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ABSTRACT 

Shells are the exoskeleton of certain creatures which include mollusks. Previously 

a research was conducted to show the relevance of the Fibonacci sequence on the 

spiral shape on the nautilus shell. This concluded in the usage of the Golden 

Rectangle which is now widely used to describe many different types of spirals 

including spirals of galaxies. The Fibonacci sequence is connected to the Golden 

Ratio therefore this dissertation is not only directly concentrated on the 

Fibonacci sequence. In this dissertation, a lot of concentration was given to two 

main types of shells; the gastropod family shells and the bivalve family of shells. 

These two types of shells are abundantly found on the beaches of Malaysia. 

Beach combing method was used to collect these shells, which is basically the 

method of walking by the beach and collecting shells that meets the eye. As for 

the analysis part, the shells were observed and compared to many shapes to find 

the relevance of the Fibonacci sequence and the Golden Ratio in these shells. A 

sample size of 20 shells for each type of shell was used to ascertain that the 

conclusion would include shells of different size too. As a result, three main 

diagrams were created to prove the Fibonacci sequence and the Golden Ratio on 

six different types of shells particularly from the gastropod and bivalve families. 
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SIRI FIBONACCI DAN CENKERANG 

ABSTRAK 

Cengkerang merupakan rangka luar bagi organisma yang tidak mempunyai 

rangka seperti mamalia. Cengkerang paling ketara pada haiwan jenis molIuska. 

Sebelum ini, suatu kajian telah dijalankan untuk menunjukan kewujudan siri 

Fibonacci pada cenkerang nautilus. Sebagai penyelesaiannya, kajian ini telah 

menggunakan Golden Rectangle untuk menunjukan kewujudan siri Fibonacci 

pada cengkerang ini. Kini, Golden Rectangle digunakan untuk menunjukan 

kewujudan siri Fibonacci pada segal a jenis putaran termasuk putaran galaksi 

dan lain-lain lagi. Siri Fibonacci berkait rapat dengan Golden Ratio, oleh itu, 

disertasi ini memfokuskan siri Fibonacci dan juga Golden Ratio. Dalam disertasi 

ini, dua jenis cengekrang digunakan iaitu cenkerang gastropod dan cengkerang 

bivalve. Dua jenis cengkerang ini adalah jenis cengkerang yang paling senang 

didapati di Malaysia. Bagi aspek analysis kajian ini, cengkerang yang di pun gut 

di perhati dan di bandingkan dengan pelbagai jenis bentuk untuk mencari 

kewujudan siri Fibonacci dan Golden Ratio pada cengkerang tersebut. Sejumlah 

20 cengkerang daripada setiap jenis cengkerang digunakan supaya kesimpulan 

kajian ini meliputi pelbagai saiz cengkerang. Sebagai kesimpulan, tiga jenis 

metodologi di temui untuk menunjukkan siri Fibonacci pada enam jenis 

cengkerang yang didapati daripada famili gastropod dan bivalve. 
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CHAPTER I 

INTRODUCTION 

1.1 mSTORY 

1.1.1 The Life Of Fibonacci 

If you have read the book by best selling author, Dan Brown, The Da Vinci Code, you 

probably would already have a brief introduction to the Fibonacci Sequence. Though 

most of you maybe awed by the fact that mathematical work can be related to even the 

beauty of a particular person, this thesis will show you more relations of the Fibonacci 

Sequence and Fibonacci Numbers in our daily lives and hopefully mathematics will be 

appreciated more. In his book, Dan Brown related the Golden Ratio (one of the 

products of The Fibonacci Sequence) to the drawing of Leonardo Da Vinci, the Mona 

Lisa. It is stated that her face follows the Golden Section making her a beautiful 

person, mathematically speaking. Well, that is not the only use Fibonacci's work. The 

Fibonacci Sequence, the Fibonacci Numbers and the Golden Section have also been 

used widely in the fields of music, architecture, art and physical nature. 
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Fibonacci was born in the 1170's as Leonardo later known as Leonardo Pisano 

or Leonardo of Pisa since he was born in Pisa, Italy. Later he adopted the more 

professional name, Fibonacci which meant Filius Bonacci or in English, Son of 

Bonacci. 

Fibonacci' s father, Guilielmo Bonacci, worked as a customs officer in Bugia 

(now called Bougie), North Africa, where he summoned Fibonacci at a young age in 

preparation of giving his son a good education. Guilielmo must have had great 

foresight since the effect of Fibonacci's education has paid off to the world for 

centuries and centuries to come. During Fibonacci's travels with his father, he came to 

learn and love mathematics. 

Fibonacci grew up with a North African education under the Moors (medieval 

Muslim inhabitants of al-Andalus) and later travelled extensively around the 

Mediterranean coast. He then met with many merchants and learned their systems of 

doing arithmetic. He soon realized the many advantages of the "Hindu-Arabic" system 

over all the others. One of the initial capturing ideas that intrigued Fibonacci was the 

nine digit number system used in the mathematics of the Indians. He was one of the 

first people to introduce the Hindu-Arabic number system into Europe, the system we 

now use today based on ten digits with its decimal point and a symbol for zero: 1, 2, 3, 

4, 5,6, 7, 8, 9 and O. His book on how to do arithmetic in the decimal system, called 

Liber Abbaci (meaning Book of the Abacus or Book of Calculation) completed in 

1202 persuaded many of the European mathematicians of his day to use his "new" 

system (Knott, 2001). 
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1.1.2 Fibonacci's Achievements 

In the west, Fibonacci was known as the "greatest European mathematician of the 

middle ages." He died in the 1240's. There is now a statue commemorating him 

located at the Leaning Tower end of the cemetery next to the Cathedral in Pisa. There 

are two streets named after Fibonacci, the Quayside Lungarno Fibonacci in Pisa and 

the Via Fibonacci in Florence. 

The most famous problem poised by Fibonacci during his time was the 

Fibonacci's rabbit problem (A certain man put a pair of rabbits in a place surrounded 

on all sides by a wall. How many pairs of rabbits can be produced from that pair in a 

year if it is supposed that every month each pair begets a new pair which from the 

second month on becomes productive?). This was in the Liber Abbaci and it was a 

problem that he faced in 1202. 

His achievements, during his lifetime of discoveries, include the writing of the 

Liber Abbaci (the book of calculation), Liber Quadratorum (the book of square 

numbers), this book demonstrated Fibonacci's ease at solving the problems of 

Diophantus, the greatest mathematician before him, Practica Geometriae (the practice 

of geometry), Flos (where he solved many problems at the imperial court) and his 

most important achievements were his role in bringing Eastern mathematics into 

Western mathematics and introducing the fractional bar that we use in modem day 

mathematics. 
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Fibonacci's works are still famous today due to the works of Franyois Edouard 

Anatole Lucas (April 4, 1842 - October 3, 1891, the inventor of the Tower of Hanoi 

and the Lucas Sequence) and Jacques Philippe Marie Binet (February 2, 1786 - May 

12, 1856, the inventor of the rule for multiplying matrices) who studied the Fibonacci 

Sequence and found a formula to derive the nth term of the Fibonacci Sequence. This 

formula was derived by Binet in 1843, and popularized by Lucas in his own work on 

the Lucas Sequence and also naming the Fibonacci Sequence, even though the result 

was known to Euler, Daniel Bernoulli, and de Moivre more than a century earlier 

(Knott, 2001). 

Figure 1.1 Leonardo Pisano 
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1.2 BACKGROUND OF RESEARCH 

1.2.1 The Fibonacci Sequence 

The Fibonacci Numbers first appeare~ with the name maatraameru (mountain of 

cadence), in the work of the Sanskrit grammarian, Pingala (Chhandah-shiistra, the Art 

of Prosody, 450 or 200 BC). Another Indian mathematician, Virahanka, gave 

particular conditions for the Fibonacci sequence in the 8th century. The Indian Jain 

philosopher, Hemachandra, revisited the problem in the 1100's. Sanskrit vowel 

sound's can be long (L) or short (S), and Hemachandra wished to compute how many 

cadences (A cadence is a particular series of intervals or chords that ends a phrase, 

section, or piece of music. Cadences give phrases a distinctive ending that can, for 

example, indicate to the listener whether the piece is to be continued or concluded.) of 

a given overall length can be composed of these long and short vowels. Hemachandra 

showed that the number of patterns of length, n, is the sum of the two previous 

numbers in the series thus relating his findings to the modem day Fibonacci Sequence. 

Another Indian scholar, Gopala (1135) had also done his work on the cadences using 

the basic principles of the modem day Fibonacci Sequence. As you can see, most of 

the relevant works around the Fibonacci Sequence earlier were concentrated in the 

field of language (Mathworld, 2003). 
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1.2.2 The Golden Section 

Two numbers deduced from the Fibonacci Sequence, Phi, <I> and phi, ({J are known as 

the Golden Section. The Golden Section was first discovered by ancient Greek 

mathematicians because of its frequent appearance in geometry and architecture. 

These figures also appeared in Sumerian tablets as early as 3200 Be, but there is no 

evidence that the Sumerians recognized the ratio. The Greeks usually attributes the 

discovery of the Golden Section to Pythagoras or to the Pythagoreans, notably 

Theodorus or Hippasus. Euclid in his book Elements gives the first known written 

definition of the Golden Section which he called, in English, "extreme and mean 

ratio". Before Euclid, Phidias (490-430 BC) made the Parthenon statues that seem to 

follow the Golden Ratio and Plato (427-347 BC) in his book, Timaeus, describes five 

possible regular solids, some of which are related to the Golden Ratio. 

The Fibonacci Sequence, the Fibonacci Numbers and the Golden Section appear 

frequently in many different aspects of mathematics and science including nature, 

physics, architecture and astronomy. It is quite amazing that Fibonacci Number 

patterns occur so frequently in nature such as on flowers, shells, plants, leaves, 

galaxies and many more that this phenomenon appears to be one of the principal "laws 

of nature". Many plants show the Fibonacci Numbers in the arrangement of the leaves 

around the stem. Some pine cones and fir cones also show the Fibonacci Numbers in 

their whirls, as do daisies and sunflowers show the Fibonacci Numbers in their petals 

and seed head swirls. It is a belief that almost all living beings are governed by 

Fibonacci's work (Fibonacci Association, 2006). 
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1.3 THE GOLDEN RECTANGLE. 

The Fibonacci Sequence, as introduced earlier in this dissertation, is a sequence of 

where the following number is the sum of its two previous numbers. Therefore the 

general formula of the Fibonacci Sequence is: 

Define 

And (1.1) 

From this general formula of the Fibonacci Sequence, we get a sequence of numbers: 

1, 1,2,3,5,8, 13,21,34,55,89, 144,233,377,610 ... 

The Golden rectangle is built using the Fibonacci Numbers as the sides of 

squares that are drawn in a spiral. It's like drawing an anti-clockwise spiral of squares. 

This is how we draw a Golden Rectangle:-

Step 1: 

Begin by drawing a I unit x 1 unit square. 

D 
Figure 1.2 Step 1 drawing a 1 unit x 1 unit box 
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Step 2: 

To its left, draw another one 1 unit x 1 unit square. 

IT] 
Figure 1.3 Step 2 drawing a 1 unit x 1 unit box 

Step 3: 

- Then above these squares draw a 2 unit x 2 unit square. An important rule is that the 

squares share their sides. 

Figure 1.4 Step 3 drawing a 2 unit x 2 unit box 

Step 4: 

A 3 unit x 3 unit square is drawn to the right of these squares. 

Figure 1.5 Step 4 drawing a 3 unit x 3 unit box 



9 

Step 5: 

- Then draw a 5 unit x 5 unit square at the bottom of the previous squares. 

Figure 1.6 Step 5 drawing a 5 unit x 5 unit box 

Step 6: 

- As can be seen, the sides of these squares follow the sequence of numbers as the 

Fibonacci Sequence. 

- The process continues till the desired size of the Golden Rectangle is obtained . 



Figure 1.7 

10 

The basic plan of a spiral that is governed by the Fibonacci 

Sequence. 
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