# UTILIZATION OF ALLZYME® SSF AND CITRIC ACID IN THE FORMULATION OF DUCKWEED-INCLUDED DIETS FOR HYBRID GROUPER, Epinephelus fuscoguttatus x Epinephelus lanceolatus



# BORNEO MARINE RESEARCH INSTITUTE UNIVERSITI MALAYSIA SABAH 2017

# UTILIZATION OF ALLZYME® SSF AND CITRIC ACID IN THE FORMULATION OF DUCKWEED-INCLUDED DIETS FOR HYBRID GROUPER, Epinephelus fuscoguttatus x Epinephelus lanceolatus

# **CHRISTINE ANTHONIUS**

# THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

# BORNEO MARINE RESEARCH INSTITUTE UNIVERSITI MALAYSIA SABAH 2017

## UNIVERSITI MALAYSIA SABAH

#### BORANG PENGESAHAN STATUS TESIS

## JUDUL: UTILIZATION OF ALLZYME® SSF AND CITRIC ACID IN THE FORMULATION OF DUCKWEED-INCLUDED DIETS FOR HYBRID GROUPER, Epinephelus fuscoguttatus × Epinephelus lanceolatus

### IJAZAH: SARJANA SAINS (AKUAKULTUR)

Saya **CHRISTINE ANTHONIUS**, Sesi **2014-2017**, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):



(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Aisahkan Oleh,

PUSTAKAWAN KANAN UNIVERSITI MALAYSIA SABAH

(Tandatangan Pustakawan)

(Prof. Madya Dr. Annita Yong Seok Kian) Penyelia

(Dr. Faihanna Ching Abdullah) Penyelia Bersama

CHRISTINE ANTHONIUS MY1321003T

Tarikh: 15 Nov 2017

### DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

15 Nov 2017

Olis.

**Christine Anthonius** 

MY1321003T



### CERTIFICATION

| NAME : | CHRISTINE ANTHONIUS |
|--------|---------------------|
|--------|---------------------|

: MY1321003T MATRIC NO.

TTTLE : UTILIZATION OF ALLZYME® SSF AND CITRIC ACID IN THE FORMULATION OF DUCKWEED-INCLUDED DIETS FOR HYBRID GROUPER, Epinephelus fuscoguttatus x Epinephelus lanceolatus

- **MASTER OF SCIENCE (AQUACULTURE)** DEGREE :
- **VIVA DATE 11 OCTOBER 2017** 2

**CERTIFIED BY:** 

**UNIVERSITI MALAYSIA SABAH** 

### **1. SUPERVISOR**

Assoc. Prof. Dr. Annita Yong Seok Kian

#### 2. CO-SUPERVISOR

Dr. Faihanna Ching Abdullah

Signature

the.

#### ACKNOWLEDGEMENT

First and foremost, I would like to thank my supervisor Dr Annita Yong Seok Kian for her guidance, encouraging words, dedication and patience throughout my Master's studies. I would also like to express my gratitude to Dr Faihanna Ching Abdullah for her guidance and help throughout my studies.

I would also like to thank my beloved family especially my parents, Mr Anthonius Yassin Kunan and Madam Malader Padasian, for their love, support and understanding during the completion of my studies.

I would like to convey my gratitude and a big thank you to all Research Assistants who had helped me during the challenging times in my studies, Mr Chor Wei Kang, Miss Ooi Shing Yau, Miss Isabella Ebi, Mr Johnny Tan Kar Soon, Mr Rian Freddie Firdaus, Miss Asrazitah Abdul Razak, Miss Noor Amalia Shaiful Kahar, Miss Nurul Ain Mohd Sharif, Mr Najamuddin Abdul Basri, Miss Sandra Natalie Gudid, Miss Nik Nurhusna Nik Sin and all my fellow colleagues.

A big thank you to all the lab assistants and also staffs of Fish Hatchery and Shrimp Hatchery of Borneo Marine Research Institute for helping me during my feeding trial. A very special thanks to Prof. Dr Shigeharu Senoo for his kind assistance during my experiment period.

Thank you very much everyone.

Christine Anthonius

9<sup>th</sup> April 2017

#### ABSTRACT

Hybrid grouper, tiger grouper (Epinephelus fuscoguttatus) x giant grouper (Epinephelus lanceolatus) (TGGG) has high market values in Asian region. In most commercial fish farms, groupers are fed mainly with fish meal-based diet. However, the expensive cost and uncertain availability of fish meal urged researchers to find alternative ingredients to curb this issues. The present study was conducted to find alternative ingredients and suitable feed additives to partially replace the fish meal protein for the hybrid grouper. In Experiment 1, graded levels of exogenous enzyme, Allzyme<sup>®</sup> SSF was used as feed additive to evaluate the growth and the suitable level of the enzyme for the fish. Six fish meal-based diets (50% protein, 16% lipid) were formulated with enzyme supplementation at 0 ppm (A0), 50 ppm (A50), 150 ppm (A150), 250 ppm (A250), 350 ppm (A350) and 450 ppm (A450). The feeding trial was conducted for 10 weeks. Results showed fish fed with diet A450 achieved the highest body weight gain (BWG), final body weight (FBW) and specific growth rate (SGR) without significant difference with others (P>0.05). Based on the feed utilization, all the fish utilized the feed well without significant differences among the groups. With enzyme supplementation, an increasing trend of protein efficiency ratio (PER), net protein utilization (NPU), trypsin-like, amylase and lipase in the stomach, apparent digestibility coefficient (ADC) of crude protein and crude lipid (CL) were observed. Thus, 450 ppm of Allzyme® SSF was selected for the following experiment. In Experiment 2, duckweed, Lemna minor (L) was used to replace 5% of fish meal protein in the diet of TGGG juvenile with 450 ppm of Allzyme<sup>®</sup> SSF and 3% citric acid supplementation. The experiment was carried out in a 10 weeks feeding trial to evaluate the effects of plant-based diet with feed additives on growth performance of TGGG. Four treatments were formulated as control diet without addition of duckweed and feed additives (CON), L. minor (DL) diet, L. minor with citric acid (DLC) and L. minor with enzyme (DLA) diets. At the end of experiment, the growth performance of DLC achieved significant higher BWG and SGR compared to CON (P<0.05) but not significantly different with other treatments (P>0.05). The food conversion ratio was not significantly different among treatments (P>0.05). However, the PER and NPU was highest in group fed citric acid-supplemented diet compared to other groups (P>0.05). The specific activities of trypsin-like enzyme were significantly higher in DLC and DLA groups compared to DL and CON groups (P<0.05). Highest amylase activities was observed in DLA than CON (P<0.05) while DL, DLC and DLA have significantly higher lipase activities in stomach than CON (P<0.05). The ADC of CP in fish fed DLC and DLA diets were enhanced compared to CON without significant difference (P>0.05). The histology of distal intestines and liver of TGGG showed no adverse effects that affected the performance of TGGG among the treatments. The present study showed that TGGG can utilize diet added with 5% of duckweed protein and the growth performance, feed utilization, digestive enzyme activities and apparent digestibility were improved with the addition of feed additives such as citric acid and Allzyme® SSF.

#### ABSTRAK

### PENGGUNAAN ALLZYME® SSF DAN ASID SITRIK DALAM FORMULASI DIET KIAMBANG ITIK UNTUK KERAPU HIBRID, Epinephelus fuscoguttatus x Epinephelus lanceolatus

Kerapu hibrid, kerapu harimau (Epinephelus fuscoguttatus) x kerapu gergasi (Epinephelus lanceolatus) (TGGG) mempunyai nilai pasaran yang tinggi di negara Asia. Dalam kebanyakan ladang ikan komersial, kerapu diberi makanan yang diperbuat dari tepung ikan. Walau bagaimanapun, kos yang mahal dan ketersediaan yang tidak dijangka bagi tepung ikan menggesa penyelidik untuk mencari bahanbahan alternatif untuk membendung isu-isu ini. Kajian semasa ini telah dijalankan untuk mencari bahan alternatif dan bahan aditif untuk menggantikan protein tepung ikan untuk kerapu hibrid secara separa. Dalam Eksperimen 1, tahap digred enzim eksogenus Allzyme® SSF telah digunakan sebagai bahan aditif untuk menilai pertumbuhan dan tahap enzim yang sesuai untuk ikan. Enam diet berasaskan tepung ikan (50% protein, 16% lipid) telah dirumuskan dengan penambahan enzim pada 0 ppm (A0), 50 ppm (A50), 150 ppm (A150), 250 ppm (A250), 350 ppm (A350) dan 450 ppm (A450). Percubaan makanan telah dijalankan selama 10 minggu. Keputusan menunjukkan ikan yang diberi makan dengan diet A450 mencapai pertambahan berat badan (BWG), berat akhir badan (FBW) dan kadar pertumbuhan tertentu (SGR) vang paling tinggi tanpa perbezaan yang signifikan dengan kumpulan lain (P>0.05). Berdasarkan penggunaan makanan, semua ikan menggunakan makanan dengan baik tanpa perbezaan yang signifikan antara kumpulan. Dengan suplemen enzim, corak yang meningkat dalam kadar kecekapan protein (PER), penggunaan protein bersih (NPU), tripsin, amilase dan lipase dalam perut, koefisyen penghadaman nyata (ADC) protein mentah (CP) dan lipid mentah (CL) dapat diperhatikan. Oleh itu, 450 ppm Allzyme<sup>®</sup> SSF telah dipilih untuk eksperimen yang berikut. Dalam Eksperimen 2, kiambang itik, Lemna minor (L) telah digunakan untuk menggantikan 5% daripada protein tepung ikan dalam diet juvana TGGG dengan penambahan 450 ppm Allzvme® SSF dan 3% asid sitrik. Eksperimen telah dijalankan dalam percubaan makanan selama 10 minggu untuk menilai kesan daripada diet berasaskan tumbuhan dengan bahan aditif terhadap prestasi tumbesaran TGGG. Empat jenis diet telah dirumuskan sebagai diet kawalan tanpa penambahan kiambang itik dan bahan aditif (CON), diet L. minor (DL), diet L. minor dengan asid sitrik (DLC) dan diet L. minor dengan enzim (DLA). Pada akhir eksperimen, prestasi pertumbuhan DLC mencapai BWG dan SGR yang ketara berbanding CON (P<0.05) tetapi tiada perbezaan ketara dengan kumpulan lain (P>0.05). Tiada perbezaan ketara dalam kadar penukaran makanan antara kumpulan (P>0.05). Walau bagaimanapun, PER dan NPU adalah paling tinggi dalam kumpulan yang diberi makan diet yang ditambah asid sitrik berbanding kumpulan lain (P>0.05). Aktiviti spesifik enzim tripsin adalah lebih tinggi dalam kumpulan DLC dan DLA berbanding kumpulan DL dan CON (P<0.05). Aktiviti amilase tertinggi diperhatikan dalam DLA berbanding CON (P<0.05) manakala DL, DLC dan DLA mempunyai aktiviti lipase dalam perut yang lebih tinggi daripada CON (P<0.05). ADC CP dalam ikan yang diberi makan diet DLC dan DLA telah dipertingkatkan berbanding CON tanpa perbezaan yang signifikan (P>0.05). Histologi usus distal dan hati TGGG tidak menunjukkan sebarang kesan buruk yang mempengaruhi prestasi TGGG antara kumpulan. Kajian semasa ini menunjukkan bahawa TGGG boleh menggunakan makanan yang ditambah dengan 5% protein kiambang itik dan prestasi pertumbuhan, penggunaan makanan, aktiviti enzim penghadaman dan

penghadaman nyata dapat dipertingkatkan dengan penambahan bahan aditif seperti asid sitrik dan Allzyme<sup>®</sup> SSF.



# LIST OF CONTENTS

|                                                        | Page  |
|--------------------------------------------------------|-------|
| TTTLE                                                  | I     |
| DECLARATION                                            | ii    |
| CERTIFICATION                                          | iii   |
| ACKNOWLEDGEMENT                                        | iv    |
| ABSTRACT                                               | v     |
| ABSTRAK                                                | vi    |
| LIST OF CONTENTS                                       | viii  |
| LIST OF TABLES                                         | xiii  |
| LIST OF FIGURES                                        | xv    |
| LIST OF ABBREVIATIONS                                  | xvi   |
| LIST OF SYMBOLS                                        | xviii |
| LIST OF APPENDICES                                     | xix   |
| CHAPTER 1: GENERAL INTRODUCTION                        | 1     |
| 1.1 Background of study                                | 1     |
| 1.2 Hypothesis                                         | 5     |
| 1.3 Objectives                                         | 5     |
| CHAPTER 2: LITERATURE REVIEW                           | 6     |
| 2.1 Current status of hybrid grouper                   | 6     |
| 2.2 Plant protein alternatives in aquaculture          | 8     |
| 2.2.1 Alternative plant protein sources in aquaculture | 8     |
| 2.2.2 Soybean meal                                     | 9     |
| 2.2.3 Duckweed                                         | 10    |
| 2.2.4 Duckweed in the diets for terrestrial animal     | 11    |
| 2.2.5 Duckweed in aquafeed                             | 12    |

| 2.3 Feed additives                                                                                                                                                                            | 15 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.3.1 Exogenous enzyme                                                                                                                                                                        | 15 |
| 2.3.2 Allzyme <sup>®</sup> SSF                                                                                                                                                                | 17 |
| 2.3.3 Organic acid                                                                                                                                                                            | 20 |
| i. Characteristics of organic acid                                                                                                                                                            | 20 |
| ii. The application of organic acid in the diets for terrestrial                                                                                                                              | 20 |
| animals                                                                                                                                                                                       |    |
| 2.3.4 Citric acid                                                                                                                                                                             | 21 |
| 2.3.5 Effects of organic acids dietary supplementation on                                                                                                                                     | 23 |
| intestinal morphology of aquatic and terrestrial animals                                                                                                                                      |    |
| 2.3.6 Role of citric acid in carbohydrate metabolism                                                                                                                                          | 24 |
| 2.3.7 Phosphorus (P) bioavailability with organic acid supplement                                                                                                                             | 25 |
| 2.4 Digestive enzymes in carnivorous fish                                                                                                                                                     | 26 |
| 2.5 Problems associated with plant protein source in fish                                                                                                                                     | 28 |
| CHAPTER 3: EFFECTS OF ALLZYME® SSF DIETARY<br>SUPPLEMENTATION ON GROWTH PERFORMANCE, FEED<br>UTILIZATION, DIGESTIVE ENZYME ACTIVITIES AND<br>DIGESTIBILITY IN HYBRID GROUPER (TGGG) JUVENILES | 31 |
| 3.1 Introduction                                                                                                                                                                              | 31 |
| 3.2 Materials and Methods                                                                                                                                                                     | 33 |
| 3.2.1 Experimental diets                                                                                                                                                                      | 33 |
| 3.2.2 Experimental fish and culture condition                                                                                                                                                 | 35 |
| 3.2.3 Fish sampling and estimation of growth                                                                                                                                                  | 36 |
| performance and feed utilization                                                                                                                                                              |    |
| 3.2.4 Faecal collection for digestibility trial                                                                                                                                               | 38 |
| 3.2.5 Proximate analysis                                                                                                                                                                      | 38 |
| i. Crude protein analysis                                                                                                                                                                     | 38 |
| ii. Crude lipid extraction analysis                                                                                                                                                           | 39 |

| iii. Crude fiber analysis                                                                                                                                                                                                                            | 40 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| iv. Crude ash analysis                                                                                                                                                                                                                               | 41 |
| v. Moisture analysis                                                                                                                                                                                                                                 | 41 |
| 3.2.6 Chromium (III) oxide determination                                                                                                                                                                                                             | 42 |
| 3.2.7 Enzymatic assays                                                                                                                                                                                                                               | 42 |
| i. Crude enzyme sample preparation                                                                                                                                                                                                                   | 42 |
| ii. Pepsin-like enzyme activity assay                                                                                                                                                                                                                | 43 |
| iii. Trypsin-like enzyme activity assay                                                                                                                                                                                                              | 43 |
| iv. Amylase enzyme activity assay                                                                                                                                                                                                                    | 44 |
| v. Lipase enzyme activity assay                                                                                                                                                                                                                      | 44 |
| 3.2.8 Protein determination                                                                                                                                                                                                                          | 45 |
| 3.3 Statistical analysis                                                                                                                                                                                                                             | 45 |
| 3.4 Results                                                                                                                                                                                                                                          | 45 |
| 3.4.1 Nutrient composition of experimental diets                                                                                                                                                                                                     | 45 |
| 3.4.2 Water quality measurement                                                                                                                                                                                                                      | 45 |
| 3.4.3 Growth performance and feed utilization                                                                                                                                                                                                        | 46 |
| 3.4.4 Body condition indices                                                                                                                                                                                                                         | 46 |
| 3.4.5 Whole body proximate composition                                                                                                                                                                                                               | 47 |
| 3.4.6 Enzymatic assays                                                                                                                                                                                                                               | 47 |
| 3.4.7 Apparent Digestibility Coefficients (ADCs) of diets                                                                                                                                                                                            | 48 |
| 3.5 Discussion                                                                                                                                                                                                                                       | 56 |
| CHAPTER 4: EFFECTS OF FEED ADDITIVES<br>SUPPLEMENTATION IN DUCKWEED INCLUSION DIETS TO<br>THE GROWTH PERFORMANCE, FEED UTILIZATION,<br>DIGESTIVE ENZYME ACTIVITIES, DIGESTIBILITY AND<br>PHOSPHORUS ABSORPTION IN HYBRID GROUPER (TGGG)<br>JUVENILES | 61 |
|                                                                                                                                                                                                                                                      |    |

| 4.1 | Int | rod | uct | ion |
|-----|-----|-----|-----|-----|
|     |     |     |     |     |

61

4.2 Materials and Methods

63

| 4.2.1 Diet preparation                                           | 63 |
|------------------------------------------------------------------|----|
| 4.2.2 Experimental fish and culture condition                    | 65 |
| 4.2.3 Digestibility trial                                        | 65 |
| 4.2.4 Samples collection                                         | 66 |
| 4.2.5 Determination of carbohydrate and glycogen                 | 66 |
| content                                                          |    |
| 4.2.6 Total phosphorus analysis                                  | 67 |
| 4.2.7 Histological analysis                                      | 67 |
| 4.2.8 Amino acid analysis                                        | 68 |
| 4.2.9 Fatty acid analysis                                        | 69 |
| 4.3 Data analysis                                                | 69 |
| 4.4 Results                                                      | 70 |
| 4.4.1 Proximate composition and carbohydrate content in duckweed | 70 |
| 4.4.2 Proximate composition of experimental diets                | 70 |
| 4.4.3 Water quality measurement ERSITI MALAYSIA SABAH            | 71 |
| 4.4.4 Growth performance and feed utilization                    | 71 |
| 4.4.5 Body condition indices, whole body proximate               | 73 |
| composition and hepatic glycogen analysis                        |    |
| 4.4.6 Enzymatic assays                                           | 75 |
| 4.4.7 Apparent Digestibility Coefficients (ADCs) of diets        | 76 |
| and phosphorus absorption in TGGG                                |    |
| 4.4.8 Histology of intestines and liver                          | 77 |
| 4.4.9 Amino acid analysis: Fish meal, duckweed,                  | 81 |
| experimental diets and whole body of fish                        |    |
| 4.4.10 Fatty acid analysis                                       | 84 |
| 4.5 Discussion                                                   | 85 |

| 4.5.1 Growth performance and feed utilization           | 85  |
|---------------------------------------------------------|-----|
| 4.5.2 Body condition indices                            | 88  |
| 4.5.3 Whole body proximate composition and hepatic      | 89  |
| glycogen analysis                                       |     |
| 4.5.4 Enzymatic activities                              | 90  |
| 4.5.5 Apparent Digestibility Coefficient (ADC) of diets | 93  |
| 4.5.6 Phosphorus (P) absorption                         | 94  |
| 4.5.7 Histological analysis of intestine and liver      | 95  |
| 4.5.8 Amino acid composition: Fish meal, duckweed,      | 95  |
| experimental diets and whole body of fish               |     |
| 4.5.9 Fatty acid composition: Experimental diets        | 96  |
| CHAPTER 5: GENERAL CONCLUSION                           | 98  |
| 5.1 Conclusion                                          | 98  |
| REFERENCES                                              | 100 |
| APPENDICES<br>UNIVERSITI MALAYSIA SABAH                 | 128 |

#### LIST OF TABLES

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 3.5

Table 3.6

Table 3.7

|                                                                                                                                                 | Page |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Duckweed used as inclusion in fish feed                                                                                                         | 14   |
| Type of commercial feed enzymes and target substrates                                                                                           | 16   |
| Level of Allzyme <sup>®</sup> SSF and other multienzyme complex used in various fish species                                                    | 19   |
| Citric acid application in aquaculture                                                                                                          | 23   |
| Diet formulation of the experimental diets                                                                                                      | 34   |
| Proximate composition of experimental diets                                                                                                     | 46   |
| Growth performances of TGGG juveniles fed diet with increasing levels of Allzyme <sup>®</sup> SSF                                               | 47   |
| Feed utilization of TGGG juveniles after 10 weeks of feeding trial                                                                              | 48   |
| Body indices (% wet weight) of TGGG juveniles after<br>10 weeks of feeding trial                                                                | 49   |
| Whole body proximate composition (% wet weight) of TGGG juveniles after 10 weeks of feeding trial                                               | 50   |
| Digestive enzyme specific activities in the stomach (S)<br>and pyloric caeca (PC) of TGGG fed increasing levels<br>of enzyme-supplemented diets | 51   |

| Table 3.8 | Apparent digestibility coefficients (ADCs) of the experimental diets | 52 |
|-----------|----------------------------------------------------------------------|----|
| Table 4 1 | Dist formulation for protoin replacement of duckwood                 | 64 |

- 1 able 4.1 Diet formulation for protein replacement of duckweed in dry matter (DM)
- Table 4.2 Proximate composition and carbohydrate content in 70 duckweed *L. minor* in dry matter basis (DM)
- Table 4.3 Proximate composition of experimental diets in dry 71 matter (DM)
- Table 4.4 Growth performance of TGGG juveniles fed with 72 different diets
- Table 4.5 Feed utilization of TGGG juveniles after 10 weeks of 73 feeding trial

| Table 4.6  | Body indices, whole body proximate composition (% wet weight) and hepatic glycogen content of TGGG juveniles after 10 weeks of feeding trial                               | 74 |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 4.7  | Digestive enzyme specific activities in the stomach (S)<br>and pyloric caeca (PC) of TGGG fed CON diet, citric<br>acid-supplemented dietsand enzyme-supplemented<br>diets. | 76 |
| Table 4.8  | Apparent digestibility coefficients (ADCs) of the experimental diets and phosphorus (P) absorption in TGGG                                                                 | 77 |
| Table 4.9  | The histological features of intestine in TGGG fed                                                                                                                         | 78 |
|            | different experimental diets                                                                                                                                               |    |
| Table 4.10 | Amino acid composition (% dry weight) of the ingredients and experimental diets fed to TGGG juveniles in 10 weeks feeding trial                                            | 82 |
| Table 4.11 | Amino acid composition (% dry weight) of the whole<br>body tissue of TGGG juveniles in 10 weeks feeding<br>trial                                                           | 83 |
| Table 4.12 | Fatty acid composition of experimental diets                                                                                                                               | 84 |
|            | (% of total fatty acid)                                                                                                                                                    |    |
|            | LINIVERSITI MALAYSIA SABAH                                                                                                                                                 |    |

# LIST OF FIGURES

Page

| Figure 2.1 | TGGG juvenile                                                          | 8  |
|------------|------------------------------------------------------------------------|----|
| Figure 2.2 | Taxonomic hierarchy of duckweed L. minor                               | 10 |
| Figure 2.3 | Common duckweed, L. minor                                              | 12 |
| Figure 3.1 | Experimental tank layout                                               | 36 |
| Figure 3.2 | Faecal collection tank                                                 | 38 |
| Figure 4.1 | Distal intestinal of fish fed experimental diets stained               | 79 |
|            | with H&E (40X magnification)                                           |    |
| Figure 4.2 | Liver morphology of juvenile TGGG stained with H&E (10x magnification) | 80 |



## LIST OF ABBREVIATIONS

| ٥                                |         | Alpha                                       |
|----------------------------------|---------|---------------------------------------------|
| β                                | -       | beta                                        |
| μg                               | -       | microgram                                   |
| μL                               |         | microlitre                                  |
| µmole                            | Ť       | micromole                                   |
| 4-NPC                            |         | 4-nitrophenyl caproate                      |
| ADC                              | <u></u> | Apparent digestibility coefficient          |
| ANOVA                            | -       | One –way Analysis Variance                  |
| AOAC                             | -       | Association of Official Analytical Chemists |
| ATP                              | -       | Adenosine triphosphate                      |
| BW                               | -       | Body weight                                 |
| BL                               | -       | Body length                                 |
| BWG                              | -       | Body weight gain                            |
| CF                               | -       | Condition factor                            |
| CL                               | -       | Crude lipid                                 |
| Cm                               | -       | Centimetre                                  |
| CMC                              | -       | carboxymethylcellulose                      |
| CP                               | -       | Crude protein                               |
| $Cr_2O_3$                        | -       | Chromium (III) oxide                        |
| CuSO <sub>4</sub>                | -       | copper (II) sulphate                        |
| DM                               | -       | Dry matter                                  |
| DFI                              | -       | Daily feed intake                           |
| EAAs                             |         | Essential amino acids                       |
| et al.                           |         | And others                                  |
| FCR                              |         | Feed conversion ratio                       |
| FM                               |         | Fish meal                                   |
| FTU/kg                           |         | Phytase activity unit per kilogram          |
| g                                | 2/_/    | aram                                        |
| H&E                              | ¥.      | Haematoxylin and eosin                      |
| H <sub>2</sub> O                 |         | Water                                       |
| H <sub>2</sub> SO <sub>4</sub>   |         | Sulphuric acid                              |
| ha                               | 2       | hectare                                     |
| HSI                              |         | Hepatosomatic index                         |
| IPF                              |         | Intraperitoneal fat ratio                   |
| KOH                              | 2       | Potassium hydroxide                         |
| K <sub>2</sub> SO <sub>4</sub>   | -       | potassium sulphate                          |
| L                                |         | Litre                                       |
| LM                               | -       | Lemna minor                                 |
| LP                               | 2       | Lamina propria                              |
| M                                | -       | molar                                       |
| M <sup>-1</sup> cm <sup>-1</sup> | - C-    | Unit for molar attenuation coefficient      |
|                                  | 1       | milligram                                   |
| mg<br>mg/L                       | 2       | milligram per litre                         |
| mg/mL                            | 2       | Milligram per millilitre                    |
| ml                               | 2       | millilitre                                  |
|                                  | ÷.      | Millimetre                                  |
| mm<br>mM                         | -       | Millimolar                                  |
|                                  | -       |                                             |
| MUFA                             |         | Monounsaturated fatty acid                  |
| N                                | -       | Nitrogen                                    |

| N               | -           | Normality                                            |
|-----------------|-------------|------------------------------------------------------|
| N/L             | -           | Nitrogen per litre                                   |
| NaOH            | +           | Sodium hydroxide                                     |
| NEAAS           | -           | Non-essential amino acids                            |
| NFE             | -           | Nitrogen-free extract                                |
| NH₄Cl           | -           | Ammonium chloride                                    |
| NH <sub>3</sub> | $(\pm)$     | Ammonia                                              |
| NIFES           | -           | National Institute of Nutrition and Seafood Research |
| NRC             | -           | National Research Council                            |
| nm              | -           | Nanometre                                            |
| NPU             | -           | Net protein utilization                              |
| Р               | -           | Phosphorus                                           |
| PC              | -           | Pyloric caeca                                        |
| PER             | -           | Protein efficiency ratio                             |
| ppm             | -           | Parts per million                                    |
| ppt             | -           | Parts per trillion                                   |
| PUFA            | -           | Polyunsaturated fatty acid                           |
| rpm             | -           | Revolutions per minute                               |
| S               | -           | stomach                                              |
| SAFA            | -           | Saturated fatty acid                                 |
| SBM             | -           | Soybean meal                                         |
| SD              | -           | Standard deviation                                   |
| SGR             | 1           | specific growth rate                                 |
| Spp.            | MA          | species                                              |
| SPSS            | 1           | Statistical Package for Social Science               |
| SSF             | -           | Solid state fermentation                             |
| TCA             | -           | Trichloroacetic acid                                 |
| UV              | <i>/</i> -) | Ultraviolet                                          |
| Vrole           | Sar         | vacuole                                              |
| VSI             | A           | Viscerosomatic index MALAYSIA SABAH                  |
|                 |             |                                                      |

# LIST OF SYMBOLS

| ®   |     | Registered     |
|-----|-----|----------------|
| ٥C  | -   | degree Celsius |
| Σ   | 37  | Sigma (sum)    |
| %   | . – | percent        |
| хg  |     | Times gravity  |
| III | -   | three          |



## LIST OF APPENDICES

|             |                                                                       | Page |
|-------------|-----------------------------------------------------------------------|------|
| Appendix A: | Preparation of buffers, substrates and solutions for enzymatic assay  | 128  |
| Appendix B: | Preparation of reagents for carbohydrate and glycogen analyses        | 131  |
| Appendix C: | Preparations of reagents for total phosphorus analysis                | 132  |
| Appendix D: | Table A: Dehydration, infiltration and embedding processes for sample | 133  |
| Appendix E: | Table B: Clearing and staining                                        | 134  |
|             | JUMS                                                                  |      |

UNIVERSITI MALAYSIA SABAH

# **CHAPTER 1**

# **GENERAL INTRODUCTION**

#### 1.1 Background of study

With around three quarters of the world capture fisheries fully or overexploited (Huntington and Hasan, 2009) aquaculture is the main source for future fish production. Fish contributes to the nutritional security of poor households in developing countries in various ways (FAO, 2014). Capture fisheries and aquaculture supplied the world with 158 million tonnes fish in 2012 of which 136 million tonnes were used as human food (FAO, 2014). Further growth in the aquaculture production can therefore not depend on an expansion in the catch volume of wild fish but must rely on a further increase in the utilization of alternative feed resources (Bogevik, 2015).

## INIVERSITI MALAYSIA SABAH

Carnivorous fish farming was reported to place unnecessary pressure on world fish meal supplies (Naylor e*t al.*, 2000). Carnivorous fish such as groupers, salmon and trout consume significantly more fish protein than they produced when observed through the discrepancies in the ratio of wild fish consumed to farmed fish produced (Huntington and Hasan, 2009). In order to ensure an optimal content of amino acids and other nutrients needed for fish growth and flesh quality, most fish feeds contain a minimum level of fish meal (FAO, 2014). However, the increasing price of fish meal in recent years has urged researchers to find alternatives for fish meal. Fish meal is used as a primary ingredient in high-protein feed production. Generally, fish feed constitute the major part of aquaculture production cost due to the reliance on fish meal as main protein source. A significant percentage of world fisheries production is still processed into fish meal and fish oil although with a declining trend (FAO, 2014). A total of 30.2 million tonnes for fish meal production was used up for aquaculture in 1994, dropped in 2010 due to reduced catches of

anchoveta, increased again in 2011 and then down to a declining trend in 2012 (FAO, 201). Currently, the usage of fish meal was expected to increase in order to cope with the increasing level of production and intensification of the aquaculture industry.

Due to the uncertain availability and peaked cost of fish meal, there has been a lot of efforts applied to find suitable sources of protein alternatives in order to replace the usage of fish meal. For grouper species, among the sources of protein investigated are animal protein such as poultry-by product meal in orange-spotted grouper, *E. coioides*, humpback grouper, *Cromileptes altivelis*, malabar grouper, *E. malabaricus* and also brown-marbled grouper, *E. fuscoguttatus* (Millamena and Golez, 2001; Millamena, 2002; Shapawi *et al.*, 2007; Wang *et al.*, 2008; Li *et al.*, 2009; Rachmansyah *et al.*, 2009; Gunben *et al.*, 2014). Plant protein alternatives has also been a great interest in aquaculture research for brown-marbled grouper, rainbow trout, *Oncorhynchus mykiss* and gilthead sea bream, *Sparus aurata* such as soybean meal products (Shapawi *et al.*, 2013a, b), lupin seed meal (Glencross *et al.*, 2004), pea seed meal (Pereira and Olivia-Teles, 2002), corn gluten meal (Pereira and Olivia-Teles, 2003), rapeseed meal and many others.

On the other hand, duckweed is the smallest angiosperms in the world, where it has a fast growth and is a simplest flowering plant (Patra, 2015). Moreover, due to its miniature sizes, capacity of rapid growth to form genetically uniform clones, easy management and high sensitivity to organic and inorganic substances, it is often used as model system for different types of experiment (Zhang *et al.*, 2010). In Malaysia, duckweed can be found almost anywhere such as ponds, lakes, and ditches. According to Goopy and Murray (2003), the members of Lemnaceae family are found almost worldwide but not present in polar region and deserts. Duckweed meal has been used for cattle, poultry, swine and fish which showed favourable results (Skillicorn *et al.*, 1993). In aquaculture, it has been used as partial replacement of fish meal in various fish species including Indian carp, *L. rohita* (Ahammad *et al.*, 2003; Gull *et al.*, 2005), common carp, *Cyprinus carpio* (Yilmaz *et al.*, 2004), and silver barb, *Barbodes gonionotus* (Noor *et al.*, 2000). The problem of incorporation of plant protein sources in fish feed is the presence of various anti-nutritional factors which reduce the digestive enzyme activities and therefore decrease nutrient digestibility (Krogdahl *et al.*, 1994). Anti-nutritional factors also have limiting effect on the growth of fish and can cause pathomorphological changes in the intestines of fish (Krogdahl *et al.*, 2003). Studies on rainbow trout, *Oncorhynchus mykiss* and Atlantic salmon, *Salmo salar* revealed intestinal inflammatory developments promoted by anti-nutritional factors in soybean meal-based diets (Krogdahl *et al.*, 2003; Ostaszewska *et al.*, 2005). Soybean meal usage in formulated feed can also hamper growth due to the lack of amino acids especially lysine and/or methionine (Fagbenro and Davies, 2001). It is also validated that high dietary level of plant proteins which is over 40% of total protein for partial replacement of fish meal decreases feed efficiency as well as growth performance (Robaina *et al.*, 1995; Refstie *et al.*, 2000). Moreover, when plant-based ingredients increased, the intake of anti-nutritional factors and fibers will increase which will consequently interfere with nutrient digestibility in fish (Francis *et al.*, 2001).

Commonly, when plant source protein is added into the feed, supplementation of feed additives such as exogenous enzyme and organic acid has been reported to improve the utilization of the feed (Lin *et al.*, 2007; Pandey and Satoh, 2008; Yildirim and Turan, 2010). Poultry and pig industries have been using exogenous enzyme as supplementation in their feeds. The application of enzymes has shown that lower cost or cheaper ingredients can be used with equal and even better performance and subsequently increase the choice and flexibility of the feed manufacturer (Deguara *et al.*, 1999). In terrestrial animals, the beneficial effects of enzymes have been reported in a number of studies such as broiler chickens (Bedford and Classen, 1992; Walsh and Headon, 1994) and turkeys (Salmon *et al.*, 1986).

In aquaculture, exogenous enzyme has been used as feed additives in many species of fish to increase feed digestibility. There are still few studies evaluating enzyme supplementation in feed for fish and recommendations of dietary enzymes for aquatic organisms are built on results obtained for non-ruminants animals (Castillo and Gatlin, 2015). The practice of enzyme application for fish has yielded contrary results due to over-dependence on plant protein source types, enzymatic profile and addition level added to the diets, besides the fish species used as model

3