCI	Hypochlorous acid
H ₂ O ₂	Hydrogen Peroxide
IP A B A	Ionization Potential SITI MALAYSIA SABAH
BDE	Bond Dissociation Energy
LLE	Liquid-Liquid Extraction
L00°	Lipid Peroxyl
LOOH	Lipid Peroxide
NO [•]	Nitric oxide
NO ₂ •	Nitric dioxide
N ₂ O ₃	Dinitrogen Trioxide
PAS	Peripheral anionic site
ROS	Reactive Oxygen Species
R00*	Peroxyl
RNS	Reactive Nitrogen Species
SET	Single Electron Transfer
TRAP	Total Radical Trapping Antioxidant Parameter
ORAC	Oxygen Radical Absorbance Capacity

Singlet Molecular Oxygen
Ozone
Peroxynitrite
Organophosphorus
World Health Organization

LIST OF APPENDICES

		Page
Appendix A	Conference Abstract	148
Appendix B	Percentage of Recovery in Crude Extract	149
Appendix C	Ferrous Sulphate Standard Curve	150
Appendix D	Trolox Standard Curve of DPPH	150
Appendix E	Trolox Standard Curves of ABTS	151
Appendix F	Gallic Acid Standard Curve	151
Appendix G	Catechin Standard Curve	152
Appendix H	β-Carotene Standard Curve	152
Appendix I	Percentage of Recovery of All Fractions	153
Appendix J	Result on Complete Inhibition Zone of Three Active Fractions	154
Appendix K	Mass Spectrum of 1H-Indole, 2,3-dihydro-1-(1-methylpropyl) of Fraction 5.	157
Appendix L	Mass spectrum of Propionic acid, 3-mercapto-, dodecyl ester of Fraction 5.	158
Appendix M	Mass Spectrum of Cyclododecane of Fraction 6	159
Appendix N	Mass spectrum of 1H-Pyrazole, 4-bromo from Fraction 6	160
Appendix O	Mass spectrum of Phenol, 2,4-bis(1,1-dimethylethyl) of Fraction 6	161

CHAPTER 1

INTRODUCTION

1.0 Research Background

High demands in fruit production are expected worldwide due to the health benefits of fruits and their products. Developing countries contribute to about 98% of the total production of tropical fruits in the world (FAO, 2003). Southeast Asia is known to possess a rich diversity of potent commercial fruit and among successfully marketed fruits are mango, papaya, and banana. In spite of this commercialized fruit, there are also several fruits that remain underutilized and only sold locally. In Borneo Island, there are about 200 species of edible fruits, which some has been used as ethnomedicine and was beneficial to health, however, they are still not fully utilized and commercialized (Wong *et al.*, 1994; Abu Bakar *et al.*, 2009).

More than hundreds of indigenous fruit can be found in small-scale orchards, even in a backyard and tropical rainforest in Borneo. However, many of this fruits are only available locally and consider underutilized as not much research on these plant. An underutilized fruit has not received much attention among consumer compared to commercial fruit. This could be due to the lack of scientific data and information on their bioactive potentials and nutritional values, lack of popularity among local communities, and lack of promotional campaigns (Ikram *et al.*, 2009). Recently, there are increasing interests on rare and underutilized fruit especially in developing countries to promote and develop a new generation of 'superfruit' which can be exported and commercialized globally (Abu Bakar and Fry, 2013). In present times, various wild edible plant species are studied for their nutritional content as they are considered as economically and nutritional important (Ahmad *et al.*, 2015). Plants contain varieties of free radical scavenging molecules, such as vitamins, dietary glutathione, polyphenols, and endogenous metabolites. These natural metabolites make a potential and good antioxidant. Although the human body can produce several enzymes that help scavenge free radical, but antioxidant such as α-tocopherol (vitamin E), β -carotene and ascorbic acid (vitamin C) is only supplied through diet (Levine *et al.*, 1991; Lobo *et al.*, 2010). High consumption of vegetables and fruits are also associated with protection against various age-related diseases. Moreover, epidemiological studies shows that intake of fruit and vegetables is associated with the lower risk of all-cause mortality and reduced potential of cardiovascular diseases (Wang *et al.*, 2014), cancer mortality (Wu *et al.*, 2016; Aune *et al.*, 2017), age-related diseases (Jiang *et al.*, 2017).

Recently, research regarding on natural antioxidant has increased in various fields including food biology, food chemistry, cosmetic and other medical healthcare industries (Duda Chodak and Tarko, 2007; Nimmi and George, 2012; Li *et al.*, 2014). The increased interest, especially in aromatic plant, spices, and several potential medicinal plants as a natural antioxidant, are due to the public's awareness, perception that natural dietary antioxidant is safer than the synthetic analogues (Dogan *et al.*, 2010) and the safety consideration of the potentially harmful effect of synthetic antioxidant (Seifu *et al.*, 2012). Food industries had been promoting the benefits of antioxidant content in fruits and vegetables which lead to a growing interest on research to find a new source of natural antioxidant (Peschel *et al.*, 2006; Hidalgo and Almajano, 2017). It is proven scientifically in laboratory and epidemiology studies where a high intake of fruits and vegetable can protect and reduce a considerable number of chronic diseases and the protective evidence are associated with their antioxidant and phytochemicals compound (Jiang *et al.*, 2017; Abdelrehim *et al.*, 2018).

1.1 Problem Statements

The natural or synthetic antioxidant has been added to vegetables, fruits, prepared food items, pharmaceuticals, and cosmetics in order to maintain their quality and increase their shelf life by inhibiting, slow or arrest the fermentation, microbial decomposition, acidification, and microbial contamination in this product (Anand and Sati, 2013). They are also has been used in various industries and fields including medical and food industry to prevent rancidification, owing to their wide availability and high performance (Anbudhasan *et al.*, 2014). Free radicals that are formed as by-products of many biochemicals can induce lipid peroxidation, which is the predominant cause of the destruction of vitamins, food decay, and rancidity during storage and transformation (St Angelo, 1996). An antioxidant can scavenge the harmful active free radical in cell and reduce potential mutation that can cause lipid alteration (Meroni and Raikso, 2018)

Synthetic antioxidants such as butylhydroxytoluene (BHT) and butyl hydroxyanisole (BHA) and propyl gallate are a synthetic phenolic antioxidant (Anbudhasan *et al.*, 2014). These compounds are been suspected cause of liver damage due to their toxicity as well as the carcinogenic effect (Barlow, 1990). As an example, synthetic antioxidants such as BHT, BHA, and TBHQ are used to overcome the problem on the stability of frying oil but a study by Gohari Ardabili *et al.* (2010) provided an evidence for the role of these synthetic antioxidants as carcinogens. Even though synthetic antioxidant help in protecting the quality of food, excess antioxidant added to food may produce toxicity or mutagenicity (Anbudhasan *et al.*, 2014).

Antioxidant from natural sources also has shown significant benefit in preventing a number of human diseases including neurological disease (Juliet and Sivakumar, 2017). Parkinson's disease, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis (ALS), memory loss, and depression are among of the neurological disease that has been investigated to be caused by oxidative stress (Si, 2001; Singh *et al.*, 2004; Christen, 2000; Butterfield, 2002). Protective effect of natural antioxidants are through to a variety of biological actions including modulation in the activity of a different enzyme, inactivation of free radicals,

3

interaction with transition metals, and effect on gene expression and intracellular signalling pathways (Obrenovich *et al.,* 2010; Soobrattee *et al.,* 2006).

Various food advertisers have begun to take note and publicizing the fact on the protective evidence of natural antioxidant against various types of diseases (Anbudhasan *et al.*, 2014). Moreover, the adverse effect of synthetic antioxidant has caused an increase on a demand for natural antioxidant (Shah *et al.*, 2014). In addition to that, trends in pharmaceutical and healthcare industries together with a new concept of natural healthcare in a market create a demand of modern society (Li *et al.*, 2014). This triggered intense research on not only to the edible part of a plant such as fruit but also the underutilized part, such as stem, flower, root, bark, and leaves. Many research and studies devoted to many natural antioxidants such as ascorbic acid, tocotrienols, tocopherols, β -carotene on various endemic plants where these compounds can be used as phytoceuticals and nutraceuticals (Ali Hassan *et al.*, 2013).

1.2 Objectives

This research is carried out to investigate potency of an underutilized plant of Sabah that may have potential benefits especially this selected plant which is known as *Rubus fraxinifolius* (locally called as Rogimot). Part of the plant with high phytochemical content display a wide range of bioactivity could be recommended as possible part of disease preventing. Furthermore, a better understanding of the functional and nutraceutical potential of this plant will further contribute to conservation and enhancement of species to sustain the household income of local communities. Therefore, the objectives of this study are:

- i. To determine the phytochemicals, antioxidants, and acetylcholinesterase inhibition properties of *Rubus fraxinifolius* Poir using different plant parts and extraction solvents.
- ii. To fractionates and isolate the bioactive compounds from potential *Rubus fraxinifolius* Poir. extract and subsequently determine the antioxidant, acetylcholinesterase inhibition, and antimicrobial activity.

1.2.1 Research Justification

This research is important as nowadays as people start to consume and utilized more on natural pharmaceutical as sources or alternative sources of remedies compare to other chemical-based medicine. It is because synthetic pharmaceutical may contain effect to human bodies. This fruit is popular among the local community in some area of Sabah which covers Bundu Tuhan, Kundasang, Keningau, and Ranau. However, it remains unpopular among the people in other regions of Sabah. Previously, there are very rarely publications, studies, and scientific information regarding this selected underutilized plant especially for their antioxidant, acetylcholinesterase inhibition and antimicrobial properties, hence this study intends to provide scientific data on the potential of different parts of this selected species.

1.2.2 Hypothesis of Study

Rubus fraxinifolius have potential health benefits with phytochemical compounds that act as a natural antioxidant agent, good antimicrobial and acetylcholinesterase inhibitor properties.

UNIVERSITI MALAYSIA SABAH

CHAPTER 2

LITERATURE REVIEW

2.1 General Benefits of Fruits and Vegetables

Eating habit of consumers is changing with the 21st-century lifestyle and there is a better understanding of the effect of food consumed on quality and health of life (Ancos *et al.*, 2015). Nowadays, there is increasing demand by consumers on fresh or processed fruits and vegetables, especially for canned, frozen or minimally processed products. Other than that, microbiologically safe and food that offers biological properties beyond nutritional factor also become an attraction among consumers. In line with the tendency to consume healthy, safe and free synthetic additive food, these have become the highest demand for a consumer (Ancos *et al.*, 2015). Moreover, numerous published report and data on ways of obtaining phytochemicals from fruits and vegetables lead to increasing of public awareness (Aguedo *et al.*, 2012; O'shea *et al.*, 2012; Wijngaard *et al.*, 2012; Yu and Ahmedna, 2013).

Many research also has described the positive association between high consumption of plant-based foods with protective and decrease of various other chronic diseases such as cardiovascular disease (Saiko *et al.*, 2008), Alzheimer's disease (Mani and Milind, 2007), cancer (Wang and Lewers, 2007), lower all-cause mortality in several populations (Heidemann *et al.*, 2008; Leenders *et al.*, 2013), reduce the risk of coronary heart disease, stroke, hypertension, obesity and many more (Ledoux *et al.*, 2011; Boeing *et al.*, 2012). Different varieties and species of fruits, vegetables, and grains have different phytochemicals profiles Chu *et al.*, 2002). Moyer *et al.* (2002) reported that dark coloured and highly pigmented

coloured fruits have the highest values of phenolic, anthocyanin and antioxidant content compared to other plants generally for fruit and vegetables. As an example, different species and varieties of blackcurrant fruits such as *Ribes valdivianum*, *Ribes nigrum* cvs. Consort, and *Ribes odoratum* has a different total phenolic content (TPH/100g) with the value of 1790 ± 59 , 1342 ± 28 , and 958 ± 33 ; respectively (Moyer *et al.*, 2002). Research on 26 species of berries family such as *Ericaceae* genus *Vaccinium*, family *Grossulariaceae* genus *Ribis* and family *Rosaceae* genus *Rubus* also showed a high variation in total phenols content between the different genera and species (Jaime Guerrero *et al.*, 2010).

2.2 Genus *Rubus*

Rubus is a Latin name that refers to a holy bramble or blackberry (Zohary, 1972). *Rubus* is a member of raspberries which include other trailing brambles such as loganberry and blackberry. *Rubus* is also one of the most diverse genera in a plant kingdom, which contains about 500 species (Graham and Woodhead, 2011). The subgenera *Rubus* are divided into 12 section including *Allehgeniensis, Arugti, Flaggellares, Rubus, Ursini,* and/or *Verotrivialis* (Finn and Hancock, 2008).

UNIVERSITI MALAYSIA SABAH

2.2.1 Geographical Distribution of *Rubus*

Rubus plants can be found on all continents except Antarctica and it is distributed from low and tropic to subtropics region (Menzies, 2002; Yang and Pak, 2006). *Rubus* fruits are consumed globally because of their taste and due to the health benefits of it (Lee *et al.*, 2012). In Malesia region, there are about 46 species of *Rubus* are found (Kalkman, 1993). In Malaysia Borneo (Sabah), *Rubus* plant can be found in the highland area. Record by Corner and Beaman (1996), stated that there are more than 8 species of *Rubus* can be found in Mount Kinabalu, such as, *Rubus benguetensis, Rubus elongates,* and *Rubus rosifolius.*

7